xref: /linux/arch/s390/kernel/time.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *  arch/s390/kernel/time.c
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/cpu.h>
27 #include <linux/stop_machine.h>
28 #include <linux/time.h>
29 #include <linux/sysdev.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/smp.h>
33 #include <linux/types.h>
34 #include <linux/profile.h>
35 #include <linux/timex.h>
36 #include <linux/notifier.h>
37 #include <linux/clocksource.h>
38 #include <linux/clockchips.h>
39 #include <linux/gfp.h>
40 #include <asm/uaccess.h>
41 #include <asm/delay.h>
42 #include <asm/s390_ext.h>
43 #include <asm/div64.h>
44 #include <asm/vdso.h>
45 #include <asm/irq.h>
46 #include <asm/irq_regs.h>
47 #include <asm/timer.h>
48 #include <asm/etr.h>
49 #include <asm/cio.h>
50 
51 /* change this if you have some constant time drift */
52 #define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
53 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
54 
55 u64 sched_clock_base_cc = -1;	/* Force to data section. */
56 EXPORT_SYMBOL_GPL(sched_clock_base_cc);
57 
58 static DEFINE_PER_CPU(struct clock_event_device, comparators);
59 
60 /*
61  * Scheduler clock - returns current time in nanosec units.
62  */
63 unsigned long long notrace sched_clock(void)
64 {
65 	return (get_clock_monotonic() * 125) >> 9;
66 }
67 
68 /*
69  * Monotonic_clock - returns # of nanoseconds passed since time_init()
70  */
71 unsigned long long monotonic_clock(void)
72 {
73 	return sched_clock();
74 }
75 EXPORT_SYMBOL(monotonic_clock);
76 
77 void tod_to_timeval(__u64 todval, struct timespec *xt)
78 {
79 	unsigned long long sec;
80 
81 	sec = todval >> 12;
82 	do_div(sec, 1000000);
83 	xt->tv_sec = sec;
84 	todval -= (sec * 1000000) << 12;
85 	xt->tv_nsec = ((todval * 1000) >> 12);
86 }
87 EXPORT_SYMBOL(tod_to_timeval);
88 
89 void clock_comparator_work(void)
90 {
91 	struct clock_event_device *cd;
92 
93 	S390_lowcore.clock_comparator = -1ULL;
94 	set_clock_comparator(S390_lowcore.clock_comparator);
95 	cd = &__get_cpu_var(comparators);
96 	cd->event_handler(cd);
97 }
98 
99 /*
100  * Fixup the clock comparator.
101  */
102 static void fixup_clock_comparator(unsigned long long delta)
103 {
104 	/* If nobody is waiting there's nothing to fix. */
105 	if (S390_lowcore.clock_comparator == -1ULL)
106 		return;
107 	S390_lowcore.clock_comparator += delta;
108 	set_clock_comparator(S390_lowcore.clock_comparator);
109 }
110 
111 static int s390_next_event(unsigned long delta,
112 			   struct clock_event_device *evt)
113 {
114 	S390_lowcore.clock_comparator = get_clock() + delta;
115 	set_clock_comparator(S390_lowcore.clock_comparator);
116 	return 0;
117 }
118 
119 static void s390_set_mode(enum clock_event_mode mode,
120 			  struct clock_event_device *evt)
121 {
122 }
123 
124 /*
125  * Set up lowcore and control register of the current cpu to
126  * enable TOD clock and clock comparator interrupts.
127  */
128 void init_cpu_timer(void)
129 {
130 	struct clock_event_device *cd;
131 	int cpu;
132 
133 	S390_lowcore.clock_comparator = -1ULL;
134 	set_clock_comparator(S390_lowcore.clock_comparator);
135 
136 	cpu = smp_processor_id();
137 	cd = &per_cpu(comparators, cpu);
138 	cd->name		= "comparator";
139 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
140 	cd->mult		= 16777;
141 	cd->shift		= 12;
142 	cd->min_delta_ns	= 1;
143 	cd->max_delta_ns	= LONG_MAX;
144 	cd->rating		= 400;
145 	cd->cpumask		= cpumask_of(cpu);
146 	cd->set_next_event	= s390_next_event;
147 	cd->set_mode		= s390_set_mode;
148 
149 	clockevents_register_device(cd);
150 
151 	/* Enable clock comparator timer interrupt. */
152 	__ctl_set_bit(0,11);
153 
154 	/* Always allow the timing alert external interrupt. */
155 	__ctl_set_bit(0, 4);
156 }
157 
158 static void clock_comparator_interrupt(__u16 code)
159 {
160 	if (S390_lowcore.clock_comparator == -1ULL)
161 		set_clock_comparator(S390_lowcore.clock_comparator);
162 }
163 
164 static void etr_timing_alert(struct etr_irq_parm *);
165 static void stp_timing_alert(struct stp_irq_parm *);
166 
167 static void timing_alert_interrupt(__u16 code)
168 {
169 	if (S390_lowcore.ext_params & 0x00c40000)
170 		etr_timing_alert((struct etr_irq_parm *)
171 				 &S390_lowcore.ext_params);
172 	if (S390_lowcore.ext_params & 0x00038000)
173 		stp_timing_alert((struct stp_irq_parm *)
174 				 &S390_lowcore.ext_params);
175 }
176 
177 static void etr_reset(void);
178 static void stp_reset(void);
179 
180 void read_persistent_clock(struct timespec *ts)
181 {
182 	tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, ts);
183 }
184 
185 void read_boot_clock(struct timespec *ts)
186 {
187 	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
188 }
189 
190 static cycle_t read_tod_clock(struct clocksource *cs)
191 {
192 	return get_clock();
193 }
194 
195 static struct clocksource clocksource_tod = {
196 	.name		= "tod",
197 	.rating		= 400,
198 	.read		= read_tod_clock,
199 	.mask		= -1ULL,
200 	.mult		= 1000,
201 	.shift		= 12,
202 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
203 };
204 
205 struct clocksource * __init clocksource_default_clock(void)
206 {
207 	return &clocksource_tod;
208 }
209 
210 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
211 			struct clocksource *clock, u32 mult)
212 {
213 	if (clock != &clocksource_tod)
214 		return;
215 
216 	/* Make userspace gettimeofday spin until we're done. */
217 	++vdso_data->tb_update_count;
218 	smp_wmb();
219 	vdso_data->xtime_tod_stamp = clock->cycle_last;
220 	vdso_data->xtime_clock_sec = wall_time->tv_sec;
221 	vdso_data->xtime_clock_nsec = wall_time->tv_nsec;
222 	vdso_data->wtom_clock_sec = wtm->tv_sec;
223 	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
224 	vdso_data->ntp_mult = mult;
225 	smp_wmb();
226 	++vdso_data->tb_update_count;
227 }
228 
229 extern struct timezone sys_tz;
230 
231 void update_vsyscall_tz(void)
232 {
233 	/* Make userspace gettimeofday spin until we're done. */
234 	++vdso_data->tb_update_count;
235 	smp_wmb();
236 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
237 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
238 	smp_wmb();
239 	++vdso_data->tb_update_count;
240 }
241 
242 /*
243  * Initialize the TOD clock and the CPU timer of
244  * the boot cpu.
