1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Time of day based timer functions. 4 * 5 * S390 version 6 * Copyright IBM Corp. 1999, 2008 7 * Author(s): Hartmut Penner (hp@de.ibm.com), 8 * Martin Schwidefsky (schwidefsky@de.ibm.com), 9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 10 * 11 * Derived from "arch/i386/kernel/time.c" 12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 13 */ 14 15 #define KMSG_COMPONENT "time" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/kernel_stat.h> 19 #include <linux/errno.h> 20 #include <linux/export.h> 21 #include <linux/sched.h> 22 #include <linux/sched/clock.h> 23 #include <linux/kernel.h> 24 #include <linux/param.h> 25 #include <linux/string.h> 26 #include <linux/mm.h> 27 #include <linux/interrupt.h> 28 #include <linux/cpu.h> 29 #include <linux/stop_machine.h> 30 #include <linux/time.h> 31 #include <linux/device.h> 32 #include <linux/delay.h> 33 #include <linux/init.h> 34 #include <linux/smp.h> 35 #include <linux/types.h> 36 #include <linux/profile.h> 37 #include <linux/timex.h> 38 #include <linux/notifier.h> 39 #include <linux/clockchips.h> 40 #include <linux/gfp.h> 41 #include <linux/kprobes.h> 42 #include <linux/uaccess.h> 43 #include <vdso/vsyscall.h> 44 #include <vdso/clocksource.h> 45 #include <vdso/helpers.h> 46 #include <asm/facility.h> 47 #include <asm/delay.h> 48 #include <asm/div64.h> 49 #include <asm/vdso.h> 50 #include <asm/irq.h> 51 #include <asm/irq_regs.h> 52 #include <asm/vtimer.h> 53 #include <asm/stp.h> 54 #include <asm/cio.h> 55 #include "entry.h" 56 57 union tod_clock __bootdata_preserved(tod_clock_base); 58 EXPORT_SYMBOL_GPL(tod_clock_base); 59 60 u64 __bootdata_preserved(clock_comparator_max); 61 EXPORT_SYMBOL_GPL(clock_comparator_max); 62 63 static DEFINE_PER_CPU(struct clock_event_device, comparators); 64 65 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); 66 EXPORT_SYMBOL(s390_epoch_delta_notifier); 67 68 unsigned char ptff_function_mask[16]; 69 70 static unsigned long lpar_offset; 71 static unsigned long initial_leap_seconds; 72 73 /* 74 * Get time offsets with PTFF 75 */ 76 void __init time_early_init(void) 77 { 78 struct ptff_qto qto; 79 struct ptff_qui qui; 80 81 vdso_k_time_data->arch_data.tod_delta = tod_clock_base.tod; 82 83 if (!test_facility(28)) 84 return; 85 86 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); 87 88 /* get LPAR offset */ 89 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 90 lpar_offset = qto.tod_epoch_difference; 91 92 /* get initial leap seconds */ 93 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) 94 initial_leap_seconds = (unsigned long) 95 ((long) qui.old_leap * 4096000000L); 96 } 97 98 unsigned long long noinstr sched_clock_noinstr(void) 99 { 100 return tod_to_ns(__get_tod_clock_monotonic()); 101 } 102 103 /* 104 * Scheduler clock - returns current time in nanosec units. 105 */ 106 unsigned long long notrace sched_clock(void) 107 { 108 return tod_to_ns(get_tod_clock_monotonic()); 109 } 110 NOKPROBE_SYMBOL(sched_clock); 111 112 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt) 113 { 114 unsigned long rem, sec, nsec; 115 116 sec = clk->us; 117 rem = do_div(sec, 1000000); 118 nsec = ((clk->sus + (rem << 12)) * 125) >> 9; 119 xt->tv_sec = sec; 120 xt->tv_nsec = nsec; 121 } 122 123 void clock_comparator_work(void) 124 { 125 struct clock_event_device *cd; 126 127 get_lowcore()->clock_comparator = clock_comparator_max; 128 cd = this_cpu_ptr(&comparators); 129 cd->event_handler(cd); 130 } 131 132 static int s390_next_event(unsigned long delta, 133 struct clock_event_device *evt) 134 { 135 get_lowcore()->clock_comparator = get_tod_clock() + delta; 136 set_clock_comparator(get_lowcore()->clock_comparator); 137 return 0; 138 } 139 140 /* 141 * Set up lowcore and control register of the current cpu to 142 * enable TOD clock and clock comparator interrupts. 