1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Time of day based timer functions. 4 * 5 * S390 version 6 * Copyright IBM Corp. 1999, 2008 7 * Author(s): Hartmut Penner (hp@de.ibm.com), 8 * Martin Schwidefsky (schwidefsky@de.ibm.com), 9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 10 * 11 * Derived from "arch/i386/kernel/time.c" 12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 13 */ 14 15 #define pr_fmt(fmt) "time: " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/errno.h> 19 #include <linux/export.h> 20 #include <linux/sched.h> 21 #include <linux/sched/clock.h> 22 #include <linux/kernel.h> 23 #include <linux/param.h> 24 #include <linux/string.h> 25 #include <linux/mm.h> 26 #include <linux/interrupt.h> 27 #include <linux/cpu.h> 28 #include <linux/stop_machine.h> 29 #include <linux/time.h> 30 #include <linux/device.h> 31 #include <linux/delay.h> 32 #include <linux/init.h> 33 #include <linux/smp.h> 34 #include <linux/types.h> 35 #include <linux/profile.h> 36 #include <linux/timex.h> 37 #include <linux/notifier.h> 38 #include <linux/clockchips.h> 39 #include <linux/gfp.h> 40 #include <linux/kprobes.h> 41 #include <linux/uaccess.h> 42 #include <vdso/vsyscall.h> 43 #include <vdso/clocksource.h> 44 #include <vdso/helpers.h> 45 #include <asm/facility.h> 46 #include <asm/delay.h> 47 #include <asm/div64.h> 48 #include <asm/vdso.h> 49 #include <asm/irq.h> 50 #include <asm/irq_regs.h> 51 #include <asm/vtimer.h> 52 #include <asm/stp.h> 53 #include <asm/cio.h> 54 #include "entry.h" 55 56 union tod_clock __bootdata_preserved(tod_clock_base); 57 EXPORT_SYMBOL_GPL(tod_clock_base); 58 59 u64 __bootdata_preserved(clock_comparator_max); 60 EXPORT_SYMBOL_GPL(clock_comparator_max); 61 62 static DEFINE_PER_CPU(struct clock_event_device, comparators); 63 64 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); 65 EXPORT_SYMBOL(s390_epoch_delta_notifier); 66 67 unsigned char ptff_function_mask[16]; 68 69 static unsigned long lpar_offset; 70 static unsigned long initial_leap_seconds; 71 72 /* 73 * Get time offsets with PTFF 74 */ 75 void __init time_early_init(void) 76 { 77 struct ptff_qto qto; 78 struct ptff_qui qui; 79 80 vdso_k_time_data->arch_data.tod_delta = tod_clock_base.tod; 81 82 if (!test_facility(28)) 83 return; 84 85 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); 86 87 /* get LPAR offset */ 88 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 89 lpar_offset = qto.tod_epoch_difference; 90 91 /* get initial leap seconds */ 92 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) 93 initial_leap_seconds = (unsigned long) 94 ((long) qui.old_leap * 4096000000L); 95 } 96 97 unsigned long long noinstr sched_clock_noinstr(void) 98 { 99 return tod_to_ns(__get_tod_clock_monotonic()); 100 } 101 102 /* 103 * Scheduler clock - returns current time in nanosec units. 104 */ 105 unsigned long long notrace sched_clock(void) 106 { 107 return tod_to_ns(get_tod_clock_monotonic()); 108 } 109 NOKPROBE_SYMBOL(sched_clock); 110 111 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt) 112 { 113 unsigned long rem, sec, nsec; 114 115 sec = clk->us; 116 rem = do_div(sec, 1000000); 117 nsec = ((clk->sus + (rem << 12)) * 125) >> 9; 118 xt->tv_sec = sec; 119 xt->tv_nsec = nsec; 120 } 121 122 void clock_comparator_work(void) 123 { 124 struct clock_event_device *cd; 125 126 get_lowcore()->clock_comparator = clock_comparator_max; 127 cd = this_cpu_ptr(&comparators); 128 cd->event_handler(cd); 129 } 130 131 static int s390_next_event(unsigned long delta, 132 struct clock_event_device *evt) 133 { 134 get_lowcore()->clock_comparator = get_tod_clock() + delta; 135 set_clock_comparator(get_lowcore()->clock_comparator); 136 return 0; 137 } 138 139 /* 140 * Set up lowcore and control register of the current cpu to 141 * enable TOD clock and clock comparator interrupts. 