1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Time of day based timer functions. 4 * 5 * S390 version 6 * Copyright IBM Corp. 1999, 2008 7 * Author(s): Hartmut Penner (hp@de.ibm.com), 8 * Martin Schwidefsky (schwidefsky@de.ibm.com), 9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 10 * 11 * Derived from "arch/i386/kernel/time.c" 12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 13 */ 14 15 #define KMSG_COMPONENT "time" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/kernel_stat.h> 19 #include <linux/errno.h> 20 #include <linux/export.h> 21 #include <linux/sched.h> 22 #include <linux/sched/clock.h> 23 #include <linux/kernel.h> 24 #include <linux/param.h> 25 #include <linux/string.h> 26 #include <linux/mm.h> 27 #include <linux/interrupt.h> 28 #include <linux/cpu.h> 29 #include <linux/stop_machine.h> 30 #include <linux/time.h> 31 #include <linux/device.h> 32 #include <linux/delay.h> 33 #include <linux/init.h> 34 #include <linux/smp.h> 35 #include <linux/types.h> 36 #include <linux/profile.h> 37 #include <linux/timex.h> 38 #include <linux/notifier.h> 39 #include <linux/timekeeper_internal.h> 40 #include <linux/clockchips.h> 41 #include <linux/gfp.h> 42 #include <linux/kprobes.h> 43 #include <linux/uaccess.h> 44 #include <asm/facility.h> 45 #include <asm/delay.h> 46 #include <asm/div64.h> 47 #include <asm/vdso.h> 48 #include <asm/irq.h> 49 #include <asm/irq_regs.h> 50 #include <asm/vtimer.h> 51 #include <asm/stp.h> 52 #include <asm/cio.h> 53 #include "entry.h" 54 55 unsigned char tod_clock_base[16] __aligned(8) = { 56 /* Force to data section. */ 57 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 58 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 59 }; 60 EXPORT_SYMBOL_GPL(tod_clock_base); 61 62 u64 clock_comparator_max = -1ULL; 63 EXPORT_SYMBOL_GPL(clock_comparator_max); 64 65 static DEFINE_PER_CPU(struct clock_event_device, comparators); 66 67 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); 68 EXPORT_SYMBOL(s390_epoch_delta_notifier); 69 70 unsigned char ptff_function_mask[16]; 71 72 static unsigned long long lpar_offset; 73 static unsigned long long initial_leap_seconds; 74 static unsigned long long tod_steering_end; 75 static long long tod_steering_delta; 76 77 /* 78 * Get time offsets with PTFF 79 */ 80 void __init time_early_init(void) 81 { 82 struct ptff_qto qto; 83 struct ptff_qui qui; 84 85 /* Initialize TOD steering parameters */ 86 tod_steering_end = *(unsigned long long *) &tod_clock_base[1]; 87 vdso_data->ts_end = tod_steering_end; 88 89 if (!test_facility(28)) 90 return; 91 92 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); 93 94 /* get LPAR offset */ 95 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 96 lpar_offset = qto.tod_epoch_difference; 97 98 /* get initial leap seconds */ 99 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) 100 initial_leap_seconds = (unsigned long long) 101 ((long) qui.old_leap * 4096000000L); 102 } 103 104 /* 105 * Scheduler clock - returns current time in nanosec units. 106 */ 107 unsigned long long notrace sched_clock(void) 108 { 109 return tod_to_ns(get_tod_clock_monotonic()); 110 } 111 NOKPROBE_SYMBOL(sched_clock); 112 113 /* 114 * Monotonic_clock - returns # of nanoseconds passed since time_init() 115 */ 116 unsigned long long monotonic_clock(void) 117 { 118 return sched_clock(); 119 } 120 EXPORT_SYMBOL(monotonic_clock); 121 122 static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt) 123 { 124 unsigned long long high, low, rem, sec, nsec; 125 126 /* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */ 