xref: /linux/arch/s390/kernel/time.c (revision de73b5a97bba1538f065e1e90d8eeac399db7510)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/timekeeper_internal.h>
40 #include <linux/clockchips.h>
41 #include <linux/gfp.h>
42 #include <linux/kprobes.h>
43 #include <linux/uaccess.h>
44 #include <vdso/vsyscall.h>
45 #include <vdso/clocksource.h>
46 #include <vdso/helpers.h>
47 #include <asm/facility.h>
48 #include <asm/delay.h>
49 #include <asm/div64.h>
50 #include <asm/vdso.h>
51 #include <asm/irq.h>
52 #include <asm/irq_regs.h>
53 #include <asm/vtimer.h>
54 #include <asm/stp.h>
55 #include <asm/cio.h>
56 #include "entry.h"
57 
58 union tod_clock tod_clock_base __section(".data");
59 EXPORT_SYMBOL_GPL(tod_clock_base);
60 
61 u64 clock_comparator_max = -1ULL;
62 EXPORT_SYMBOL_GPL(clock_comparator_max);
63 
64 static DEFINE_PER_CPU(struct clock_event_device, comparators);
65 
66 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
67 EXPORT_SYMBOL(s390_epoch_delta_notifier);
68 
69 unsigned char ptff_function_mask[16];
70 
71 static unsigned long long lpar_offset;
72 static unsigned long long initial_leap_seconds;
73 static unsigned long long tod_steering_end;
74 static long long tod_steering_delta;
75 
76 /*
77  * Get time offsets with PTFF
78  */
79 void __init time_early_init(void)
80 {
81 	struct ptff_qto qto;
82 	struct ptff_qui qui;
83 
84 	/* Initialize TOD steering parameters */
85 	tod_steering_end = tod_clock_base.tod;
86 	vdso_data->arch_data.tod_steering_end = tod_steering_end;
87 
88 	if (!test_facility(28))
89 		return;
90 
91 	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
92 
93 	/* get LPAR offset */
94 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
95 		lpar_offset = qto.tod_epoch_difference;
96 
97 	/* get initial leap seconds */
98 	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
99 		initial_leap_seconds = (unsigned long long)
100 			((long) qui.old_leap * 4096000000L);
101 }
102 
103 /*
104  * Scheduler clock - returns current time in nanosec units.
105  */
106 unsigned long long notrace sched_clock(void)
107 {
108 	return tod_to_ns(get_tod_clock_monotonic());
109 }
110 NOKPROBE_SYMBOL(sched_clock);
111 
112 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt)
113 {
114 	unsigned long rem, sec, nsec;
115 
116 	sec = clk->us;
117 	rem = do_div(sec, 1000000);
118 	nsec = ((clk->sus + (rem << 12)) * 125) >> 9;
119 	xt->tv_sec = sec;
120 	xt->tv_nsec = nsec;
121 }
122 
123 void clock_comparator_work(void)
124 {
125 	struct clock_event_device *cd;
126 
127 	S390_lowcore.clock_comparator = clock_comparator_max;
128 	cd = this_cpu_ptr(&comparators);
129 	cd->event_handler(cd);
130 }
131 
132 static int s390_next_event(unsigned long delta,
133 			   struct clock_event_device *evt)
134 {
135 	S390_lowcore.clock_comparator = get_tod_clock() + delta;
136 	set_clock_comparator(S390_lowcore.clock_comparator);
137 	return 0;
138 }
139 
140 /*
141  * Set up lowcore and control register of the current cpu to
142  * enable TOD clock and clock comparator interrupts.