245  */
246 void __init time_init(void)
247 {
248 	/* Reset time synchronization interfaces. */
249 	etr_reset();
250 	stp_reset();
251 
252 	/* request the clock comparator external interrupt */
253 	if (register_external_interrupt(0x1004, clock_comparator_interrupt))
254                 panic("Couldn't request external interrupt 0x1004");
255 
256 	/* request the timing alert external interrupt */
257 	if (register_external_interrupt(0x1406, timing_alert_interrupt))
258 		panic("Couldn't request external interrupt 0x1406");
259 
260 	if (clocksource_register(&clocksource_tod) != 0)
261 		panic("Could not register TOD clock source");
262 
263 	/* Enable TOD clock interrupts on the boot cpu. */
264 	init_cpu_timer();
265 
266 	/* Enable cpu timer interrupts on the boot cpu. */
267 	vtime_init();
268 }
269 
270 /*
271  * The time is "clock". old is what we think the time is.
272  * Adjust the value by a multiple of jiffies and add the delta to ntp.
273  * "delay" is an approximation how long the synchronization took. If
274  * the time correction is positive, then "delay" is subtracted from
275  * the time difference and only the remaining part is passed to ntp.
276  */
277 static unsigned long long adjust_time(unsigned long long old,
278 				      unsigned long long clock,
279 				      unsigned long long delay)
280 {
281 	unsigned long long delta, ticks;
282 	struct timex adjust;
283 
284 	if (clock > old) {
285 		/* It is later than we thought. */
286 		delta = ticks = clock - old;
287 		delta = ticks = (delta < delay) ? 0 : delta - delay;
288 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
289 		adjust.offset = ticks * (1000000 / HZ);
290 	} else {
291 		/* It is earlier than we thought. */
292 		delta = ticks = old - clock;
293 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
294 		delta = -delta;
295 		adjust.offset = -ticks * (1000000 / HZ);
296 	}
297 	sched_clock_base_cc += delta;
298 	if (adjust.offset != 0) {
299 		pr_notice("The ETR interface has adjusted the clock "
300 			  "by %li microseconds\n", adjust.offset);
301 		adjust.modes = ADJ_OFFSET_SINGLESHOT;
302 		do_adjtimex(&adjust);
303 	}
304 	return delta;
305 }
306 
307 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
308 static DEFINE_MUTEX(clock_sync_mutex);
309 static unsigned long clock_sync_flags;
310 
311 #define CLOCK_SYNC_HAS_ETR	0
312 #define CLOCK_SYNC_HAS_STP	1
313 #define CLOCK_SYNC_ETR		2
314 #define CLOCK_SYNC_STP		3
315 
316 /*
317  * The synchronous get_clock function. It will write the current clock
318  * value to the clock pointer and return 0 if the clock is in sync with
319  * the external time source. If the clock mode is local it will return
320  * -ENOSYS and -EAGAIN if the clock is not in sync with the external
321  * reference.
322  */
323 int get_sync_clock(unsigned long long *clock)
324 {
325 	atomic_t *sw_ptr;
326 	unsigned int sw0, sw1;
327 
328 	sw_ptr = &get_cpu_var(clock_sync_word);
329 	sw0 = atomic_read(sw_ptr);
330 	*clock = get_clock();
331 	sw1 = atomic_read(sw_ptr);
332 	put_cpu_var(clock_sync_word);
333 	if (sw0 == sw1 && (sw0 & 0x80000000U))
334 		/* Success: time is in sync. */
335 		return 0;
336 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
337 	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
338 		return -ENOSYS;
339 	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
340 	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
341 		return -EACCES;
342 	return -EAGAIN;
343 }
344 EXPORT_SYMBOL(get_sync_clock);
345 
346 /*
347  * Make get_sync_clock return -EAGAIN.
348  */
349 static void disable_sync_clock(void *dummy)
350 {
351 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
352 	/*
353 	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
354 	 * fail until the sync bit is turned back on. In addition
355 	 * increase the "sequence" counter to avoid the race of an
356 	 * etr event and the complete recovery against get_sync_clock.
357 	 */
358 	atomic_clear_mask(0x80000000, sw_ptr);
359 	atomic_inc(sw_ptr);
360 }
361 
362 /*
363  * Make get_sync_clock return 0 again.
364  * Needs to be called from a context disabled for preemption.
365  */
366 static void enable_sync_clock(void)
367 {
368 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
369 	atomic_set_mask(0x80000000, sw_ptr);
370 }
371 
372 /*
373  * Function to check if the clock is in sync.
374  */
375 static inline int check_sync_clock(void)
376 {
377 	atomic_t *sw_ptr;
378 	int rc;
379 
380 	sw_ptr = &get_cpu_var(clock_sync_word);
381 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
382 	put_cpu_var(clock_sync_word);
383 	return rc;
384 }
385 
386 /* Single threaded workqueue used for etr and stp sync events */
387 static struct workqueue_struct *time_sync_wq;
388 
389 static void __init time_init_wq(void)
390 {
391 	if (time_sync_wq)
392 		return;
393 	time_sync_wq = create_singlethread_workqueue("timesync");
394 }
395 
396 /*
397  * External Time Reference (ETR) code.
398  */
399 static int etr_port0_online;
400 static int etr_port1_online;
401 static int etr_steai_available;
402 
403 static int __init early_parse_etr(char *p)
404 {
405 	if (strncmp(p, "off", 3) == 0)
406 		etr_port0_online = etr_port1_online = 0;
407 	else if (strncmp(p, "port0", 5) == 0)
408 		etr_port0_online = 1;
409 	else if (strncmp(p, "port1", 5) == 0)
410 		etr_port1_online = 1;
411 	else if (strncmp(p, "on", 2) == 0)
412 		etr_port0_online = etr_port1_online = 1;
413 	return 0;
414 }
415 early_param("etr", early_parse_etr);
416 
417 enum etr_event {
418 	ETR_EVENT_PORT0_CHANGE,
419 	ETR_EVENT_PORT1_CHANGE,
420 	ETR_EVENT_PORT_ALERT,
421 	ETR_EVENT_SYNC_CHECK,
422 	ETR_EVENT_SWITCH_LOCAL,
423 	ETR_EVENT_UPDATE,
424 };
425 
426 /*
427  * Valid bit combinations of the eacr register are (x = don't care):
428  * e0 e1 dp p0 p1 ea es sl
429  *  0  0  x  0	0  0  0  0  initial, disabled state
430  *  0  0  x  0	1  1  0  0  port 1 online
431  *  0  0  x  1	0  1  0  0  port 0 online
432  *  0  0  x  1	1  1  0  0  both ports online
433  *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
434  *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
435  *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
436  *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
437  *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
438  *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
439  *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
440  *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
441  *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
442  *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
443  *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
444  *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
445  *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
446  *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
447  *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
448  *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
449  */
450 static struct etr_eacr etr_eacr;
451 static u64 etr_tolec;			/* time of last eacr update */
452 static struct etr_aib etr_port0;
453 static int etr_port0_uptodate;
454 static struct etr_aib etr_port1;
455 static int etr_port1_uptodate;
456 static unsigned long etr_events;
457 static struct timer_list etr_timer;
458 
459 static void etr_timeout(unsigned long dummy);
460 static void etr_work_fn(struct work_struct *work);
461 static DEFINE_MUTEX(etr_work_mutex);
462 static DECLARE_WORK(etr_work, etr_work_fn);
463 
464 /*
465  * Reset ETR attachment.