142 */ 143 void init_cpu_timer(void) 144 { 145 struct clock_event_device *cd; 146 int cpu; 147 148 get_lowcore()->clock_comparator = clock_comparator_max; 149 set_clock_comparator(get_lowcore()->clock_comparator); 150 151 cpu = smp_processor_id(); 152 cd = &per_cpu(comparators, cpu); 153 cd->name = "comparator"; 154 cd->features = CLOCK_EVT_FEAT_ONESHOT; 155 cd->mult = 16777; 156 cd->shift = 12; 157 cd->min_delta_ns = 1; 158 cd->min_delta_ticks = 1; 159 cd->max_delta_ns = LONG_MAX; 160 cd->max_delta_ticks = ULONG_MAX; 161 cd->rating = 400; 162 cd->cpumask = cpumask_of(cpu); 163 cd->set_next_event = s390_next_event; 164 165 clockevents_register_device(cd); 166 167 /* Enable clock comparator timer interrupt. */ 168 local_ctl_set_bit(0, CR0_CLOCK_COMPARATOR_SUBMASK_BIT); 169 170 /* Always allow the timing alert external interrupt. */ 171 local_ctl_set_bit(0, CR0_ETR_SUBMASK_BIT); 172 } 173 174 static void clock_comparator_interrupt(struct ext_code ext_code, 175 unsigned int param32, 176 unsigned long param64) 177 { 178 inc_irq_stat(IRQEXT_CLK); 179 if (get_lowcore()->clock_comparator == clock_comparator_max) 180 set_clock_comparator(get_lowcore()->clock_comparator); 181 } 182 183 static void stp_timing_alert(struct stp_irq_parm *); 184 185 static void timing_alert_interrupt(struct ext_code ext_code, 186 unsigned int param32, unsigned long param64) 187 { 188 inc_irq_stat(IRQEXT_TLA); 189 if (param32 & 0x00038000) 190 stp_timing_alert((struct stp_irq_parm *) ¶m32); 191 } 192 193 static void stp_reset(void); 194 195 void read_persistent_clock64(struct timespec64 *ts) 196 { 197 union tod_clock clk; 198 u64 delta; 199 200 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 201 store_tod_clock_ext(&clk); 202 clk.eitod -= delta; 203 ext_to_timespec64(&clk, ts); 204 } 205 206 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 207 struct timespec64 *boot_offset) 208 { 209 struct timespec64 boot_time; 210 union tod_clock clk; 211 u64 delta; 212 213 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 214 clk = tod_clock_base; 215 clk.eitod -= delta; 216 ext_to_timespec64(&clk, &boot_time); 217 218 read_persistent_clock64(wall_time); 219 *boot_offset = timespec64_sub(*wall_time, boot_time); 220 } 221 222 static u64 read_tod_clock(struct clocksource *cs) 223 { 224 return get_tod_clock_monotonic(); 225 } 226 227 static struct clocksource clocksource_tod = { 228 .name = "tod", 229 .rating = 400, 230 .read = read_tod_clock, 231 .mask = CLOCKSOURCE_MASK(64), 232 .mult = 4096000, 233 .shift = 24, 234 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 235 .vdso_clock_mode = VDSO_CLOCKMODE_TOD, 236 .id = CSID_S390_TOD, 237 }; 238 239 struct clocksource * __init clocksource_default_clock(void) 240 { 241 return &clocksource_tod; 242 } 243 244 /* 245 * Initialize the TOD clock and the CPU timer of 246 * the boot cpu. 247 */ 248 void __init time_init(void) 249 { 250 /* Reset time synchronization interfaces. */ 251 stp_reset(); 252 253 /* request the clock comparator external interrupt */ 254 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) 255 panic("Couldn't request external interrupt 0x1004"); 256 257 /* request the timing alert external interrupt */ 258 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) 259 panic("Couldn't request external interrupt 0x1406"); 260 261 if (__clocksource_register(&clocksource_tod) != 0) 262 panic("Could not register TOD clock source"); 263 264 /* Enable TOD clock interrupts on the boot cpu. */ 265 init_cpu_timer(); 266 267 /* Enable cpu timer interrupts on the boot cpu. */ 268 vtime_init(); 269 } 270 271 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 272 static DEFINE_MUTEX(stp_mutex); 273 static unsigned long clock_sync_flags; 274 275 #define CLOCK_SYNC_HAS_STP 0 276 #define CLOCK_SYNC_STP 1 277 #define CLOCK_SYNC_STPINFO_VALID 2 278 279 /* 280 * The get_clock function for the physical clock. It will get the current 281 * TOD clock, subtract the LPAR offset and write the result to *clock. 