143 */ 144 void init_cpu_timer(void) 145 { 146 struct clock_event_device *cd; 147 int cpu; 148 149 get_lowcore()->clock_comparator = clock_comparator_max; 150 set_clock_comparator(get_lowcore()->clock_comparator); 151 152 cpu = smp_processor_id(); 153 cd = &per_cpu(comparators, cpu); 154 cd->name = "comparator"; 155 cd->features = CLOCK_EVT_FEAT_ONESHOT; 156 cd->mult = 16777; 157 cd->shift = 12; 158 cd->min_delta_ns = 1; 159 cd->min_delta_ticks = 1; 160 cd->max_delta_ns = LONG_MAX; 161 cd->max_delta_ticks = ULONG_MAX; 162 cd->rating = 400; 163 cd->cpumask = cpumask_of(cpu); 164 cd->set_next_event = s390_next_event; 165 166 clockevents_register_device(cd); 167 168 /* Enable clock comparator timer interrupt. */ 169 local_ctl_set_bit(0, CR0_CLOCK_COMPARATOR_SUBMASK_BIT); 170 171 /* Always allow the timing alert external interrupt. */ 172 local_ctl_set_bit(0, CR0_ETR_SUBMASK_BIT); 173 } 174 175 static void clock_comparator_interrupt(struct ext_code ext_code, 176 unsigned int param32, 177 unsigned long param64) 178 { 179 inc_irq_stat(IRQEXT_CLK); 180 if (get_lowcore()->clock_comparator == clock_comparator_max) 181 set_clock_comparator(get_lowcore()->clock_comparator); 182 } 183 184 static void stp_timing_alert(struct stp_irq_parm *); 185 186 static void timing_alert_interrupt(struct ext_code ext_code, 187 unsigned int param32, unsigned long param64) 188 { 189 inc_irq_stat(IRQEXT_TLA); 190 if (param32 & 0x00038000) 191 stp_timing_alert((struct stp_irq_parm *) ¶m32); 192 } 193 194 static void stp_reset(void); 195 196 void read_persistent_clock64(struct timespec64 *ts) 197 { 198 union tod_clock clk; 199 u64 delta; 200 201 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 202 store_tod_clock_ext(&clk); 203 clk.eitod -= delta; 204 ext_to_timespec64(&clk, ts); 205 } 206 207 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 208 struct timespec64 *boot_offset) 209 { 210 struct timespec64 boot_time; 211 union tod_clock clk; 212 u64 delta; 213 214 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 215 clk = tod_clock_base; 216 clk.eitod -= delta; 217 ext_to_timespec64(&clk, &boot_time); 218 219 read_persistent_clock64(wall_time); 220 *boot_offset = timespec64_sub(*wall_time, boot_time); 221 } 222 223 static u64 read_tod_clock(struct clocksource *cs) 224 { 225 return get_tod_clock_monotonic(); 226 } 227 228 static struct clocksource clocksource_tod = { 229 .name = "tod", 230 .rating = 400, 231 .read = read_tod_clock, 232 .mask = CLOCKSOURCE_MASK(64), 233 .mult = 4096000, 234 .shift = 24, 235 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 236 .vdso_clock_mode = VDSO_CLOCKMODE_TOD, 237 .id = CSID_S390_TOD, 238 }; 239 240 struct clocksource * __init clocksource_default_clock(void) 241 { 242 return &clocksource_tod; 243 } 244 245 /* 246 * Initialize the TOD clock and the CPU timer of 247 * the boot cpu. 248 */ 249 void __init time_init(void) 250 { 251 /* Reset time synchronization interfaces. */ 252 stp_reset(); 253 254 /* request the clock comparator external interrupt */ 255 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) 256 panic("Couldn't request external