127 high = (*(unsigned long long *) clk) >> 4; 128 low = (*(unsigned long long *)&clk[7]) << 4; 129 /* Calculate seconds and nano-seconds */ 130 sec = high; 131 rem = do_div(sec, 1000000); 132 nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32; 133 134 xt->tv_sec = sec; 135 xt->tv_nsec = nsec; 136 } 137 138 void clock_comparator_work(void) 139 { 140 struct clock_event_device *cd; 141 142 S390_lowcore.clock_comparator = clock_comparator_max; 143 cd = this_cpu_ptr(&comparators); 144 cd->event_handler(cd); 145 } 146 147 static int s390_next_event(unsigned long delta, 148 struct clock_event_device *evt) 149 { 150 S390_lowcore.clock_comparator = get_tod_clock() + delta; 151 set_clock_comparator(S390_lowcore.clock_comparator); 152 return 0; 153 } 154 155 /* 156 * Set up lowcore and control register of the current cpu to 157 * enable TOD clock and clock comparator interrupts. 158 */ 159 void init_cpu_timer(void) 160 { 161 struct clock_event_device *cd; 162 int cpu; 163 164 S390_lowcore.clock_comparator = clock_comparator_max; 165 set_clock_comparator(S390_lowcore.clock_comparator); 166 167 cpu = smp_processor_id(); 168 cd = &per_cpu(comparators, cpu); 169 cd->name = "comparator"; 170 cd->features = CLOCK_EVT_FEAT_ONESHOT; 171 cd->mult = 16777; 172 cd->shift = 12; 173 cd->min_delta_ns = 1; 174 cd->min_delta_ticks = 1; 175 cd->max_delta_ns = LONG_MAX; 176 cd->max_delta_ticks = ULONG_MAX; 177 cd->rating = 400; 178 cd->cpumask = cpumask_of(cpu); 179 cd->set_next_event = s390_next_event; 180 181 clockevents_register_device(cd); 182 183 /* Enable clock comparator timer interrupt. */ 184 __ctl_set_bit(0,11); 185 186 /* Always allow the timing alert external interrupt. */ 187 __ctl_set_bit(0, 4); 188 } 189 190 static void clock_comparator_interrupt(struct ext_code ext_code, 191 unsigned int param32, 192 unsigned long param64) 193 { 194 inc_irq_stat(IRQEXT_CLK); 195 if (S390_lowcore.clock_comparator == clock_comparator_max) 196 set_clock_comparator(S390_lowcore.clock_comparator); 197 } 198 199 static void stp_timing_alert(struct stp_irq_parm *); 200 201 static void timing_alert_interrupt(struct ext_code ext_code, 202 unsigned int param32, unsigned long param64) 203 { 204 inc_irq_stat(IRQEXT_TLA); 205 if (param32 & 0x00038000) 206 stp_timing_alert((struct stp_irq_parm *) ¶m32); 207 } 208 209 static void stp_reset(void); 210 211 void read_persistent_clock64(struct timespec64 *ts) 212 { 213 unsigned char clk[STORE_CLOCK_EXT_SIZE]; 214 __u64 delta; 215 216 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 217 get_tod_clock_ext(clk); 218 *(__u64 *) &clk[1] -= delta; 219 if (*(__u64 *) &clk[1] > delta) 220 clk[0]--; 221 ext_to_timespec64(clk, ts); 222 } 223 224 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 225 struct timespec64 *boot_offset) 226 { 227 unsigned char clk[STORE_CLOCK_EXT_SIZE]; 228 struct timespec64 boot_time; 229 __u64 delta; 230 231 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 232 memcpy(clk, tod_clock_base, STORE_CLOCK_EXT_SIZE); 233 *(__u64 *)&clk[1] -= delta; 234 if (*(__u64 *)&clk[1] > delta) 235 clk[0]--; 236 ext_to_timespec64(clk, &boot_time); 237 238 read_persistent_clock64(wall_time); 239 *boot_offset = timespec64_sub(*wall_time, boot_time); 240 } 241 242 static u64 read_tod_clock(struct clocksource *cs) 243 { 244 unsigned long long now, adj; 245 246 preempt_disable(); /* protect from changes to steering parameters */ 247 now = get_tod_clock(); 248 adj = tod_steering_end - now; 249 if (unlikely((s64) adj >= 0)) 250 /* 251 * manually steer by 1 cycle every 2^16 cycles. This 252 * corresponds to shifting the tod delta by 15. 