143  */
144 void init_cpu_timer(void)
145 {
146 	struct clock_event_device *cd;
147 	int cpu;
148 
149 	S390_lowcore.clock_comparator = clock_comparator_max;
150 	set_clock_comparator(S390_lowcore.clock_comparator);
151 
152 	cpu = smp_processor_id();
153 	cd = &per_cpu(comparators, cpu);
154 	cd->name		= "comparator";
155 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
156 	cd->mult		= 16777;
157 	cd->shift		= 12;
158 	cd->min_delta_ns	= 1;
159 	cd->min_delta_ticks	= 1;
160 	cd->max_delta_ns	= LONG_MAX;
161 	cd->max_delta_ticks	= ULONG_MAX;
162 	cd->rating		= 400;
163 	cd->cpumask		= cpumask_of(cpu);
164 	cd->set_next_event	= s390_next_event;
165 
166 	clockevents_register_device(cd);
167 
168 	/* Enable clock comparator timer interrupt. */
169 	__ctl_set_bit(0,11);
170 
171 	/* Always allow the timing alert external interrupt. */
172 	__ctl_set_bit(0, 4);
173 }
174 
175 static void clock_comparator_interrupt(struct ext_code ext_code,
176 				       unsigned int param32,
177 				       unsigned long param64)
178 {
179 	inc_irq_stat(IRQEXT_CLK);
180 	if (S390_lowcore.clock_comparator == clock_comparator_max)
181 		set_clock_comparator(S390_lowcore.clock_comparator);
182 }
183 
184 static void stp_timing_alert(struct stp_irq_parm *);
185 
186 static void timing_alert_interrupt(struct ext_code ext_code,
187 				   unsigned int param32, unsigned long param64)
188 {
189 	inc_irq_stat(IRQEXT_TLA);
190 	if (param32 & 0x00038000)
191 		stp_timing_alert((struct stp_irq_parm *) &param32);
192 }
193 
194 static void stp_reset(void);
195 
196 void read_persistent_clock64(struct timespec64 *ts)
197 {
198 	union tod_clock clk;
199 	u64 delta;
200 
201 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
202 	store_tod_clock_ext(&clk);
203 	clk.eitod -= delta;
204 	ext_to_timespec64(&clk, ts);
205 }
206 
207 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
208 						 struct timespec64 *boot_offset)
209 {
210 	struct timespec64 boot_time;
211 	union tod_clock clk;
212 	u64 delta;
213 
214 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
215 	clk = tod_clock_base;
216 	clk.eitod -= delta;
217 	ext_to_timespec64(&clk, &boot_time);
218 
219 	read_persistent_clock64(wall_time);
220 	*boot_offset = timespec64_sub(*wall_time, boot_time);
221 }
222 
223 static u64 read_tod_clock(struct clocksource *cs)
224 {
225 	unsigned long long now, adj;
226 
227 	preempt_disable(); /* protect from changes to steering parameters */
228 	now = get_tod_clock();
229 	adj = tod_steering_end - now;
230 	if (unlikely((s64) adj > 0))
231 		/*
232 		 * manually steer by 1 cycle every 2^16 cycles. This
233 		 * corresponds to shifting the tod delta by 15. 1s is
234 		 * therefore steered in ~9h. The adjust will decrease
235 		 * over time, until it finally reaches 0.
236 		 */
237 		now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
238 	preempt_enable();
239 	return now;
240 }
241 
242 static struct clocksource clocksource_tod = {
243 	.name		= "tod",
244 	.rating		= 400,
245 	.read		= read_tod_clock,
246 	.mask		= CLOCKSOURCE_MASK(64),
247 	.mult		= 1000,
248 	.shift		= 12,
249 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
250 	.vdso_clock_mode = VDSO_CLOCKMODE_TOD,
251 };
252 
253 struct clocksource * __init clocksource_default_clock(void)
254 {
255 	return &clocksource_tod;
256 }
257 
258 /*
259  * Initialize the TOD clock and the CPU timer of
260  * the boot cpu.
261  */
262 void __init time_init(void)
263 {
264 	/* Reset time synchronization interfaces. */
265 	stp_reset();
266 
267 	/* request the clock comparator external interrupt */
268 	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
269 		panic("Couldn't request external interrupt 0x1004");
270 
271 	/* request the timing alert external interrupt */
272 	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
273 		panic("Couldn't request external interrupt 0x1406");
274 
275 	if (__clocksource_register(&clocksource_tod) != 0)
276 		panic("Could not register TOD clock source");
277 
278 	/* Enable TOD clock interrupts on the boot cpu. */
279 	init_cpu_timer();
280 
281 	/* Enable cpu timer interrupts on the boot cpu. */
282 	vtime_init();
283 }
284 
285 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
286 static DEFINE_MUTEX(stp_mutex);
287 static unsigned long clock_sync_flags;
288 
289 #define CLOCK_SYNC_HAS_STP		0
290 #define CLOCK_SYNC_STP			1
291 #define CLOCK_SYNC_STPINFO_VALID	2
292 
293 /*
294  * The get_clock function for the physical clock. It will get the current
295  * TOD clock, subtract the LPAR offset and write the result to *clock.