466  */
467 static void etr_reset(void)
468 {
469 	etr_eacr =  (struct etr_eacr) {
470 		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
471 		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
472 		.es = 0, .sl = 0 };
473 	if (etr_setr(&etr_eacr) == 0) {
474 		etr_tolec = get_clock();
475 		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
476 		if (etr_port0_online && etr_port1_online)
477 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
478 	} else if (etr_port0_online || etr_port1_online) {
479 		pr_warning("The real or virtual hardware system does "
480 			   "not provide an ETR interface\n");
481 		etr_port0_online = etr_port1_online = 0;
482 	}
483 }
484 
485 static int __init etr_init(void)
486 {
487 	struct etr_aib aib;
488 
489 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
490 		return 0;
491 	time_init_wq();
492 	/* Check if this machine has the steai instruction. */
493 	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
494 		etr_steai_available = 1;
495 	setup_timer(&etr_timer, etr_timeout, 0UL);
496 	if (etr_port0_online) {
497 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
498 		queue_work(time_sync_wq, &etr_work);
499 	}
500 	if (etr_port1_online) {
501 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
502 		queue_work(time_sync_wq, &etr_work);
503 	}
504 	return 0;
505 }
506 
507 arch_initcall(etr_init);
508 
509 /*
510  * Two sorts of ETR machine checks. The architecture reads:
511  * "When a machine-check niterruption occurs and if a switch-to-local or
512  *  ETR-sync-check interrupt request is pending but disabled, this pending
513  *  disabled interruption request is indicated and is cleared".
514  * Which means that we can get etr_switch_to_local events from the machine
515  * check handler although the interruption condition is disabled. Lovely..
516  */
517 
518 /*
519  * Switch to local machine check. This is called when the last usable
520  * ETR port goes inactive. After switch to local the clock is not in sync.
521  */
522 void etr_switch_to_local(void)
523 {
524 	if (!etr_eacr.sl)
525 		return;
526 	disable_sync_clock(NULL);
527 	if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
528 		etr_eacr.es = etr_eacr.sl = 0;
529 		etr_setr(&etr_eacr);
530 		queue_work(time_sync_wq, &etr_work);
531 	}
532 }
533 
534 /*
535  * ETR sync check machine check. This is called when the ETR OTE and the
536  * local clock OTE are farther apart than the ETR sync check tolerance.
537  * After a ETR sync check the clock is not in sync. The machine check
538  * is broadcasted to all cpus at the same time.
539  */
540 void etr_sync_check(void)
541 {
542 	if (!etr_eacr.es)
543 		return;
544 	disable_sync_clock(NULL);
545 	if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
546 		etr_eacr.es = 0;
547 		etr_setr(&etr_eacr);
548 		queue_work(time_sync_wq, &etr_work);
549 	}
550 }
551 
552 /*
553  * ETR timing alert. There are two causes:
554  * 1) port state change, check the usability of the port
555  * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
556  *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
557  *    or ETR-data word 4 (edf4) has changed.
558  */
559 static void etr_timing_alert(struct etr_irq_parm *intparm)
560 {
561 	if (intparm->pc0)
562 		/* ETR port 0 state change. */
563 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
564 	if (intparm->pc1)
565 		/* ETR port 1 state change. */
566 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
567 	if (intparm->eai)
568 		/*
569 		 * ETR port alert on either port 0, 1 or both.
570 		 * Both ports are not up-to-date now.
571 		 */
572 		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
573 	queue_work(time_sync_wq, &etr_work);
574 }
575 
576 static void etr_timeout(unsigned long dummy)
577 {
578 	set_bit(ETR_EVENT_UPDATE, &etr_events);
579 	queue_work(time_sync_wq, &etr_work);
580 }
581 
582 /*
583  * Check if the etr mode is pss.
584  */
585 static inline int etr_mode_is_pps(struct etr_eacr eacr)
586 {
587 	return eacr.es && !eacr.sl;
588 }
589 
590 /*
591  * Check if the etr mode is etr.
592  */
593 static inline int etr_mode_is_etr(struct etr_eacr eacr)
594 {
595 	return eacr.es && eacr.sl;
596 }
597 
598 /*
599  * Check if the port can be used for TOD synchronization.
600  * For PPS mode the port has to receive OTEs. For ETR mode
601  * the port has to receive OTEs, the ETR stepping bit has to
602  * be zero and the validity bits for data frame 1, 2, and 3
603  * have to be 1.
604  */
605 static int etr_port_valid(struct etr_aib *aib, int port)
606 {
607 	unsigned int psc;
608 
609 	/* Check that this port is receiving OTEs. */
610 	if (aib->tsp == 0)
611 		return 0;
612 
613 	psc = port ? aib->esw.psc1 : aib->esw.psc0;
614 	if (psc == etr_lpsc_pps_mode)
615 		return 1;
616 	if (psc == etr_lpsc_operational_step)
617 		return !aib->esw.y && aib->slsw.v1 &&
618 			aib->slsw.v2 && aib->slsw.v3;
619 	return 0;
620 }
621 
622 /*
623  * Check if two ports are on the same network.
624  */
625 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
626 {
627 	// FIXME: any other fields we have to compare?
628 	return aib1->edf1.net_id == aib2->edf1.net_id;
629 }
630 
631 /*
632  * Wrapper for etr_stei that converts physical port states
633  * to logical port states to be consistent with the output
634  * of stetr (see etr_psc vs. etr_lpsc).
635  */
636 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
637 {
638 	BUG_ON(etr_steai(aib, func) != 0);
639 	/* Convert port state to logical port state. */
640 	if (aib->esw.psc0 == 1)
641 		aib->esw.psc0 = 2;
642 	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
643 		aib->esw.psc0 = 1;
644 	if (aib->esw.psc1 == 1)
645 		aib->esw.psc1 = 2;
646 	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
647 		aib->esw.psc1 = 1;
648 }
649 
650 /*
651  * Check if the aib a2 is still connected to the same attachment as
652  * aib a1, the etv values differ by one and a2 is valid.
653  */
654 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
655 {
656 	int state_a1, state_a2;
657 
658 	/* Paranoia check: e0/e1 should better be the same. */
659 	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
660 	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
661 		return 0;
662 
663 	/* Still connected to the same etr ? */
664 	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
665 	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
666 	if (state_a1 == etr_lpsc_operational_step) {
667 		if (state_a2 != etr_lpsc_operational_step ||
668 		    a1->edf1.net_id != a2->edf1.net_id ||
669 		    a1->edf1.etr_id != a2->edf1.etr_id ||
670 		    a1->edf1.etr_pn != a2->edf1.etr_pn)
671 			return 0;
672 	} else if (state_a2 != etr_lpsc_pps_mode)
673 		return 0;
674 
675 	/* The ETV value of a2 needs to be ETV of a1 + 1. */
676 	if (a1->edf2.etv + 1 != a2->edf2.etv)
677 		return 0;
678 
679 	if (!etr_port_valid(a2, p))
680 		return 0;
681 
682 	return 1;
683 }
684 
685 struct clock_sync_data {
686 	atomic_t cpus;
687 	int in_sync;
688 	unsigned long long fixup_cc;
689 	int etr_port;
690 	struct etr_aib *etr_aib;
691 };
692 
693 static void clock_sync_cpu(struct clock_sync_data *sync)
694 {
695 	atomic_dec(&sync->cpus);
696 	enable_sync_clock();
697 	/*
698 	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
699 	 * is called on all other cpus while the TOD clocks is stopped.