interrupt 0x1004"); 257 258 /* request the timing alert external interrupt */ 259 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) 260 panic("Couldn't request external interrupt 0x1406"); 261 262 if (__clocksource_register(&clocksource_tod) != 0) 263 panic("Could not register TOD clock source"); 264 265 /* Enable TOD clock interrupts on the boot cpu. */ 266 init_cpu_timer(); 267 268 /* Enable cpu timer interrupts on the boot cpu. */ 269 vtime_init(); 270 } 271 272 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 273 static DEFINE_MUTEX(stp_mutex); 274 static unsigned long clock_sync_flags; 275 276 #define CLOCK_SYNC_HAS_STP 0 277 #define CLOCK_SYNC_STP 1 278 #define CLOCK_SYNC_STPINFO_VALID 2 279 280 /* 281 * The get_clock function for the physical clock. It will get the current 282 * TOD clock, subtract the LPAR offset and write the result to *clock. 283 * The function returns 0 if the clock is in sync with the external time 284 * source. If the clock mode is local it will return -EOPNOTSUPP and 285 * -EAGAIN if the clock is not in sync with the external reference. 286 */ 287 int get_phys_clock(unsigned long *clock) 288 { 289 atomic_t *sw_ptr; 290 unsigned int sw0, sw1; 291 292 sw_ptr = &get_cpu_var(clock_sync_word); 293 sw0 = atomic_read(sw_ptr); 294 *clock = get_tod_clock() - lpar_offset; 295 sw1 = atomic_read(sw_ptr); 296 put_cpu_var(clock_sync_word); 297 if (sw0 == sw1 && (sw0 & 0x80000000U)) 298 /* Success: time is in sync. */ 299 return 0; 300 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 301 return -EOPNOTSUPP; 302 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 303 return -EACCES; 304 return -EAGAIN; 305 } 306 EXPORT_SYMBOL(get_phys_clock); 307 308 /* 309 * Make get_phys_clock() return -EAGAIN. 310 */ 311 static void disable_sync_clock(void *dummy) 312 { 313 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 314 /* 315 * Clear the in-sync bit 2^31. All get_phys_clock calls will 316 * fail until the sync bit is turned back on. In addition 317 * increase the "sequence" counter to avoid the race of an 318 * stp event and the complete recovery against get_phys_clock. 319 */ 320 atomic_andnot(0x80000000, sw_ptr); 321 atomic_inc(sw_ptr); 322 } 323 324 /* 325 * Make get_phys_clock() return 0 again. 326 * Needs to be called from a context disabled for preemption. 327 */ 328 static void enable_sync_clock(void) 329 { 330 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 331 atomic_or(0x80000000, sw_ptr); 332 } 333 334 /* 335 * Function to check if the clock is in sync. 336 */ 337 static inline int check_sync_clock(void) 338 { 339 atomic_t *sw_ptr; 340 int rc; 341 342 sw_ptr = &get_cpu_var(clock_sync_word); 343 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 344 put_cpu_var(clock_sync_word); 345 return rc; 346 } 347 348 /* 349 * Apply clock delta to the global data structures. 350 * This is called once on the CPU that performed the clock sync. 351 */ 352 static void clock_sync_global(long delta) 353 { 354 struct ptff_qto qto; 355 356 /* Fixup the monotonic sched clock. */ 357 tod_clock_base.eitod += delta; 358 vdso_k_time_data->arch_data.tod_delta = tod_clock_base.tod; 359 /* Update LPAR offset. */ 360 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 361 lpar_offset = qto.tod_epoch_difference; 362 /* Call the TOD clock change notifier. */ 363 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); 364 } 365 366 /* 367 * Apply clock delta to the per-CPU data structures of this CPU. 368 * This is called for each online CPU after the call to clock_sync_global. 