1s is 253 * therefore steered in ~9h. The adjust will decrease 254 * over time, until it finally reaches 0. 255 */ 256 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15); 257 preempt_enable(); 258 return now; 259 } 260 261 static struct clocksource clocksource_tod = { 262 .name = "tod", 263 .rating = 400, 264 .read = read_tod_clock, 265 .mask = -1ULL, 266 .mult = 1000, 267 .shift = 12, 268 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 269 }; 270 271 struct clocksource * __init clocksource_default_clock(void) 272 { 273 return &clocksource_tod; 274 } 275 276 void update_vsyscall(struct timekeeper *tk) 277 { 278 u64 nsecps; 279 280 if (tk->tkr_mono.clock != &clocksource_tod) 281 return; 282 283 /* Make userspace gettimeofday spin until we're done. */ 284 ++vdso_data->tb_update_count; 285 smp_wmb(); 286 vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last; 287 vdso_data->xtime_clock_sec = tk->xtime_sec; 288 vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec; 289 vdso_data->wtom_clock_sec = 290 tk->xtime_sec + tk->wall_to_monotonic.tv_sec; 291 vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec + 292 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift); 293 nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift; 294 while (vdso_data->wtom_clock_nsec >= nsecps) { 295 vdso_data->wtom_clock_nsec -= nsecps; 296 vdso_data->wtom_clock_sec++; 297 } 298 299 vdso_data->xtime_coarse_sec = tk->xtime_sec; 300 vdso_data->xtime_coarse_nsec = 301 (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 302 vdso_data->wtom_coarse_sec = 303 vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec; 304 vdso_data->wtom_coarse_nsec = 305 vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec; 306 while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) { 307 vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC; 308 vdso_data->wtom_coarse_sec++; 309 } 310 311 vdso_data->tk_mult = tk->tkr_mono.mult; 312 vdso_data->tk_shift = tk->tkr_mono.shift; 313 smp_wmb(); 314 ++vdso_data->tb_update_count; 315 } 316 317 extern struct timezone sys_tz; 318 319 void update_vsyscall_tz(void) 320 { 321 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 322 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 323 } 324 325 /* 326 * Initialize the TOD clock and the CPU timer of 327 * the boot cpu. 328 */ 329 void __init time_init(void) 330 { 331 /* Reset time synchronization interfaces. */ 332 stp_reset(); 333 334 /* request the clock comparator external interrupt */ 335 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) 336 panic("Couldn't request external interrupt 0x1004"); 337 338 /* request the timing alert external interrupt */ 339 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) 340 panic("Couldn't request external interrupt 0x1406"); 341 342 if (__clocksource_register(&clocksource_tod) != 0) 343 panic("Could not register TOD clock source"); 344 345 /* Enable TOD clock interrupts on the boot cpu. */ 346 init_cpu_timer(); 347 348 /* Enable cpu timer interrupts on the boot cpu. */ 349 vtime_init(); 350 } 351 352 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 353 static DEFINE_MUTEX(clock_sync_mutex); 354 static unsigned long clock_sync_flags; 355 356 #define CLOCK_SYNC_HAS_STP 0 357 #define CLOCK_SYNC_STP 1 358 359 /* 360 * The get_clock function for the physical clock. It will get the current 361 * TOD clock, subtract the LPAR offset and write the result to *clock. 