700 	 * __udelay will stop the cpu on an enabled wait psw until the
701 	 * TOD is running again.
702 	 */
703 	while (sync->in_sync == 0) {
704 		__udelay(1);
705 		/*
706 		 * A different cpu changes *in_sync. Therefore use
707 		 * barrier() to force memory access.
708 		 */
709 		barrier();
710 	}
711 	if (sync->in_sync != 1)
712 		/* Didn't work. Clear per-cpu in sync bit again. */
713 		disable_sync_clock(NULL);
714 	/*
715 	 * This round of TOD syncing is done. Set the clock comparator
716 	 * to the next tick and let the processor continue.
717 	 */
718 	fixup_clock_comparator(sync->fixup_cc);
719 }
720 
721 /*
722  * Sync the TOD clock using the port refered to by aibp. This port
723  * has to be enabled and the other port has to be disabled. The
724  * last eacr update has to be more than 1.6 seconds in the past.
725  */
726 static int etr_sync_clock(void *data)
727 {
728 	static int first;
729 	unsigned long long clock, old_clock, delay, delta;
730 	struct clock_sync_data *etr_sync;
731 	struct etr_aib *sync_port, *aib;
732 	int port;
733 	int rc;
734 
735 	etr_sync = data;
736 
737 	if (xchg(&first, 1) == 1) {
738 		/* Slave */
739 		clock_sync_cpu(etr_sync);
740 		return 0;
741 	}
742 
743 	/* Wait until all other cpus entered the sync function. */
744 	while (atomic_read(&etr_sync->cpus) != 0)
745 		cpu_relax();
746 
747 	port = etr_sync->etr_port;
748 	aib = etr_sync->etr_aib;
749 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
750 	enable_sync_clock();
751 
752 	/* Set clock to next OTE. */
753 	__ctl_set_bit(14, 21);
754 	__ctl_set_bit(0, 29);
755 	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
756 	old_clock = get_clock();
757 	if (set_clock(clock) == 0) {
758 		__udelay(1);	/* Wait for the clock to start. */
759 		__ctl_clear_bit(0, 29);
760 		__ctl_clear_bit(14, 21);
761 		etr_stetr(aib);
762 		/* Adjust Linux timing variables. */
763 		delay = (unsigned long long)
764 			(aib->edf2.etv - sync_port->edf2.etv) << 32;
765 		delta = adjust_time(old_clock, clock, delay);
766 		etr_sync->fixup_cc = delta;
767 		fixup_clock_comparator(delta);
768 		/* Verify that the clock is properly set. */
769 		if (!etr_aib_follows(sync_port, aib, port)) {
770 			/* Didn't work. */
771 			disable_sync_clock(NULL);
772 			etr_sync->in_sync = -EAGAIN;
773 			rc = -EAGAIN;
774 		} else {
775 			etr_sync->in_sync = 1;
776 			rc = 0;
777 		}
778 	} else {
779 		/* Could not set the clock ?!? */
780 		__ctl_clear_bit(0, 29);
781 		__ctl_clear_bit(14, 21);
782 		disable_sync_clock(NULL);
783 		etr_sync->in_sync = -EAGAIN;
784 		rc = -EAGAIN;
785 	}
786 	xchg(&first, 0);
787 	return rc;
788 }
789 
790 static int etr_sync_clock_stop(struct etr_aib *aib, int port)
791 {
792 	struct clock_sync_data etr_sync;
793 	struct etr_aib *sync_port;
794 	int follows;
795 	int rc;
796 
797 	/* Check if the current aib is adjacent to the sync port aib. */
798 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
799 	follows = etr_aib_follows(sync_port, aib, port);
800 	memcpy(sync_port, aib, sizeof(*aib));
801 	if (!follows)
802 		return -EAGAIN;
803 	memset(&etr_sync, 0, sizeof(etr_sync));
804 	etr_sync.etr_aib = aib;
805 	etr_sync.etr_port = port;
806 	get_online_cpus();
807 	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
808 	rc = stop_machine(etr_sync_clock, &etr_sync, &cpu_online_map);
809 	put_online_cpus();
810 	return rc;
811 }
812 
813 /*
814  * Handle the immediate effects of the different events.
815  * The port change event is used for online/offline changes.
816  */
817 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
818 {
819 	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
820 		eacr.es = 0;
821 	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
822 		eacr.es = eacr.sl = 0;
823 	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
824 		etr_port0_uptodate = etr_port1_uptodate = 0;
825 
826 	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
827 		if (eacr.e0)
828 			/*
829 			 * Port change of an enabled port. We have to
830 			 * assume that this can have caused an stepping
831 			 * port switch.
832 			 */
833 			etr_tolec = get_clock();
834 		eacr.p0 = etr_port0_online;
835 		if (!eacr.p0)
836 			eacr.e0 = 0;
837 		etr_port0_uptodate = 0;
838 	}
839 	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
840 		if (eacr.e1)
841 			/*
842 			 * Port change of an enabled port. We have to
843 			 * assume that this can have caused an stepping
844 			 * port switch.
845 			 */
846 			etr_tolec = get_clock();
847 		eacr.p1 = etr_port1_online;
848 		if (!eacr.p1)
849 			eacr.e1 = 0;
850 		etr_port1_uptodate = 0;
851 	}
852 	clear_bit(ETR_EVENT_UPDATE, &etr_events);
853 	return eacr;
854 }
855 
856 /*
857  * Set up a timer that expires after the etr_tolec + 1.6 seconds if
858  * one of the ports needs an update.
859  */
860 static void etr_set_tolec_timeout(unsigned long long now)
861 {
862 	unsigned long micros;
863 
864 	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
865 	    (!etr_eacr.p1 || etr_port1_uptodate))
866 		return;
867 	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
868 	micros = (micros > 1600000) ? 0 : 1600000 - micros;
869 	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
870 }
871 
872 /*
873  * Set up a time that expires after 1/2 second.
874  */
875 static void etr_set_sync_timeout(void)
876 {
877 	mod_timer(&etr_timer, jiffies + HZ/2);
878 }
879 
880 /*
881  * Update the aib information for one or both ports.
882  */
883 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
884 					 struct etr_eacr eacr)
885 {
886 	/* With both ports disabled the aib information is useless. */
887 	if (!eacr.e0 && !eacr.e1)
888 		return eacr;
889 
890 	/* Update port0 or port1 with aib stored in etr_work_fn. */
891 	if (aib->esw.q == 0) {
892 		/* Information for port 0 stored. */
893 		if (eacr.p0 && !etr_port0_uptodate) {
894 			etr_port0 = *aib;
895 			if (etr_port0_online)
896 				etr_port0_uptodate = 1;
897 		}
898 	} else {
899 		/* Information for port 1 stored. */
900 		if (eacr.p1 && !etr_port1_uptodate) {
901 			etr_port1 = *aib;
902 			if (etr_port0_online)
903 				etr_port1_uptodate = 1;
904 		}
905 	}
906 
907 	/*
908 	 * Do not try to get the alternate port aib if the clock
909 	 * is not in sync yet.