369 */ 370 static void clock_sync_local(long delta) 371 { 372 /* Add the delta to the clock comparator. */ 373 if (get_lowcore()->clock_comparator != clock_comparator_max) { 374 get_lowcore()->clock_comparator += delta; 375 set_clock_comparator(get_lowcore()->clock_comparator); 376 } 377 /* Adjust the last_update_clock time-stamp. */ 378 get_lowcore()->last_update_clock += delta; 379 } 380 381 /* Single threaded workqueue used for stp sync events */ 382 static struct workqueue_struct *time_sync_wq; 383 384 static void __init time_init_wq(void) 385 { 386 if (time_sync_wq) 387 return; 388 time_sync_wq = create_singlethread_workqueue("timesync"); 389 } 390 391 struct clock_sync_data { 392 atomic_t cpus; 393 int in_sync; 394 long clock_delta; 395 }; 396 397 /* 398 * Server Time Protocol (STP) code. 399 */ 400 static bool stp_online = true; 401 static struct stp_sstpi stp_info; 402 static void *stp_page; 403 404 static void stp_work_fn(struct work_struct *work); 405 static DECLARE_WORK(stp_work, stp_work_fn); 406 static struct timer_list stp_timer; 407 408 static int __init early_parse_stp(char *p) 409 { 410 return kstrtobool(p, &stp_online); 411 } 412 early_param("stp", early_parse_stp); 413 414 /* 415 * Reset STP attachment. 416 */ 417 static void __init stp_reset(void) 418 { 419 int rc; 420 421 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 422 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 423 if (rc == 0) 424 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 425 else if (stp_online) { 426 free_page((unsigned long) stp_page); 427 stp_page = NULL; 428 stp_online = false; 429 } 430 } 431 432 bool stp_enabled(void) 433 { 434 return test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags) && stp_online; 435 } 436 EXPORT_SYMBOL(stp_enabled); 437 438 static void stp_timeout(struct timer_list *unused) 439 { 440 queue_work(time_sync_wq, &stp_work); 441 } 442 443 static int __init stp_init(void) 444 { 445 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 446 return 0; 447 timer_setup(&stp_timer, stp_timeout, 0); 448 time_init_wq(); 449 if (!stp_online) 450 return 0; 451 queue_work(time_sync_wq, &stp_work); 452 return 0; 453 } 454 455 arch_initcall(stp_init); 456 457 /* 458 * STP timing alert. There are three causes: 459 * 1) timing status change 460 * 2) link availability change 461 * 3) time control parameter change 462 * In all three cases we are only interested in the clock source state. 463 * If a STP clock source is now available use it. 464 */ 465 static void stp_timing_alert(struct stp_irq_parm *intparm) 466 { 467 if (intparm->tsc || intparm->lac || intparm->tcpc) 468 queue_work(time_sync_wq, &stp_work); 469 } 470 471 /* 472 * STP sync check machine check. This is called when the timing state 473 * changes from the synchronized state to the unsynchronized state. 474 * After a STP sync check the clock is not in sync. The machine check 475 * is broadcasted to all cpus at the same time. 476 */ 477 int stp_sync_check(void) 478 { 479 disable_sync_clock(NULL); 480 return 1; 481 } 482 483 /* 484 * STP island condition machine check. This is called when an attached 485 * server attempts to communicate over an STP link and the servers 486 * have matching CTN ids and have a valid stratum-1 configuration 487 * but the configurations do not match. 