282 * The function returns 0 if the clock is in sync with the external time 283 * source. If the clock mode is local it will return -EOPNOTSUPP and 284 * -EAGAIN if the clock is not in sync with the external reference. 285 */ 286 int get_phys_clock(unsigned long *clock) 287 { 288 atomic_t *sw_ptr; 289 unsigned int sw0, sw1; 290 291 sw_ptr = &get_cpu_var(clock_sync_word); 292 sw0 = atomic_read(sw_ptr); 293 *clock = get_tod_clock() - lpar_offset; 294 sw1 = atomic_read(sw_ptr); 295 put_cpu_var(clock_sync_word); 296 if (sw0 == sw1 && (sw0 & 0x80000000U)) 297 /* Success: time is in sync. */ 298 return 0; 299 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 300 return -EOPNOTSUPP; 301 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 302 return -EACCES; 303 return -EAGAIN; 304 } 305 EXPORT_SYMBOL(get_phys_clock); 306 307 /* 308 * Make get_phys_clock() return -EAGAIN. 309 */ 310 static void disable_sync_clock(void *dummy) 311 { 312 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 313 /* 314 * Clear the in-sync bit 2^31. All get_phys_clock calls will 315 * fail until the sync bit is turned back on. In addition 316 * increase the "sequence" counter to avoid the race of an 317 * stp event and the complete recovery against get_phys_clock. 318 */ 319 atomic_andnot(0x80000000, sw_ptr); 320 atomic_inc(sw_ptr); 321 } 322 323 /* 324 * Make get_phys_clock() return 0 again. 325 * Needs to be called from a context disabled for preemption. 326 */ 327 static void enable_sync_clock(void) 328 { 329 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 330 atomic_or(0x80000000, sw_ptr); 331 } 332 333 /* 334 * Function to check if the clock is in sync. 335 */ 336 static inline int check_sync_clock(void) 337 { 338 atomic_t *sw_ptr; 339 int rc; 340 341 sw_ptr = &get_cpu_var(clock_sync_word); 342 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 343 put_cpu_var(clock_sync_word); 344 return rc; 345 } 346 347 /* 348 * Apply clock delta to the global data structures. 349 * This is called once on the CPU that performed the clock sync. 350 */ 351 static void clock_sync_global(long delta) 352 { 353 struct ptff_qto qto; 354 355 /* Fixup the monotonic sched clock. */ 356 tod_clock_base.eitod += delta; 357 vdso_k_time_data->arch_data.tod_delta = tod_clock_base.tod; 358 /* Update LPAR offset. */ 359 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 360 lpar_offset = qto.tod_epoch_difference; 361 /* Call the TOD clock change notifier. */ 362 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); 363 } 364 365 /* 366 * Apply clock delta to the per-CPU data structures of this CPU. 367 * This is called for each online CPU after the call to clock_sync_global. 368 */ 369 static void clock_sync_local(long delta) 370 { 371 /* Add the delta to the clock comparator. */ 372 if (get_lowcore()->clock_comparator != clock_comparator_max) { 373 get_lowcore()->clock_comparator += delta; 374 set_clock_comparator(get_lowcore()->clock_comparator); 375 } 376 /* Adjust the last_update_clock time-stamp. */ 377 get_lowcore()->last_update_clock += delta; 378 } 379 380 /* Single threaded workqueue used for stp sync events */ 381 static struct workqueue_struct *time_sync_wq; 382 383 static void __init time_init_wq(void) 384 { 385 if (time_sync_wq) 386 return; 387 time_sync_wq = create_singlethread_workqueue("timesync"); 388 } 389 390 struct clock_sync_data { 391 atomic_t cpus; 392 int in_sync; 393 long clock_delta; 394 }; 395 396 /* 397 * Server Time Protocol (STP) code. 398 */ 399 static bool stp_online = true; 400 static struct stp_sstpi stp_info; 401 static void *stp_page; 402 403 static void stp_work_fn(struct work_struct *work); 404 static DECLARE_WORK(stp_work, stp_work_fn); 405 static struct timer_list stp_timer; 406 407 static int __init early_parse_stp(char *p) 408 { 409 return kstrtobool(p, &stp_online); 410 } 411 early_param("stp", early_parse_stp); 412 413 /* 414 * Reset STP attachment. 