362 * The function returns 0 if the clock is in sync with the external time 363 * source. If the clock mode is local it will return -EOPNOTSUPP and 364 * -EAGAIN if the clock is not in sync with the external reference. 365 */ 366 int get_phys_clock(unsigned long *clock) 367 { 368 atomic_t *sw_ptr; 369 unsigned int sw0, sw1; 370 371 sw_ptr = &get_cpu_var(clock_sync_word); 372 sw0 = atomic_read(sw_ptr); 373 *clock = get_tod_clock() - lpar_offset; 374 sw1 = atomic_read(sw_ptr); 375 put_cpu_var(clock_sync_word); 376 if (sw0 == sw1 && (sw0 & 0x80000000U)) 377 /* Success: time is in sync. */ 378 return 0; 379 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 380 return -EOPNOTSUPP; 381 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 382 return -EACCES; 383 return -EAGAIN; 384 } 385 EXPORT_SYMBOL(get_phys_clock); 386 387 /* 388 * Make get_phys_clock() return -EAGAIN. 389 */ 390 static void disable_sync_clock(void *dummy) 391 { 392 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 393 /* 394 * Clear the in-sync bit 2^31. All get_phys_clock calls will 395 * fail until the sync bit is turned back on. In addition 396 * increase the "sequence" counter to avoid the race of an 397 * stp event and the complete recovery against get_phys_clock. 398 */ 399 atomic_andnot(0x80000000, sw_ptr); 400 atomic_inc(sw_ptr); 401 } 402 403 /* 404 * Make get_phys_clock() return 0 again. 405 * Needs to be called from a context disabled for preemption. 406 */ 407 static void enable_sync_clock(void) 408 { 409 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 410 atomic_or(0x80000000, sw_ptr); 411 } 412 413 /* 414 * Function to check if the clock is in sync. 415 */ 416 static inline int check_sync_clock(void) 417 { 418 atomic_t *sw_ptr; 419 int rc; 420 421 sw_ptr = &get_cpu_var(clock_sync_word); 422 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 423 put_cpu_var(clock_sync_word); 424 return rc; 425 } 426 427 /* 428 * Apply clock delta to the global data structures. 429 * This is called once on the CPU that performed the clock sync. 430 */ 431 static void clock_sync_global(unsigned long long delta) 432 { 433 unsigned long now, adj; 434 struct ptff_qto qto; 435 436 /* Fixup the monotonic sched clock. */ 437 *(unsigned long long *) &tod_clock_base[1] += delta; 438 if (*(unsigned long long *) &tod_clock_base[1] < delta) 439 /* Epoch overflow */ 440 tod_clock_base[0]++; 441 /* Adjust TOD steering parameters. */ 442 vdso_data->tb_update_count++; 443 now = get_tod_clock(); 444 adj = tod_steering_end - now; 445 if (unlikely((s64) adj >= 0)) 446 /* Calculate how much of the old adjustment is left. */ 447 tod_steering_delta = (tod_steering_delta < 0) ? 448 -(adj >> 15) : (adj >> 15); 449 tod_steering_delta += delta; 450 if ((abs(tod_steering_delta) >> 48) != 0) 451 panic("TOD clock sync offset %lli is too large to drift\n", 452 tod_steering_delta); 453 tod_steering_end = now + (abs(tod_steering_delta) << 15); 454 vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1; 455 vdso_data->ts_end = tod_steering_end; 456 vdso_data->tb_update_count++; 457 /* Update LPAR offset. */ 458 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 459 lpar_offset = qto.tod_epoch_difference; 460 /* Call the TOD clock change notifier. */ 461 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); 462 } 463 464 /* 465 * Apply clock delta to the per-CPU data structures of this CPU. 466 * This is called for each online CPU after the call to clock_sync_global. 