296  * The function returns 0 if the clock is in sync with the external time
297  * source. If the clock mode is local it will return -EOPNOTSUPP and
298  * -EAGAIN if the clock is not in sync with the external reference.
299  */
300 int get_phys_clock(unsigned long *clock)
301 {
302 	atomic_t *sw_ptr;
303 	unsigned int sw0, sw1;
304 
305 	sw_ptr = &get_cpu_var(clock_sync_word);
306 	sw0 = atomic_read(sw_ptr);
307 	*clock = get_tod_clock() - lpar_offset;
308 	sw1 = atomic_read(sw_ptr);
309 	put_cpu_var(clock_sync_word);
310 	if (sw0 == sw1 && (sw0 & 0x80000000U))
311 		/* Success: time is in sync. */
312 		return 0;
313 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
314 		return -EOPNOTSUPP;
315 	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
316 		return -EACCES;
317 	return -EAGAIN;
318 }
319 EXPORT_SYMBOL(get_phys_clock);
320 
321 /*
322  * Make get_phys_clock() return -EAGAIN.
323  */
324 static void disable_sync_clock(void *dummy)
325 {
326 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
327 	/*
328 	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
329 	 * fail until the sync bit is turned back on. In addition
330 	 * increase the "sequence" counter to avoid the race of an
331 	 * stp event and the complete recovery against get_phys_clock.
332 	 */
333 	atomic_andnot(0x80000000, sw_ptr);
334 	atomic_inc(sw_ptr);
335 }
336 
337 /*
338  * Make get_phys_clock() return 0 again.
339  * Needs to be called from a context disabled for preemption.
340  */
341 static void enable_sync_clock(void)
342 {
343 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
344 	atomic_or(0x80000000, sw_ptr);
345 }
346 
347 /*
348  * Function to check if the clock is in sync.
349  */
350 static inline int check_sync_clock(void)
351 {
352 	atomic_t *sw_ptr;
353 	int rc;
354 
355 	sw_ptr = &get_cpu_var(clock_sync_word);
356 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
357 	put_cpu_var(clock_sync_word);
358 	return rc;
359 }
360 
361 /*
362  * Apply clock delta to the global data structures.
363  * This is called once on the CPU that performed the clock sync.
364  */
365 static void clock_sync_global(unsigned long long delta)
366 {
367 	unsigned long now, adj;
368 	struct ptff_qto qto;
369 
370 	/* Fixup the monotonic sched clock. */
371 	tod_clock_base.eitod += delta;
372 	/* Adjust TOD steering parameters. */
373 	now = get_tod_clock();
374 	adj = tod_steering_end - now;
375 	if (unlikely((s64) adj >= 0))
376 		/* Calculate how much of the old adjustment is left. */
377 		tod_steering_delta = (tod_steering_delta < 0) ?
378 			-(adj >> 15) : (adj >> 15);
379 	tod_steering_delta += delta;
380 	if ((abs(tod_steering_delta) >> 48) != 0)
381 		panic("TOD clock sync offset %lli is too large to drift\n",
382 		      tod_steering_delta);
383 	tod_steering_end = now + (abs(tod_steering_delta) << 15);
384 	vdso_data->arch_data.tod_steering_end = tod_steering_end;
385 
386 	/* Update LPAR offset. */
387 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
388 		lpar_offset = qto.tod_epoch_difference;
389 	/* Call the TOD clock change notifier. */
390 	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
391 }
392 
393 /*
394  * Apply clock delta to the per-CPU data structures of this CPU.
395  * This is called for each online CPU after the call to clock_sync_global.