910 	 */
911 	if (!eacr.es || !check_sync_clock())
912 		return eacr;
913 
914 	/*
915 	 * If steai is available we can get the information about
916 	 * the other port immediately. If only stetr is available the
917 	 * data-port bit toggle has to be used.
918 	 */
919 	if (etr_steai_available) {
920 		if (eacr.p0 && !etr_port0_uptodate) {
921 			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
922 			etr_port0_uptodate = 1;
923 		}
924 		if (eacr.p1 && !etr_port1_uptodate) {
925 			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
926 			etr_port1_uptodate = 1;
927 		}
928 	} else {
929 		/*
930 		 * One port was updated above, if the other
931 		 * port is not uptodate toggle dp bit.
932 		 */
933 		if ((eacr.p0 && !etr_port0_uptodate) ||
934 		    (eacr.p1 && !etr_port1_uptodate))
935 			eacr.dp ^= 1;
936 		else
937 			eacr.dp = 0;
938 	}
939 	return eacr;
940 }
941 
942 /*
943  * Write new etr control register if it differs from the current one.
944  * Return 1 if etr_tolec has been updated as well.
945  */
946 static void etr_update_eacr(struct etr_eacr eacr)
947 {
948 	int dp_changed;
949 
950 	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
951 		/* No change, return. */
952 		return;
953 	/*
954 	 * The disable of an active port of the change of the data port
955 	 * bit can/will cause a change in the data port.
956 	 */
957 	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
958 		(etr_eacr.dp ^ eacr.dp) != 0;
959 	etr_eacr = eacr;
960 	etr_setr(&etr_eacr);
961 	if (dp_changed)
962 		etr_tolec = get_clock();
963 }
964 
965 /*
966  * ETR work. In this function you'll find the main logic. In
967  * particular this is the only function that calls etr_update_eacr(),
968  * it "controls" the etr control register.
969  */
970 static void etr_work_fn(struct work_struct *work)
971 {
972 	unsigned long long now;
973 	struct etr_eacr eacr;
974 	struct etr_aib aib;
975 	int sync_port;
976 
977 	/* prevent multiple execution. */
978 	mutex_lock(&etr_work_mutex);
979 
980 	/* Create working copy of etr_eacr. */
981 	eacr = etr_eacr;
982 
983 	/* Check for the different events and their immediate effects. */
984 	eacr = etr_handle_events(eacr);
985 
986 	/* Check if ETR is supposed to be active. */
987 	eacr.ea = eacr.p0 || eacr.p1;
988 	if (!eacr.ea) {
989 		/* Both ports offline. Reset everything. */
990 		eacr.dp = eacr.es = eacr.sl = 0;
991 		on_each_cpu(disable_sync_clock, NULL, 1);
992 		del_timer_sync(&etr_timer);
993 		etr_update_eacr(eacr);
994 		goto out_unlock;
995 	}
996 
997 	/* Store aib to get the current ETR status word. */
998 	BUG_ON(etr_stetr(&aib) != 0);
999 	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
1000 	now = get_clock();
1001 
1002 	/*
1003 	 * Update the port information if the last stepping port change
1004 	 * or data port change is older than 1.6 seconds.
1005 	 */
1006 	if (now >= etr_tolec + (1600000 << 12))
1007 		eacr = etr_handle_update(&aib, eacr);
1008 
1009 	/*
1010 	 * Select ports to enable. The prefered synchronization mode is PPS.
1011 	 * If a port can be enabled depends on a number of things:
1012 	 * 1) The port needs to be online and uptodate. A port is not
1013 	 *    disabled just because it is not uptodate, but it is only
1014 	 *    enabled if it is uptodate.
1015 	 * 2) The port needs to have the same mode (pps / etr).
1016 	 * 3) The port needs to be usable -> etr_port_valid() == 1
1017 	 * 4) To enable the second port the clock needs to be in sync.
1018 	 * 5) If both ports are useable and are ETR ports, the network id
1019 	 *    has to be the same.
1020 	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1021 	 */
1022 	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1023 		eacr.sl = 0;
1024 		eacr.e0 = 1;
1025 		if (!etr_mode_is_pps(etr_eacr))
1026 			eacr.es = 0;
1027 		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1028 			eacr.e1 = 0;
1029 		// FIXME: uptodate checks ?
1030 		else if (etr_port0_uptodate && etr_port1_uptodate)
1031 			eacr.e1 = 1;
1032 		sync_port = (etr_port0_uptodate &&
1033 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1034 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1035 		eacr.sl = 0;
1036 		eacr.e0 = 0;
1037 		eacr.e1 = 1;
1038 		if (!etr_mode_is_pps(etr_eacr))
1039 			eacr.es = 0;
1040 		sync_port = (etr_port1_uptodate &&
1041 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1042 	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1043 		eacr.sl = 1;
1044 		eacr.e0 = 1;
1045 		if (!etr_mode_is_etr(etr_eacr))
1046 			eacr.es = 0;
1047 		if (!eacr.es || !eacr.p1 ||
1048 		    aib.esw.psc1 != etr_lpsc_operational_alt)
1049 			eacr.e1 = 0;
1050 		else if (etr_port0_uptodate && etr_port1_uptodate &&
1051 			 etr_compare_network(&etr_port0, &etr_port1))
1052 			eacr.e1 = 1;
1053 		sync_port = (etr_port0_uptodate &&
1054 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1055 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1056 		eacr.sl = 1;
1057 		eacr.e0 = 0;
1058 		eacr.e1 = 1;
1059 		if (!etr_mode_is_etr(etr_eacr))
1060 			eacr.es = 0;
1061 		sync_port = (etr_port1_uptodate &&
1062 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1063 	} else {
1064 		/* Both ports not usable. */
1065 		eacr.es = eacr.sl = 0;
1066 		sync_port = -1;
1067 	}
1068 
1069 	/*
1070 	 * If the clock is in sync just update the eacr and return.
1071 	 * If there is no valid sync port wait for a port update.
1072 	 */
1073 	if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1074 		etr_update_eacr(eacr);
1075 		etr_set_tolec_timeout(now);
1076 		goto out_unlock;
1077 	}
1078 
1079 	/*
1080 	 * Prepare control register for clock syncing
1081 	 * (reset data port bit, set sync check control.