467 */ 468 static void clock_sync_local(unsigned long long delta) 469 { 470 /* Add the delta to the clock comparator. */ 471 if (S390_lowcore.clock_comparator != clock_comparator_max) { 472 S390_lowcore.clock_comparator += delta; 473 set_clock_comparator(S390_lowcore.clock_comparator); 474 } 475 /* Adjust the last_update_clock time-stamp. */ 476 S390_lowcore.last_update_clock += delta; 477 } 478 479 /* Single threaded workqueue used for stp sync events */ 480 static struct workqueue_struct *time_sync_wq; 481 482 static void __init time_init_wq(void) 483 { 484 if (time_sync_wq) 485 return; 486 time_sync_wq = create_singlethread_workqueue("timesync"); 487 } 488 489 struct clock_sync_data { 490 atomic_t cpus; 491 int in_sync; 492 unsigned long long clock_delta; 493 }; 494 495 /* 496 * Server Time Protocol (STP) code. 497 */ 498 static bool stp_online; 499 static struct stp_sstpi stp_info; 500 static void *stp_page; 501 502 static void stp_work_fn(struct work_struct *work); 503 static DEFINE_MUTEX(stp_work_mutex); 504 static DECLARE_WORK(stp_work, stp_work_fn); 505 static struct timer_list stp_timer; 506 507 static int __init early_parse_stp(char *p) 508 { 509 return kstrtobool(p, &stp_online); 510 } 511 early_param("stp", early_parse_stp); 512 513 /* 514 * Reset STP attachment. 515 */ 516 static void __init stp_reset(void) 517 { 518 int rc; 519 520 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 521 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 522 if (rc == 0) 523 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 524 else if (stp_online) { 525 pr_warn("The real or virtual hardware system does not provide an STP interface\n"); 526 free_page((unsigned long) stp_page); 527 stp_page = NULL; 528 stp_online = false; 529 } 530 } 531 532 static void stp_timeout(struct timer_list *unused) 533 { 534 queue_work(time_sync_wq, &stp_work); 535 } 536 537 static int __init stp_init(void) 538 { 539 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 540 return 0; 541 timer_setup(&stp_timer, stp_timeout, 0); 542 time_init_wq(); 543 if (!stp_online) 544 return 0; 545 queue_work(time_sync_wq, &stp_work); 546 return 0; 547 } 548 549 arch_initcall(stp_init); 550 551 /* 552 * STP timing alert. There are three causes: 553 * 1) timing status change 554 * 2) link availability change 555 * 3) time control parameter change 556 * In all three cases we are only interested in the clock source state. 557 * If a STP clock source is now available use it. 558 */ 559 static void stp_timing_alert(struct stp_irq_parm *intparm) 560 { 561 if (intparm->tsc || intparm->lac || intparm->tcpc) 562 queue_work(time_sync_wq, &stp_work); 563 } 564 565 /* 566 * STP sync check machine check. This is called when the timing state 567 * changes from the synchronized state to the unsynchronized state. 568 * After a STP sync check the clock is not in sync. The machine check 569 * is broadcasted to all cpus at the same time. 570 */ 571 int stp_sync_check(void) 572 { 573 disable_sync_clock(NULL); 574 return 1; 575 } 576 577 /* 578 * STP island condition machine check. This is called when an attached 579 * server attempts to communicate over an STP link and the servers 580 * have matching CTN ids and have a valid stratum-1 configuration 581 * but the configurations do not match. 