396  */
397 static void clock_sync_local(unsigned long long delta)
398 {
399 	/* Add the delta to the clock comparator. */
400 	if (S390_lowcore.clock_comparator != clock_comparator_max) {
401 		S390_lowcore.clock_comparator += delta;
402 		set_clock_comparator(S390_lowcore.clock_comparator);
403 	}
404 	/* Adjust the last_update_clock time-stamp. */
405 	S390_lowcore.last_update_clock += delta;
406 }
407 
408 /* Single threaded workqueue used for stp sync events */
409 static struct workqueue_struct *time_sync_wq;
410 
411 static void __init time_init_wq(void)
412 {
413 	if (time_sync_wq)
414 		return;
415 	time_sync_wq = create_singlethread_workqueue("timesync");
416 }
417 
418 struct clock_sync_data {
419 	atomic_t cpus;
420 	int in_sync;
421 	unsigned long long clock_delta;
422 };
423 
424 /*
425  * Server Time Protocol (STP) code.
426  */
427 static bool stp_online;
428 static struct stp_sstpi stp_info;
429 static void *stp_page;
430 
431 static void stp_work_fn(struct work_struct *work);
432 static DECLARE_WORK(stp_work, stp_work_fn);
433 static struct timer_list stp_timer;
434 
435 static int __init early_parse_stp(char *p)
436 {
437 	return kstrtobool(p, &stp_online);
438 }
439 early_param("stp", early_parse_stp);
440 
441 /*
442  * Reset STP attachment.
443  */
444 static void __init stp_reset(void)
445 {
446 	int rc;
447 
448 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
449 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
450 	if (rc == 0)
451 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
452 	else if (stp_online) {
453 		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
454 		free_page((unsigned long) stp_page);
455 		stp_page = NULL;
456 		stp_online = false;
457 	}
458 }
459 
460 static void stp_timeout(struct timer_list *unused)
461 {
462 	queue_work(time_sync_wq, &stp_work);
463 }
464 
465 static int __init stp_init(void)
466 {
467 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
468 		return 0;
469 	timer_setup(&stp_timer, stp_timeout, 0);
470 	time_init_wq();
471 	if (!stp_online)
472 		return 0;
473 	queue_work(time_sync_wq, &stp_work);
474 	return 0;
475 }
476 
477 arch_initcall(stp_init);
478 
479 /*
480  * STP timing alert. There are three causes:
481  * 1) timing status change
482  * 2) link availability change
483  * 3) time control parameter change
484  * In all three cases we are only interested in the clock source state.
485  * If a STP clock source is now available use it.
486  */
487 static void stp_timing_alert(struct stp_irq_parm *intparm)
488 {
489 	if (intparm->tsc || intparm->lac || intparm->tcpc)
490 		queue_work(time_sync_wq, &stp_work);
491 }
492 
493 /*
494  * STP sync check machine check. This is called when the timing state
495  * changes from the synchronized state to the unsynchronized state.
496  * After a STP sync check the clock is not in sync. The machine check
497  * is broadcasted to all cpus at the same time.
498  */
499 int stp_sync_check(void)
500 {
501 	disable_sync_clock(NULL);
502 	return 1;
503 }
504 
505 /*
506  * STP island condition machine check. This is called when an attached
507  * server  attempts to communicate over an STP link and the servers
508  * have matching CTN ids and have a valid stratum-1 configuration
509  * but the configurations do not match.