1082 	 */
1083 	eacr.dp = 0;
1084 	eacr.es = 1;
1085 
1086 	/*
1087 	 * Update eacr and try to synchronize the clock. If the update
1088 	 * of eacr caused a stepping port switch (or if we have to
1089 	 * assume that a stepping port switch has occured) or the
1090 	 * clock syncing failed, reset the sync check control bit
1091 	 * and set up a timer to try again after 0.5 seconds
1092 	 */
1093 	etr_update_eacr(eacr);
1094 	if (now < etr_tolec + (1600000 << 12) ||
1095 	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1096 		/* Sync failed. Try again in 1/2 second. */
1097 		eacr.es = 0;
1098 		etr_update_eacr(eacr);
1099 		etr_set_sync_timeout();
1100 	} else
1101 		etr_set_tolec_timeout(now);
1102 out_unlock:
1103 	mutex_unlock(&etr_work_mutex);
1104 }
1105 
1106 /*
1107  * Sysfs interface functions
1108  */
1109 static struct sysdev_class etr_sysclass = {
1110 	.name	= "etr",
1111 };
1112 
1113 static struct sys_device etr_port0_dev = {
1114 	.id	= 0,
1115 	.cls	= &etr_sysclass,
1116 };
1117 
1118 static struct sys_device etr_port1_dev = {
1119 	.id	= 1,
1120 	.cls	= &etr_sysclass,
1121 };
1122 
1123 /*
1124  * ETR class attributes
1125  */
1126 static ssize_t etr_stepping_port_show(struct sysdev_class *class,
1127 					struct sysdev_class_attribute *attr,
1128 					char *buf)
1129 {
1130 	return sprintf(buf, "%i\n", etr_port0.esw.p);
1131 }
1132 
1133 static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1134 
1135 static ssize_t etr_stepping_mode_show(struct sysdev_class *class,
1136 				      	struct sysdev_class_attribute *attr,
1137 					char *buf)
1138 {
1139 	char *mode_str;
1140 
1141 	if (etr_mode_is_pps(etr_eacr))
1142 		mode_str = "pps";
1143 	else if (etr_mode_is_etr(etr_eacr))
1144 		mode_str = "etr";
1145 	else
1146 		mode_str = "local";
1147 	return sprintf(buf, "%s\n", mode_str);
1148 }
1149 
1150 static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1151 
1152 /*
1153  * ETR port attributes
1154  */
1155 static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev)
1156 {
1157 	if (dev == &etr_port0_dev)
1158 		return etr_port0_online ? &etr_port0 : NULL;
1159 	else
1160 		return etr_port1_online ? &etr_port1 : NULL;
1161 }
1162 
1163 static ssize_t etr_online_show(struct sys_device *dev,
1164 				struct sysdev_attribute *attr,
1165 				char *buf)
1166 {
1167 	unsigned int online;
1168 
1169 	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1170 	return sprintf(buf, "%i\n", online);
1171 }
1172 
1173 static ssize_t etr_online_store(struct sys_device *dev,
1174 				struct sysdev_attribute *attr,
1175 				const char *buf, size_t count)
1176 {
1177 	unsigned int value;
1178 
1179 	value = simple_strtoul(buf, NULL, 0);
1180 	if (value != 0 && value != 1)
1181 		return -EINVAL;
1182 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1183 		return -EOPNOTSUPP;
1184 	mutex_lock(&clock_sync_mutex);
1185 	if (dev == &etr_port0_dev) {
1186 		if (etr_port0_online == value)
1187 			goto out;	/* Nothing to do. */
1188 		etr_port0_online = value;
1189 		if (etr_port0_online && etr_port1_online)
1190 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1191 		else
1192 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1193 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1194 		queue_work(time_sync_wq, &etr_work);
1195 	} else {
1196 		if (etr_port1_online == value)
1197 			goto out;	/* Nothing to do. */
1198 		etr_port1_online = value;
1199 		if (etr_port0_online && etr_port1_online)
1200 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1201 		else
1202 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1203 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1204 		queue_work(time_sync_wq, &etr_work);
1205 	}
1206 out:
1207 	mutex_unlock(&clock_sync_mutex);
1208 	return count;
1209 }
1210 
1211 static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store);
1212 
1213 static ssize_t etr_stepping_control_show(struct sys_device *dev,
1214 					struct sysdev_attribute *attr,
1215 					char *buf)
1216 {
1217 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1218 		       etr_eacr.e0 : etr_eacr.e1);
1219 }
1220 
1221 static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1222 
1223 static ssize_t etr_mode_code_show(struct sys_device *dev,
1224 				struct sysdev_attribute *attr, char *buf)
1225 {
1226 	if (!etr_port0_online && !etr_port1_online)
1227 		/* Status word is not uptodate if both ports are offline. */
1228 		return -ENODATA;
1229 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1230 		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1231 }
1232 
1233 static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1234 
1235 static ssize_t etr_untuned_show(struct sys_device *dev,
1236 				struct sysdev_attribute *attr, char *buf)
1237 {
1238 	struct etr_aib *aib = etr_aib_from_dev(dev);
1239 
1240 	if (!aib || !aib->slsw.v1)
1241 		return -ENODATA;
1242 	return sprintf(buf, "%i\n", aib->edf1.u);
1243 }
1244 
1245 static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL);
1246 
1247 static ssize_t etr_network_id_show(struct sys_device *dev,
1248 				struct sysdev_attribute *attr, char *buf)
1249 {
1250 	struct etr_aib *aib = etr_aib_from_dev(dev);
1251 
1252 	if (!aib || !aib->slsw.v1)
1253 		return -ENODATA;
1254 	return sprintf(buf, "%i\n", aib->edf1.net_id);
1255 }
1256 
1257 static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL);
1258 
1259 static ssize_t etr_id_show(struct sys_device *dev,
1260 			struct sysdev_attribute *attr, char *buf)
1261 {
1262 	struct etr_aib *aib = etr_aib_from_dev(dev);
1263 
1264 	if (!aib || !aib->slsw.v1)
1265 		return -ENODATA;
1266 	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1267 }
1268 
1269 static SYSDEV_ATTR(id, 0400, etr_id_show, NULL);
1270 
1271 static ssize_t etr_port_number_show(struct sys_device *dev,
1272 			struct sysdev_attribute *attr, char *buf)
1273 {
1274 	struct etr_aib *aib = etr_aib_from_dev(dev);
1275 
1276 	if (!aib || !aib->slsw.v1)
1277 		return -ENODATA;
1278 	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1279 }
1280 
1281 static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL);
1282 
1283 static ssize_t etr_coupled_show(struct sys_device *dev,
1284 			struct sysdev_attribute *attr, char *buf)
1285 {
1286 	struct etr_aib *aib = etr_aib_from_dev(dev);
1287 
1288 	if (!aib || !aib->slsw.v3)
1289 		return -ENODATA;
1290 	return sprintf(buf, "%i\n", aib->edf3.c);
1291 }
1292 
1293 static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL);
1294 
1295 static ssize_t etr_local_time_show(struct sys_device *dev,
1296 			struct sysdev_attribute *attr, char *buf)
1297 {
1298 	struct etr_aib *aib = etr_aib_from_dev(dev);
1299 
1300 	if (!aib || !aib->slsw.v3)
1301 		return -ENODATA;
1302 	return sprintf(buf, "%i\n", aib->edf3.blto);
1303 }