415 */ 416 static void __init stp_reset(void) 417 { 418 int rc; 419 420 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 421 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 422 if (rc == 0) 423 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 424 else if (stp_online) { 425 free_page((unsigned long) stp_page); 426 stp_page = NULL; 427 stp_online = false; 428 } 429 } 430 431 bool stp_enabled(void) 432 { 433 return test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags) && stp_online; 434 } 435 EXPORT_SYMBOL(stp_enabled); 436 437 static void stp_timeout(struct timer_list *unused) 438 { 439 queue_work(time_sync_wq, &stp_work); 440 } 441 442 static int __init stp_init(void) 443 { 444 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 445 return 0; 446 timer_setup(&stp_timer, stp_timeout, 0); 447 time_init_wq(); 448 if (!stp_online) 449 return 0; 450 queue_work(time_sync_wq, &stp_work); 451 return 0; 452 } 453 454 arch_initcall(stp_init); 455 456 /* 457 * STP timing alert. There are three causes: 458 * 1) timing status change 459 * 2) link availability change 460 * 3) time control parameter change 461 * In all three cases we are only interested in the clock source state. 462 * If a STP clock source is now available use it. 463 */ 464 static void stp_timing_alert(struct stp_irq_parm *intparm) 465 { 466 if (intparm->tsc || intparm->lac || intparm->tcpc) 467 queue_work(time_sync_wq, &stp_work); 468 } 469 470 /* 471 * STP sync check machine check. This is called when the timing state 472 * changes from the synchronized state to the unsynchronized state. 473 * After a STP sync check the clock is not in sync. The machine check 474 * is broadcasted to all cpus at the same time. 475 */ 476 int stp_sync_check(void) 477 { 478 disable_sync_clock(NULL); 479 return 1; 480 } 481 482 /* 483 * STP island condition machine check. This is called when an attached 484 * server attempts to communicate over an STP link and the servers 485 * have matching CTN ids and have a valid stratum-1 configuration 486 * but the configurations do not match. 487 */ 488 int stp_island_check(void) 489 { 490 disable_sync_clock(NULL); 491 return 1; 492 } 493 494 void stp_queue_work(void) 495 { 496 queue_work(time_sync_wq, &stp_work); 497 } 498 499 static int __store_stpinfo(void) 500 { 501 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 502 503 if (rc) 504 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 505 else 506 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 507 return rc; 508 } 509 510 static int stpinfo_valid(void) 511 { 512 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 513 } 514 515 static int stp_sync_clock(void *data) 516 { 517 struct clock_sync_data *sync = data; 518 long clock_delta, flags; 519 static int first; 520 int rc; 521 522 enable_sync_clock(); 523 if (xchg(&first, 1) == 0) { 524 /* Wait until all other cpus entered the sync function. */ 525 while (atomic_read(&sync->cpus) != 0) 526 cpu_relax(); 527 rc = 0; 528 if (stp_info.todoff || stp_info.tmd != 2) { 529 flags = vdso_update_begin(); 530 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, 531 &clock_delta); 532 if (rc == 0) { 533 sync->clock_delta = clock_delta; 534 clock_sync_global(clock_delta); 535 rc = __store_stpinfo(); 536 if (rc == 0 && stp_info.tmd != 2) 537 rc = -EAGAIN; 538 } 539 vdso_update_end(flags); 540 } 541 sync->in_sync = rc ? -EAGAIN : 1; 542 xchg(&first, 0); 543 } else { 544 /* Slave */ 545 atomic_dec(&sync->cpus); 546 /* Wait for in_sync to be set. */ 547 while (READ_ONCE(sync->in_sync) == 0) 548 ; 549 } 550 if (sync->in_sync != 1) 551 /* Didn't work. Clear per-cpu in sync bit again. */ 552 disable_sync_clock(NULL); 553 /* Apply clock delta to per-CPU fields of this CPU. */ 554 clock_sync_local(sync->clock_delta); 555 556 return 0; 557 } 558 559 /* 560 * STP work. Check for the STP state and take over the clock 561 * synchronization if the STP clock source is usable. 562 */ 563 static void stp_work_fn(struct work_struct *work) 564 { 565 struct clock_sync_data stp_sync; 566 int rc; 567 568 /* prevent multiple execution. */ 569 mutex_lock(&stp_mutex); 570 571 if (!stp_online) { 572 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 573 timer_delete_sync(&stp_timer); 574 goto out_unlock; 575 } 576 577 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL); 578 if (rc) 579 goto out_unlock; 580 581 rc = __store_stpinfo(); 582 if (rc || stp_info.c == 0) 583 goto out_unlock; 584 585 /* Skip synchronization if the clock is already in sync. */ 586 if (!check_sync_clock()) { 587 memset(&stp_sync, 0, sizeof(stp_sync)); 588 cpus_read_lock(); 589 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 590 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask); 591 cpus_read_unlock(); 592 } 593 594 if (!check_sync_clock()) 595 /* 596 * There is a usable clock but the synchronization failed. 597 * Retry after a second. 598 */ 599 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC)); 600 601 out_unlock: 602 mutex_unlock(&stp_mutex); 603 } 604 605 /* 606 * STP subsys sysfs interface functions 607 */ 608 static const struct bus_type stp_subsys = { 609 .name = "stp", 610 .dev_name = "stp", 611 }; 612 613 static ssize_t ctn_id_show(struct device *dev, 614 struct device_attribute *attr, 615 char *buf) 616 { 617 ssize_t ret = -ENODATA; 618 619 mutex_lock(&stp_mutex); 620 if (stpinfo_valid()) 621 ret = sysfs_emit(buf, "%016lx\n", 622 *(unsigned long *)stp_info.ctnid); 623 mutex_unlock(&stp_mutex); 624 return ret; 625 } 626 627 static DEVICE_ATTR_RO(ctn_id); 628 629 static ssize_t ctn_type_show(struct device *dev, 630 struct device_attribute *attr, 631 char *buf) 632 { 633 ssize_t ret = -ENODATA; 634 635 mutex_lock(&stp_mutex); 636 if (stpinfo_valid()) 637 ret = sysfs_emit(buf, "%i\n", stp_info.ctn); 638 mutex_unlock(&stp_mutex); 639 return ret; 640 } 641 642 static DEVICE_ATTR_RO(ctn_type); 643 644 static ssize_t dst_offset_show(struct device *dev, 645 struct device_attribute *attr, 646 char *buf) 647 { 648 ssize_t ret = -ENODATA; 649 650 mutex_lock(&stp_mutex); 651 if (stpinfo_valid() && (stp_info.vbits & 0x2000)) 652 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.dsto); 653 mutex_unlock(&stp_mutex); 654 return ret; 655 } 656 657 static DEVICE_ATTR_RO(dst_offset); 658 659 static ssize_t leap_seconds_show(struct device *dev, 660 struct device_attribute *attr, 661 char *buf) 662 { 663 ssize_t ret = -ENODATA; 664 665 mutex_lock(&stp_mutex); 666 if (stpinfo_valid() && (stp_info.vbits & 0x8000)) 667 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.leaps); 668 mutex_unlock(&stp_mutex); 669 return ret; 670 } 671 672 static DEVICE_ATTR_RO(leap_seconds); 673 674 static ssize_t leap_seconds_scheduled_show(struct device *dev, 675 struct device_attribute *attr, 676 char *buf) 677 { 678 struct stp_stzi stzi; 679 ssize_t ret; 680 681 mutex_lock(&stp_mutex); 682 if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) { 683 mutex_unlock(&stp_mutex); 684 return -ENODATA; 685 } 686 687 ret = chsc_stzi(stp_page, &stzi, sizeof(stzi)); 688 