510  */
511 int stp_island_check(void)
512 {
513 	disable_sync_clock(NULL);
514 	return 1;
515 }
516 
517 void stp_queue_work(void)
518 {
519 	queue_work(time_sync_wq, &stp_work);
520 }
521 
522 static int __store_stpinfo(void)
523 {
524 	int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
525 
526 	if (rc)
527 		clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
528 	else
529 		set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
530 	return rc;
531 }
532 
533 static int stpinfo_valid(void)
534 {
535 	return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
536 }
537 
538 static int stp_sync_clock(void *data)
539 {
540 	struct clock_sync_data *sync = data;
541 	unsigned long long clock_delta, flags;
542 	static int first;
543 	int rc;
544 
545 	enable_sync_clock();
546 	if (xchg(&first, 1) == 0) {
547 		/* Wait until all other cpus entered the sync function. */
548 		while (atomic_read(&sync->cpus) != 0)
549 			cpu_relax();
550 		rc = 0;
551 		if (stp_info.todoff[0] || stp_info.todoff[1] ||
552 		    stp_info.todoff[2] || stp_info.todoff[3] ||
553 		    stp_info.tmd != 2) {
554 			flags = vdso_update_begin();
555 			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
556 					&clock_delta);
557 			if (rc == 0) {
558 				sync->clock_delta = clock_delta;
559 				clock_sync_global(clock_delta);
560 				rc = __store_stpinfo();
561 				if (rc == 0 && stp_info.tmd != 2)
562 					rc = -EAGAIN;
563 			}
564 			vdso_update_end(flags);
565 		}
566 		sync->in_sync = rc ? -EAGAIN : 1;
567 		xchg(&first, 0);
568 	} else {
569 		/* Slave */
570 		atomic_dec(&sync->cpus);
571 		/* Wait for in_sync to be set. */
572 		while (READ_ONCE(sync->in_sync) == 0)
573 			__udelay(1);
574 	}
575 	if (sync->in_sync != 1)
576 		/* Didn't work. Clear per-cpu in sync bit again. */
577 		disable_sync_clock(NULL);
578 	/* Apply clock delta to per-CPU fields of this CPU. */
579 	clock_sync_local(sync->clock_delta);
580 
581 	return 0;
582 }
583 
584 static int stp_clear_leap(void)
585 {
586 	struct __kernel_timex txc;
587 	int ret;
588 
589 	memset(&txc, 0, sizeof(txc));
590 
591 	ret = do_adjtimex(&txc);
592 	if (ret < 0)
593 		return ret;
594 
595 	txc.modes = ADJ_STATUS;
596 	txc.status &= ~(STA_INS|STA_DEL);
597 	return do_adjtimex(&txc);
598 }
599 
600 static void stp_check_leap(void)
601 {
602 	struct stp_stzi stzi;
603 	struct stp_lsoib *lsoib = &stzi.lsoib;
604 	struct __kernel_timex txc;
605 	int64_t timediff;
606 	int leapdiff, ret;
607 
608 	if (!stp_info.lu || !check_sync_clock()) {
609 		/*
610 		 * Either a scheduled leap second was removed by the operator,
611 		 * or STP is out of sync. In both cases, clear the leap second
612 		 * kernel flags.
613 		 */
614 		if (stp_clear_leap() < 0)
615 			pr_err("failed to clear leap second flags\n");
616 		return;
617 	}
618 
619 	if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
620 		pr_err("stzi failed\n");
621 		return;
622 	}
623 
624 	timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
625 	leapdiff = lsoib->nlso - lsoib->also;
626 
627 	if (leapdiff != 1 && leapdiff != -1) {
628 		pr_err("Cannot schedule %d leap seconds\n", leapdiff);
629 		return;
630 	}
631 
632 	if (timediff < 0) {
633 		if (stp_clear_leap() < 0)
634 			pr_err("failed to clear leap second flags\n");
635 	} else if (timediff < 7200) {
636 		memset(&txc, 0, sizeof(txc));
637 		ret = do_adjtimex(&txc);
638 		if (ret < 0)
639 			return;
640 
641 		txc.modes = ADJ_STATUS;
642 		if (leapdiff > 0)
643 			txc.status |= STA_INS;
644 		else
645 			txc.status |= STA_DEL;
646 		ret = do_adjtimex(&txc);
647 		if (ret < 0)
648 			pr_err("failed to set leap second flags\n");
649 		/* arm Timer to clear leap second flags */
650 		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC));
651 	} else {
652 		/* The day the leap second is scheduled for hasn't been reached. Retry
653 		 * in one hour.
654 		 */
655 		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC));
656 	}
657 }
658 
659 /*
660  * STP work. Check for the STP state and take over the clock
661  * synchronization if the STP clock source is usable.