582 */ 583 int stp_island_check(void) 584 { 585 disable_sync_clock(NULL); 586 return 1; 587 } 588 589 void stp_queue_work(void) 590 { 591 queue_work(time_sync_wq, &stp_work); 592 } 593 594 static int stp_sync_clock(void *data) 595 { 596 struct clock_sync_data *sync = data; 597 unsigned long long clock_delta; 598 static int first; 599 int rc; 600 601 enable_sync_clock(); 602 if (xchg(&first, 1) == 0) { 603 /* Wait until all other cpus entered the sync function. */ 604 while (atomic_read(&sync->cpus) != 0) 605 cpu_relax(); 606 rc = 0; 607 if (stp_info.todoff[0] || stp_info.todoff[1] || 608 stp_info.todoff[2] || stp_info.todoff[3] || 609 stp_info.tmd != 2) { 610 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, 611 &clock_delta); 612 if (rc == 0) { 613 sync->clock_delta = clock_delta; 614 clock_sync_global(clock_delta); 615 rc = chsc_sstpi(stp_page, &stp_info, 616 sizeof(struct stp_sstpi)); 617 if (rc == 0 && stp_info.tmd != 2) 618 rc = -EAGAIN; 619 } 620 } 621 sync->in_sync = rc ? -EAGAIN : 1; 622 xchg(&first, 0); 623 } else { 624 /* Slave */ 625 atomic_dec(&sync->cpus); 626 /* Wait for in_sync to be set. */ 627 while (READ_ONCE(sync->in_sync) == 0) 628 __udelay(1); 629 } 630 if (sync->in_sync != 1) 631 /* Didn't work. Clear per-cpu in sync bit again. */ 632 disable_sync_clock(NULL); 633 /* Apply clock delta to per-CPU fields of this CPU. */ 634 clock_sync_local(sync->clock_delta); 635 636 return 0; 637 } 638 639 /* 640 * STP work. Check for the STP state and take over the clock 641 * synchronization if the STP clock source is usable. 642 */ 643 static void stp_work_fn(struct work_struct *work) 644 { 645 struct clock_sync_data stp_sync; 646 int rc; 647 648 /* prevent multiple execution. */ 649 mutex_lock(&stp_work_mutex); 650 651 if (!stp_online) { 652 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 653 del_timer_sync(&stp_timer); 654 goto out_unlock; 655 } 656 657 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL); 658 if (rc) 659 goto out_unlock; 660 661 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 662 if (rc || stp_info.c == 0) 663 goto out_unlock; 664 665 /* Skip synchronization if the clock is already in sync. */ 666 if (check_sync_clock()) 667 goto out_unlock; 668 669 memset(&stp_sync, 0, sizeof(stp_sync)); 670 cpus_read_lock(); 671 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 672 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask); 673 cpus_read_unlock(); 674 675 if (!check_sync_clock()) 676 /* 677 * There is a usable clock but the synchonization failed. 678 * Retry after a second. 679 */ 680 mod_timer(&stp_timer, jiffies + HZ); 681 682 out_unlock: 683 mutex_unlock(&stp_work_mutex); 684 } 685 686 /* 687 * STP subsys sysfs interface functions 688 */ 689 static struct bus_type stp_subsys = { 690 .name = "stp", 691 .dev_name = "stp", 692 }; 693 694 static ssize_t stp_ctn_id_show(struct device *dev, 695 struct device_attribute *attr, 696 char *buf) 697 { 698 if (!stp_online) 699 return -ENODATA; 700 return sprintf(buf, "%016llx\n", 701 *(unsigned long long *) stp_info.ctnid); 702 } 703 704 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL); 705 706 static ssize_t stp_ctn_type_show(struct device *dev, 707 struct device_attribute *attr, 708 char *buf) 709 { 710 if (!stp_online) 711 return -ENODATA; 712 return sprintf(buf, "%i\n", stp_info.ctn); 713 } 714 715 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL); 716 717 static ssize_t stp_dst_offset_show(struct device *dev, 718 struct device_attribute *attr, 719 char *buf) 720 { 721 if (!stp_online || !(stp_info.vbits & 0x2000)) 722 return -ENODATA; 723 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); 724 } 725 726 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL); 727 728 static ssize_t stp_leap_seconds_show(struct device *dev, 729 struct device_attribute *attr, 730 char *buf) 731 { 732 if (!stp_online || !