mutex_unlock(&stp_mutex); 689 if (ret < 0) 690 return ret; 691 692 if (!stzi.lsoib.p) 693 return sysfs_emit(buf, "0,0\n"); 694 695 return sysfs_emit(buf, "%lu,%d\n", 696 tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC, 697 stzi.lsoib.nlso - stzi.lsoib.also); 698 } 699 700 static DEVICE_ATTR_RO(leap_seconds_scheduled); 701 702 static ssize_t stratum_show(struct device *dev, 703 struct device_attribute *attr, 704 char *buf) 705 { 706 ssize_t ret = -ENODATA; 707 708 mutex_lock(&stp_mutex); 709 if (stpinfo_valid()) 710 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.stratum); 711 mutex_unlock(&stp_mutex); 712 return ret; 713 } 714 715 static DEVICE_ATTR_RO(stratum); 716 717 static ssize_t time_offset_show(struct device *dev, 718 struct device_attribute *attr, 719 char *buf) 720 { 721 ssize_t ret = -ENODATA; 722 723 mutex_lock(&stp_mutex); 724 if (stpinfo_valid() && (stp_info.vbits & 0x0800)) 725 ret = sysfs_emit(buf, "%i\n", (int)stp_info.tto); 726 mutex_unlock(&stp_mutex); 727 return ret; 728 } 729 730 static DEVICE_ATTR_RO(time_offset); 731 732 static ssize_t time_zone_offset_show(struct device *dev, 733 struct device_attribute *attr, 734 char *buf) 735 { 736 ssize_t ret = -ENODATA; 737 738 mutex_lock(&stp_mutex); 739 if (stpinfo_valid() && (stp_info.vbits & 0x4000)) 740 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.tzo); 741 mutex_unlock(&stp_mutex); 742 return ret; 743 } 744 745 static DEVICE_ATTR_RO(time_zone_offset); 746 747 static ssize_t timing_mode_show(struct device *dev, 748 struct device_attribute *attr, 749 char *buf) 750 { 751 ssize_t ret = -ENODATA; 752 753 mutex_lock(&stp_mutex); 754 if (stpinfo_valid()) 755 ret = sysfs_emit(buf, "%i\n", stp_info.tmd); 756 mutex_unlock(&stp_mutex); 757 return ret; 758 } 759 760 static DEVICE_ATTR_RO(timing_mode); 761 762 static ssize_t timing_state_show(struct device *dev, 763 struct device_attribute *attr, 764 char *buf) 765 { 766 ssize_t ret = -ENODATA; 767 768 mutex_lock(&stp_mutex); 769 if (stpinfo_valid()) 770 ret = sysfs_emit(buf, "%i\n", stp_info.tst); 771 mutex_unlock(&stp_mutex); 772 return ret; 773 } 774 775 static DEVICE_ATTR_RO(timing_state); 776 777 static ssize_t online_show(struct device *dev, 778 struct device_attribute *attr, 779 char *buf) 780 { 781 return sysfs_emit(buf, "%i\n", stp_online); 782 } 783 784 static ssize_t online_store(struct device *dev, 785 struct device_attribute *attr, 786 const char *buf, size_t count) 787 { 788 unsigned int value; 789 790 value = simple_strtoul(buf, NULL, 0); 791 if (value != 0 && value != 1) 792 return -EINVAL; 793 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 794 return -EOPNOTSUPP; 795 mutex_lock(&stp_mutex); 796 stp_online = value; 797 if (stp_online) 798 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 799 else 800 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 801 queue_work(time_sync_wq, &stp_work); 802 mutex_unlock(&stp_mutex); 803 return count; 804 } 805 806 /* 807 * Can't use DEVICE_ATTR because the attribute should be named 808 * stp/online but dev_attr_online already exists in this file .. 809 */ 810 static DEVICE_ATTR_RW(online); 811 812 static struct attribute *stp_dev_attrs[] = { 813 &dev_attr_ctn_id.attr, 814 &dev_attr_ctn_type.attr, 815 &dev_attr_dst_offset.attr, 816 &dev_attr_leap_seconds.attr, 817 &dev_attr_online.attr, 818 &dev_attr_leap_seconds_scheduled.attr, 819 &dev_attr_stratum.attr, 820 &dev_attr_time_offset.attr, 821 &dev_attr_time_zone_offset.attr, 822 &dev_attr_timing_mode.attr, 823 &dev_attr_timing_state.attr, 824 NULL 825 }; 826 ATTRIBUTE_GROUPS(stp_dev); 827 828 static int __init stp_init_sysfs(void) 829 { 830 return subsys_system_register(&stp_subsys, stp_dev_groups); 831 } 832 833 device_initcall(stp_init_sysfs); 834