662  */
663 static void stp_work_fn(struct work_struct *work)
664 {
665 	struct clock_sync_data stp_sync;
666 	int rc;
667 
668 	/* prevent multiple execution. */
669 	mutex_lock(&stp_mutex);
670 
671 	if (!stp_online) {
672 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
673 		del_timer_sync(&stp_timer);
674 		goto out_unlock;
675 	}
676 
677 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
678 	if (rc)
679 		goto out_unlock;
680 
681 	rc = __store_stpinfo();
682 	if (rc || stp_info.c == 0)
683 		goto out_unlock;
684 
685 	/* Skip synchronization if the clock is already in sync. */
686 	if (!check_sync_clock()) {
687 		memset(&stp_sync, 0, sizeof(stp_sync));
688 		cpus_read_lock();
689 		atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
690 		stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
691 		cpus_read_unlock();
692 	}
693 
694 	if (!check_sync_clock())
695 		/*
696 		 * There is a usable clock but the synchonization failed.
697 		 * Retry after a second.
698 		 */
699 		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
700 	else if (stp_info.lu)
701 		stp_check_leap();
702 
703 out_unlock:
704 	mutex_unlock(&stp_mutex);
705 }
706 
707 /*
708  * STP subsys sysfs interface functions
709  */
710 static struct bus_type stp_subsys = {
711 	.name		= "stp",
712 	.dev_name	= "stp",
713 };
714 
715 static ssize_t ctn_id_show(struct device *dev,
716 				struct device_attribute *attr,
717 				char *buf)
718 {
719 	ssize_t ret = -ENODATA;
720 
721 	mutex_lock(&stp_mutex);
722 	if (stpinfo_valid())
723 		ret = sprintf(buf, "%016llx\n",
724 			      *(unsigned long long *) stp_info.ctnid);
725 	mutex_unlock(&stp_mutex);
726 	return ret;
727 }
728 
729 static DEVICE_ATTR_RO(ctn_id);
730 
731 static ssize_t ctn_type_show(struct device *dev,
732 				struct device_attribute *attr,
733 				char *buf)
734 {
735 	ssize_t ret = -ENODATA;
736 
737 	mutex_lock(&stp_mutex);
738 	if (stpinfo_valid())
739 		ret = sprintf(buf, "%i\n", stp_info.ctn);
740 	mutex_unlock(&stp_mutex);
741 	return ret;
742 }
743 
744 static DEVICE_ATTR_RO(ctn_type);
745 
746 static ssize_t dst_offset_show(struct device *dev,
747 				   struct device_attribute *attr,
748 				   char *buf)
749 {
750 	ssize_t ret = -ENODATA;
751 
752 	mutex_lock(&stp_mutex);
753 	if (stpinfo_valid() && (stp_info.vbits & 0x2000))
754 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
755 	mutex_unlock(&stp_mutex);
756 	return ret;
757 }
758 
759 static DEVICE_ATTR_RO(dst_offset);
760 
761 static ssize_t leap_seconds_show(struct device *dev,
762 					struct device_attribute *attr,
763 					char *buf)
764 {
765 	ssize_t ret = -ENODATA;
766 
767 	mutex_lock(&stp_mutex);
768 	if (stpinfo_valid() && (stp_info.vbits & 0x8000))
769 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
770 	mutex_unlock(&stp_mutex);
771 	return ret;
772 }
773 
774 static DEVICE_ATTR_RO(leap_seconds);
775 
776 static ssize_t leap_seconds_scheduled_show(struct device *dev,
777 						struct device_attribute *attr,
778 						char *buf)
779 {
780 	struct stp_stzi stzi;
781 	ssize_t ret;
782 
783 	mutex_lock(&stp_mutex);
784 	if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
785 		mutex_unlock(&stp_mutex);
786 		return -ENODATA;
787 	}
788 
789 	ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
790 	mutex_unlock(&stp_mutex);
791 	if (ret < 0)
792 		return ret;
793 
794 	if (!stzi.lsoib.p)
795 		return sprintf(buf, "0,0\n");
796 
797 	return sprintf(buf, "%llu,%d\n",
798 		       tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
799 		       stzi.lsoib.nlso - stzi.lsoib.also);
800 }