1304 
1305 static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL);
1306 
1307 static ssize_t etr_utc_offset_show(struct sys_device *dev,
1308 			struct sysdev_attribute *attr, char *buf)
1309 {
1310 	struct etr_aib *aib = etr_aib_from_dev(dev);
1311 
1312 	if (!aib || !aib->slsw.v3)
1313 		return -ENODATA;
1314 	return sprintf(buf, "%i\n", aib->edf3.buo);
1315 }
1316 
1317 static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1318 
1319 static struct sysdev_attribute *etr_port_attributes[] = {
1320 	&attr_online,
1321 	&attr_stepping_control,
1322 	&attr_state_code,
1323 	&attr_untuned,
1324 	&attr_network,
1325 	&attr_id,
1326 	&attr_port,
1327 	&attr_coupled,
1328 	&attr_local_time,
1329 	&attr_utc_offset,
1330 	NULL
1331 };
1332 
1333 static int __init etr_register_port(struct sys_device *dev)
1334 {
1335 	struct sysdev_attribute **attr;
1336 	int rc;
1337 
1338 	rc = sysdev_register(dev);
1339 	if (rc)
1340 		goto out;
1341 	for (attr = etr_port_attributes; *attr; attr++) {
1342 		rc = sysdev_create_file(dev, *attr);
1343 		if (rc)
1344 			goto out_unreg;
1345 	}
1346 	return 0;
1347 out_unreg:
1348 	for (; attr >= etr_port_attributes; attr--)
1349 		sysdev_remove_file(dev, *attr);
1350 	sysdev_unregister(dev);
1351 out:
1352 	return rc;
1353 }
1354 
1355 static void __init etr_unregister_port(struct sys_device *dev)
1356 {
1357 	struct sysdev_attribute **attr;
1358 
1359 	for (attr = etr_port_attributes; *attr; attr++)
1360 		sysdev_remove_file(dev, *attr);
1361 	sysdev_unregister(dev);
1362 }
1363 
1364 static int __init etr_init_sysfs(void)
1365 {
1366 	int rc;
1367 
1368 	rc = sysdev_class_register(&etr_sysclass);
1369 	if (rc)
1370 		goto out;
1371 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port);
1372 	if (rc)
1373 		goto out_unreg_class;
1374 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode);
1375 	if (rc)
1376 		goto out_remove_stepping_port;
1377 	rc = etr_register_port(&etr_port0_dev);
1378 	if (rc)
1379 		goto out_remove_stepping_mode;
1380 	rc = etr_register_port(&etr_port1_dev);
1381 	if (rc)
1382 		goto out_remove_port0;
1383 	return 0;
1384 
1385 out_remove_port0:
1386 	etr_unregister_port(&etr_port0_dev);
1387 out_remove_stepping_mode:
1388 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode);
1389 out_remove_stepping_port:
1390 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port);
1391 out_unreg_class:
1392 	sysdev_class_unregister(&etr_sysclass);
1393 out:
1394 	return rc;
1395 }
1396 
1397 device_initcall(etr_init_sysfs);
1398 
1399 /*
1400  * Server Time Protocol (STP) code.
1401  */
1402 static int stp_online;
1403 static struct stp_sstpi stp_info;
1404 static void *stp_page;
1405 
1406 static void stp_work_fn(struct work_struct *work);
1407 static DEFINE_MUTEX(stp_work_mutex);
1408 static DECLARE_WORK(stp_work, stp_work_fn);
1409 static struct timer_list stp_timer;
1410 
1411 static int __init early_parse_stp(char *p)
1412 {
1413 	if (strncmp(p, "off", 3) == 0)
1414 		stp_online = 0;
1415 	else if (strncmp(p, "on", 2) == 0)
1416 		stp_online = 1;
1417 	return 0;
1418 }
1419 early_param("stp", early_parse_stp);
1420 
1421 /*
1422  * Reset STP attachment.
1423  */
1424 static void __init stp_reset(void)
1425 {
1426 	int rc;
1427 
1428 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1429 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1430 	if (rc == 0)
1431 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1432 	else if (stp_online) {
1433 		pr_warning("The real or virtual hardware system does "
1434 			   "not provide an STP interface\n");
1435 		free_page((unsigned long) stp_page);
1436 		stp_page = NULL;
1437 		stp_online = 0;
1438 	}
1439 }
1440 
1441 static void stp_timeout(unsigned long dummy)
1442 {
1443 	queue_work(time_sync_wq, &stp_work);
1444 }
1445 
1446 static int __init stp_init(void)
1447 {
1448 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1449 		return 0;
1450 	setup_timer(&stp_timer, stp_timeout, 0UL);
1451 	time_init_wq();
1452 	if (!stp_online)
1453 		return 0;
1454 	queue_work(time_sync_wq, &stp_work);
1455 	return 0;
1456 }
1457 
1458 arch_initcall(stp_init);
1459 
1460 /*
1461  * STP timing alert. There are three causes:
1462  * 1) timing status change
1463  * 2) link availability change
1464  * 3) time control parameter change
1465  * In all three cases we are only interested in the clock source state.
1466  * If a STP clock source is now available use it.
1467  */
1468 static void stp_timing_alert(struct stp_irq_parm *intparm)
1469 {
1470 	if (intparm->tsc || intparm->lac || intparm->tcpc)
1471 		queue_work(time_sync_wq, &stp_work);
1472 }
1473 
1474 /*
1475  * STP sync check machine check. This is called when the timing state
1476  * changes from the synchronized state to the unsynchronized state.
1477  * After a STP sync check the clock is not in sync. The machine check
1478  * is broadcasted to all cpus at the same time.
1479  */
1480 void stp_sync_check(void)
1481 {
1482 	disable_sync_clock(NULL);
1483 	queue_work(time_sync_wq, &stp_work);
1484 }
1485 
1486 /*
1487  * STP island condition machine check. This is called when an attached
1488  * server  attempts to communicate over an STP link and the servers
1489  * have matching CTN ids and have a valid stratum-1 configuration
1490  * but the configurations do not match.
1491  */
1492 void stp_island_check(void)
1493 {
1494 	disable_sync_clock(NULL);
1495 	queue_work(time_sync_wq, &stp_work);
1496 }
1497 
1498 
1499 static int stp_sync_clock(void *data)
1500 {
1501 	static int first;
1502 	unsigned long long old_clock, delta;
1503 	struct clock_sync_data *stp_sync;
1504 	int rc;
1505 
1506 	stp_sync = data;
1507 
1508 	if (xchg(&first, 1) == 1) {
1509 		/* Slave */
1510 		clock_sync_cpu(stp_sync);
1511 		return 0;
1512 	}
1513 
1514 	/* Wait until all other cpus entered the sync function. */
1515 	while (atomic_read(&stp_sync->cpus) != 0)
1516 		cpu_relax();
1517 
1518 	enable_sync_clock();
1519 
1520 	rc = 0;
1521 	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1522 	    stp_info.todoff[2] || stp_info.todoff[3] ||
1523 	    stp_info.tmd != 2) {
1524 		old_clock = get_clock();
1525 		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1526 		if (rc == 0) {
1527 			delta = adjust_time(old_clock, get_clock(), 0);
1528 			fixup_clock_comparator(delta);
1529 			rc = chsc_sstpi(stp_page, &stp_info,
1530 					sizeof(struct stp_sstpi));
1531 			if (rc == 0 && stp_info.tmd != 2)
1532 				rc = -EAGAIN;
1533 		}
1534 	}
1535 	if (rc) {
1536 		disable_sync_clock(NULL);
1537 		stp_sync->in_sync = -EAGAIN;
1538 	} else
1539 		stp_sync->in_sync = 1;
1540 	xchg(&first, 0);
1541 	return 0;
1542 }
1543 
1544 /*
1545  * STP work. Check for the STP state and take over the clock
1546  * synchronization if the STP clock source is usable.