(stp_info.vbits & 0x8000)) 733 return -ENODATA; 734 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); 735 } 736 737 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL); 738 739 static ssize_t stp_stratum_show(struct device *dev, 740 struct device_attribute *attr, 741 char *buf) 742 { 743 if (!stp_online) 744 return -ENODATA; 745 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); 746 } 747 748 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL); 749 750 static ssize_t stp_time_offset_show(struct device *dev, 751 struct device_attribute *attr, 752 char *buf) 753 { 754 if (!stp_online || !(stp_info.vbits & 0x0800)) 755 return -ENODATA; 756 return sprintf(buf, "%i\n", (int) stp_info.tto); 757 } 758 759 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL); 760 761 static ssize_t stp_time_zone_offset_show(struct device *dev, 762 struct device_attribute *attr, 763 char *buf) 764 { 765 if (!stp_online || !(stp_info.vbits & 0x4000)) 766 return -ENODATA; 767 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); 768 } 769 770 static DEVICE_ATTR(time_zone_offset, 0400, 771 stp_time_zone_offset_show, NULL); 772 773 static ssize_t stp_timing_mode_show(struct device *dev, 774 struct device_attribute *attr, 775 char *buf) 776 { 777 if (!stp_online) 778 return -ENODATA; 779 return sprintf(buf, "%i\n", stp_info.tmd); 780 } 781 782 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL); 783 784 static ssize_t stp_timing_state_show(struct device *dev, 785 struct device_attribute *attr, 786 char *buf) 787 { 788 if (!stp_online) 789 return -ENODATA; 790 return sprintf(buf, "%i\n", stp_info.tst); 791 } 792 793 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL); 794 795 static ssize_t stp_online_show(struct device *dev, 796 struct device_attribute *attr, 797 char *buf) 798 { 799 return sprintf(buf, "%i\n", stp_online); 800 } 801 802 static ssize_t stp_online_store(struct device *dev, 803 struct device_attribute *attr, 804 const char *buf, size_t count) 805 { 806 unsigned int value; 807 808 value = simple_strtoul(buf, NULL, 0); 809 if (value != 0 && value != 1) 810 return -EINVAL; 811 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 812 return -EOPNOTSUPP; 813 mutex_lock(&clock_sync_mutex); 814 stp_online = value; 815 if (stp_online) 816 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 817 else 818 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 819 queue_work(time_sync_wq, &stp_work); 820 mutex_unlock(&clock_sync_mutex); 821 return count; 822 } 823 824 /* 825 * Can't use DEVICE_ATTR because the attribute should be named 826 * stp/online but dev_attr_online already exists in this file .. 827 */ 828 static struct device_attribute dev_attr_stp_online = { 829 .attr = { .name = "online", .mode = 0600 }, 830 .show = stp_online_show, 831 .store = stp_online_store, 832 }; 833 834 static struct device_attribute *stp_attributes[] = { 835 &dev_attr_ctn_id, 836 &dev_attr_ctn_type, 837 &dev_attr_dst_offset, 838 &dev_attr_leap_seconds, 839 &dev_attr_stp_online, 840 &dev_attr_stratum, 841 &dev_attr_time_offset, 842 &dev_attr_time_zone_offset, 843 &dev_attr_timing_mode, 844 &dev_attr_timing_state, 845 NULL 846 }; 847 848 static int __init stp_init_sysfs(void) 849 { 850 struct device_attribute **attr; 851 int rc; 852 853 rc = subsys_system_register(&stp_subsys, NULL); 854 if (rc) 855 goto out; 856 for (attr = stp_attributes; *attr; attr++) { 857 rc = device_create_file(stp_subsys.dev_root, *attr); 858 if (rc) 859 goto out_unreg; 860 } 861 return 0; 862 out_unreg: 863 for (; attr >= stp_attributes; attr--) 864 device_remove_file(stp_subsys.dev_root, *attr); 865 bus_unregister(&stp_subsys); 866 out: 867 return rc; 868 } 869 870 device_initcall(stp_init_sysfs); 871