801 
802 static DEVICE_ATTR_RO(leap_seconds_scheduled);
803 
804 static ssize_t stratum_show(struct device *dev,
805 				struct device_attribute *attr,
806 				char *buf)
807 {
808 	ssize_t ret = -ENODATA;
809 
810 	mutex_lock(&stp_mutex);
811 	if (stpinfo_valid())
812 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
813 	mutex_unlock(&stp_mutex);
814 	return ret;
815 }
816 
817 static DEVICE_ATTR_RO(stratum);
818 
819 static ssize_t time_offset_show(struct device *dev,
820 				struct device_attribute *attr,
821 				char *buf)
822 {
823 	ssize_t ret = -ENODATA;
824 
825 	mutex_lock(&stp_mutex);
826 	if (stpinfo_valid() && (stp_info.vbits & 0x0800))
827 		ret = sprintf(buf, "%i\n", (int) stp_info.tto);
828 	mutex_unlock(&stp_mutex);
829 	return ret;
830 }
831 
832 static DEVICE_ATTR_RO(time_offset);
833 
834 static ssize_t time_zone_offset_show(struct device *dev,
835 				struct device_attribute *attr,
836 				char *buf)
837 {
838 	ssize_t ret = -ENODATA;
839 
840 	mutex_lock(&stp_mutex);
841 	if (stpinfo_valid() && (stp_info.vbits & 0x4000))
842 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
843 	mutex_unlock(&stp_mutex);
844 	return ret;
845 }
846 
847 static DEVICE_ATTR_RO(time_zone_offset);
848 
849 static ssize_t timing_mode_show(struct device *dev,
850 				struct device_attribute *attr,
851 				char *buf)
852 {
853 	ssize_t ret = -ENODATA;
854 
855 	mutex_lock(&stp_mutex);
856 	if (stpinfo_valid())
857 		ret = sprintf(buf, "%i\n", stp_info.tmd);
858 	mutex_unlock(&stp_mutex);
859 	return ret;
860 }
861 
862 static DEVICE_ATTR_RO(timing_mode);
863 
864 static ssize_t timing_state_show(struct device *dev,
865 				struct device_attribute *attr,
866 				char *buf)
867 {
868 	ssize_t ret = -ENODATA;
869 
870 	mutex_lock(&stp_mutex);
871 	if (stpinfo_valid())
872 		ret = sprintf(buf, "%i\n", stp_info.tst);
873 	mutex_unlock(&stp_mutex);
874 	return ret;
875 }
876 
877 static DEVICE_ATTR_RO(timing_state);
878 
879 static ssize_t online_show(struct device *dev,
880 				struct device_attribute *attr,
881 				char *buf)
882 {
883 	return sprintf(buf, "%i\n", stp_online);
884 }
885 
886 static ssize_t online_store(struct device *dev,
887 				struct device_attribute *attr,
888 				const char *buf, size_t count)
889 {
890 	unsigned int value;
891 
892 	value = simple_strtoul(buf, NULL, 0);
893 	if (value != 0 && value != 1)
894 		return -EINVAL;
895 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
896 		return -EOPNOTSUPP;
897 	mutex_lock(&stp_mutex);
898 	stp_online = value;
899 	if (stp_online)
900 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
901 	else
902 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
903 	queue_work(time_sync_wq, &stp_work);
904 	mutex_unlock(&stp_mutex);
905 	return count;
906 }
907 
908 /*
909  * Can't use DEVICE_ATTR because the attribute should be named
910  * stp/online but dev_attr_online already exists in this file ..
911  */
912 static DEVICE_ATTR_RW(online);
913 
914 static struct attribute *stp_dev_attrs[] = {
915 	&dev_attr_ctn_id.attr,
916 	&dev_attr_ctn_type.attr,
917 	&dev_attr_dst_offset.attr,
918 	&dev_attr_leap_seconds.attr,
919 	&dev_attr_online.attr,
920 	&dev_attr_leap_seconds_scheduled.attr,
921 	&dev_attr_stratum.attr,
922 	&dev_attr_time_offset.attr,
923 	&dev_attr_time_zone_offset.attr,
924 	&dev_attr_timing_mode.attr,
925 	&dev_attr_timing_state.attr,
926 	NULL
927 };
928 ATTRIBUTE_GROUPS(stp_dev);
929 
930 static int __init stp_init_sysfs(void)
931 {
932 	return subsys_system_register(&stp_subsys, stp_dev_groups);
933 }
934 
935 device_initcall(stp_init_sysfs);
936