1547  */
1548 static void stp_work_fn(struct work_struct *work)
1549 {
1550 	struct clock_sync_data stp_sync;
1551 	int rc;
1552 
1553 	/* prevent multiple execution. */
1554 	mutex_lock(&stp_work_mutex);
1555 
1556 	if (!stp_online) {
1557 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1558 		del_timer_sync(&stp_timer);
1559 		goto out_unlock;
1560 	}
1561 
1562 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1563 	if (rc)
1564 		goto out_unlock;
1565 
1566 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1567 	if (rc || stp_info.c == 0)
1568 		goto out_unlock;
1569 
1570 	/* Skip synchronization if the clock is already in sync. */
1571 	if (check_sync_clock())
1572 		goto out_unlock;
1573 
1574 	memset(&stp_sync, 0, sizeof(stp_sync));
1575 	get_online_cpus();
1576 	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1577 	stop_machine(stp_sync_clock, &stp_sync, &cpu_online_map);
1578 	put_online_cpus();
1579 
1580 	if (!check_sync_clock())
1581 		/*
1582 		 * There is a usable clock but the synchonization failed.
1583 		 * Retry after a second.
1584 		 */
1585 		mod_timer(&stp_timer, jiffies + HZ);
1586 
1587 out_unlock:
1588 	mutex_unlock(&stp_work_mutex);
1589 }
1590 
1591 /*
1592  * STP class sysfs interface functions
1593  */
1594 static struct sysdev_class stp_sysclass = {
1595 	.name	= "stp",
1596 };
1597 
1598 static ssize_t stp_ctn_id_show(struct sysdev_class *class,
1599 				struct sysdev_class_attribute *attr,
1600 				char *buf)
1601 {
1602 	if (!stp_online)
1603 		return -ENODATA;
1604 	return sprintf(buf, "%016llx\n",
1605 		       *(unsigned long long *) stp_info.ctnid);
1606 }
1607 
1608 static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1609 
1610 static ssize_t stp_ctn_type_show(struct sysdev_class *class,
1611 				struct sysdev_class_attribute *attr,
1612 				char *buf)
1613 {
1614 	if (!stp_online)
1615 		return -ENODATA;
1616 	return sprintf(buf, "%i\n", stp_info.ctn);
1617 }
1618 
1619 static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1620 
1621 static ssize_t stp_dst_offset_show(struct sysdev_class *class,
1622 				   struct sysdev_class_attribute *attr,
1623 				   char *buf)
1624 {
1625 	if (!stp_online || !(stp_info.vbits & 0x2000))
1626 		return -ENODATA;
1627 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1628 }
1629 
1630 static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1631 
1632 static ssize_t stp_leap_seconds_show(struct sysdev_class *class,
1633 					struct sysdev_class_attribute *attr,
1634 					char *buf)
1635 {
1636 	if (!stp_online || !(stp_info.vbits & 0x8000))
1637 		return -ENODATA;
1638 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1639 }
1640 
1641 static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1642 
1643 static ssize_t stp_stratum_show(struct sysdev_class *class,
1644 				struct sysdev_class_attribute *attr,
1645 				char *buf)
1646 {
1647 	if (!stp_online)
1648 		return -ENODATA;
1649 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1650 }
1651 
1652 static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL);
1653 
1654 static ssize_t stp_time_offset_show(struct sysdev_class *class,
1655 				struct sysdev_class_attribute *attr,
1656 				char *buf)
1657 {
1658 	if (!stp_online || !(stp_info.vbits & 0x0800))
1659 		return -ENODATA;
1660 	return sprintf(buf, "%i\n", (int) stp_info.tto);
1661 }
1662 
1663 static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1664 
1665 static ssize_t stp_time_zone_offset_show(struct sysdev_class *class,
1666 				struct sysdev_class_attribute *attr,
1667 				char *buf)
1668 {
1669 	if (!stp_online || !(stp_info.vbits & 0x4000))
1670 		return -ENODATA;
1671 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1672 }
1673 
1674 static SYSDEV_CLASS_ATTR(time_zone_offset, 0400,
1675 			 stp_time_zone_offset_show, NULL);
1676 
1677 static ssize_t stp_timing_mode_show(struct sysdev_class *class,
1678 				struct sysdev_class_attribute *attr,
1679 				char *buf)
1680 {
1681 	if (!stp_online)
1682 		return -ENODATA;
1683 	return sprintf(buf, "%i\n", stp_info.tmd);
1684 }
1685 
1686 static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1687 
1688 static ssize_t stp_timing_state_show(struct sysdev_class *class,
1689 				struct sysdev_class_attribute *attr,
1690 				char *buf)
1691 {
1692 	if (!stp_online)
1693 		return -ENODATA;
1694 	return sprintf(buf, "%i\n", stp_info.tst);
1695 }
1696 
1697 static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1698 
1699 static ssize_t stp_online_show(struct sysdev_class *class,
1700 				struct sysdev_class_attribute *attr,
1701 				char *buf)
1702 {
1703 	return sprintf(buf, "%i\n", stp_online);
1704 }
1705 
1706 static ssize_t stp_online_store(struct sysdev_class *class,
1707 				struct sysdev_class_attribute *attr,
1708 				const char *buf, size_t count)
1709 {
1710 	unsigned int value;
1711 
1712 	value = simple_strtoul(buf, NULL, 0);
1713 	if (value != 0 && value != 1)
1714 		return -EINVAL;
1715 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1716 		return -EOPNOTSUPP;
1717 	mutex_lock(&clock_sync_mutex);
1718 	stp_online = value;
1719 	if (stp_online)
1720 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1721 	else
1722 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1723 	queue_work(time_sync_wq, &stp_work);
1724 	mutex_unlock(&clock_sync_mutex);
1725 	return count;
1726 }
1727 
1728 /*
1729  * Can't use SYSDEV_CLASS_ATTR because the attribute should be named
1730  * stp/online but attr_online already exists in this file ..
1731  */
1732 static struct sysdev_class_attribute attr_stp_online = {
1733 	.attr = { .name = "online", .mode = 0600 },
1734 	.show	= stp_online_show,
1735 	.store	= stp_online_store,
1736 };
1737 
1738 static struct sysdev_class_attribute *stp_attributes[] = {
1739 	&attr_ctn_id,
1740 	&attr_ctn_type,
1741 	&attr_dst_offset,
1742 	&attr_leap_seconds,
1743 	&attr_stp_online,
1744 	&attr_stratum,
1745 	&attr_time_offset,
1746 	&attr_time_zone_offset,
1747 	&attr_timing_mode,
1748 	&attr_timing_state,
1749 	NULL
1750 };
1751 
1752 static int __init stp_init_sysfs(void)
1753 {
1754 	struct sysdev_class_attribute **attr;
1755 	int rc;
1756 
1757 	rc = sysdev_class_register(&stp_sysclass);
1758 	if (rc)
1759 		goto out;
1760 	for (attr = stp_attributes; *attr; attr++) {
1761 		rc = sysdev_class_create_file(&stp_sysclass, *attr);
1762 		if (rc)
1763 			goto out_unreg;
1764 	}
1765 	return 0;
1766 out_unreg:
1767 	for (; attr >= stp_attributes; attr--)
1768 		sysdev_class_remove_file(&stp_sysclass, *attr);
1769 	sysdev_class_unregister(&stp_sysclass);
1770 out:
1771 	return rc;
1772 }
1773 
1774 device_initcall(stp_init_sysfs);
1775