488 */ 489 int stp_island_check(void) 490 { 491 disable_sync_clock(NULL); 492 return 1; 493 } 494 495 void stp_queue_work(void) 496 { 497 queue_work(time_sync_wq, &stp_work); 498 } 499 500 static int __store_stpinfo(void) 501 { 502 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 503 504 if (rc) 505 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 506 else 507 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 508 return rc; 509 } 510 511 static int stpinfo_valid(void) 512 { 513 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 514 } 515 516 static int stp_sync_clock(void *data) 517 { 518 struct clock_sync_data *sync = data; 519 long clock_delta, flags; 520 static int first; 521 int rc; 522 523 enable_sync_clock(); 524 if (xchg(&first, 1) == 0) { 525 /* Wait until all other cpus entered the sync function. */ 526 while (atomic_read(&sync->cpus) != 0) 527 cpu_relax(); 528 rc = 0; 529 if (stp_info.todoff || stp_info.tmd != 2) { 530 flags = vdso_update_begin(); 531 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, 532 &clock_delta); 533 if (rc == 0) { 534 sync->clock_delta = clock_delta; 535 clock_sync_global(clock_delta); 536 rc = __store_stpinfo(); 537 if (rc == 0 && stp_info.tmd != 2) 538 rc = -EAGAIN; 539 } 540 vdso_update_end(flags); 541 } 542 sync->in_sync = rc ? -EAGAIN : 1; 543 xchg(&first, 0); 544 } else { 545 /* Slave */ 546 atomic_dec(&sync->cpus); 547 /* Wait for in_sync to be set. */ 548 while (READ_ONCE(sync->in_sync) == 0) 549 ; 550 } 551 if (sync->in_sync != 1) 552 /* Didn't work. Clear per-cpu in sync bit again. */ 553 disable_sync_clock(NULL); 554 /* Apply clock delta to per-CPU fields of this CPU. */ 555 clock_sync_local(sync->clock_delta); 556 557 return 0; 558 } 559 560 /* 561 * STP work. Check for the STP state and take over the clock 562 * synchronization if the STP clock source is usable. 563 */ 564 static void stp_work_fn(struct work_struct *work) 565 { 566 struct clock_sync_data stp_sync; 567 int rc; 568 569 /* prevent multiple execution. */ 570 mutex_lock(&stp_mutex); 571 572 if (!stp_online) { 573 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 574 timer_delete_sync(&stp_timer); 575 goto out_unlock; 576 } 577 578 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL); 579 if (rc) 580 goto out_unlock; 581 582 rc = __store_stpinfo(); 583 if (rc || stp_info.c == 0) 584 goto out_unlock; 585 586 /* Skip synchronization if the clock is already in sync. */ 587 if (!check_sync_clock()) { 588 memset(&stp_sync, 0, sizeof(stp_sync)); 589 cpus_read_lock(); 590 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 591 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask); 592 cpus_read_unlock(); 593 } 594 595 if (!check_sync_clock()) 596 /* 597 * There is a usable clock but the synchronization failed. 598 * Retry after a second. 599 */ 600 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC)); 601 602 out_unlock: 603 mutex_unlock(&stp_mutex); 604 } 605 606 /* 607 * STP subsys sysfs interface functions 608 */ 609 static const struct bus_type stp_subsys = { 610 .name = "stp", 611 .dev_name = "stp", 612 }; 613 614 static ssize_t ctn_id_show(struct device *dev, 615 struct device_attribute *attr, 616 char *buf) 617 { 618 ssize_t ret = -ENODATA; 619 620 mutex_lock(&stp_mutex); 621 if (stpinfo_valid()) 622 ret = sysfs_emit(buf, "%016lx\n", 623 *(unsigned long *)stp_info.ctnid); 624 mutex_unlock(&stp_mutex); 625 return ret; 626 } 627 628 static DEVICE_ATTR_RO(ctn_id); 629 630 static ssize_t ctn_type_show(struct device *dev, 631 struct device_attribute *attr, 632 char *buf) 633 { 634 ssize_t ret = -ENODATA; 635 636 mutex_lock(&stp_mutex); 637 if (stpinfo_valid()) 638 ret = sysfs_emit(buf, "%i\n", stp_info.ctn); 639 mutex_unlock(&stp_mutex); 640 return ret; 641 } 642 643 static DEVICE_ATTR_RO(ctn_type); 644 645 static ssize_t dst_offset_show(struct device *dev, 646 struct device_attribute *attr, 647 char *buf) 648 { 649 ssize_t ret = -ENODATA; 650 651 mutex_lock(&stp_mutex); 652 if (stpinfo_valid() && (stp_info.vbits & 0x2000)) 653 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.dsto); 654 mutex_unlock(&stp_mutex); 655 return ret; 656 } 657 658 static DEVICE_ATTR_RO(dst_offset); 659 660 static ssize_t leap_seconds_show(struct device *dev, 661 struct device_attribute *attr, 662 char *buf) 663 { 664 ssize_t ret = -ENODATA; 665 666 mutex_lock(&stp_mutex); 667 if (stpinfo_valid() && (stp_info.vbits & 0x8000)) 668 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.leaps); 669 mutex_unlock(&stp_mutex); 670 return ret; 671 } 672 673 static DEVICE_ATTR_RO(leap_seconds); 674 675 static ssize_t leap_seconds_scheduled_show(struct device *dev, 676 struct device_attribute *attr, 677 char *buf) 678 { 679 struct stp_stzi stzi; 680 ssize_t ret; 681 682 mutex_lock(&stp_mutex); 683 if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) { 684 mutex_unlock(&stp_mutex); 685 return -ENODATA; 686 } 687 688 ret = chsc_stzi(stp_page, &stzi, sizeof(stzi)); 689 mutex_unlock(&stp_mutex); 690 if (ret < 0) 691 return ret; 692 693 if (!stzi.lsoib.p) 694 return sysfs_emit(buf, "0,0\n"); 695 696 return sysfs_emit(buf, "%lu,%d\n", 697 tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC, 698 stzi.lsoib.nlso - stzi.lsoib.also); 699 } 700 701 static DEVICE_ATTR_RO(leap_seconds_scheduled); 702 703 static ssize_t stratum_show(struct device *dev, 704 struct device_attribute *attr, 705 char *buf) 706 { 707 ssize_t ret = -ENODATA; 708 709 mutex_lock(&stp_mutex); 710 if (stpinfo_valid()) 711 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.stratum); 712 mutex_unlock(&stp_mutex); 713 return ret; 714 } 715 716 static DEVICE_ATTR_RO(stratum); 717 718 static ssize_t time_offset_show(struct device *dev, 719 struct device_attribute *attr, 720 char *buf) 721 { 722 ssize_t ret = -ENODATA; 723 724 mutex_lock(&stp_mutex); 725 if (stpinfo_valid() && (stp_info.vbits & 0x0800)) 726 ret = sysfs_emit(buf, "%i\n", (int)stp_info.tto); 727 mutex_unlock(&stp_mutex); 728 return ret; 729 } 730 731 static DEVICE_ATTR_RO(time_offset); 732 733 static ssize_t time_zone_offset_show(struct device *dev, 734 struct device_attribute *attr, 735 char *buf) 736 { 737 ssize_t ret = -ENODATA; 738 739 mutex_lock(&stp_mutex); 740 if (stpinfo_valid() && (stp_info.vbits & 0x4000)) 741 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.tzo); 742 mutex_unlock(&stp_mutex); 743 return ret; 744 } 745 746 static DEVICE_ATTR_RO(time_zone_offset); 747 748 static ssize_t timing_mode_show(struct device *dev, 749 struct device_attribute *attr, 750 char *buf) 751 { 752 ssize_t ret = -ENODATA; 753 754 mutex_lock(&stp_mutex); 755 if (stpinfo_valid()) 756 ret = sysfs_emit(buf, "%i\n", stp_info.tmd); 757 mutex_unlock(&stp_mutex); 758 return ret; 759 } 760 761 static DEVICE_ATTR_RO(timing_mode); 762 763 static ssize_t timing_state_show(struct device *dev, 764 struct device_attribute *attr, 765 char *buf) 766 { 767 ssize_t ret = -ENODATA; 768 769 mutex_lock(&stp_mutex); 770 if (stpinfo_valid()) 771 ret = sysfs_emit(buf, "%i\n", stp_info.tst); 772 mutex_unlock(&stp_mutex); 773 return ret; 774 } 775 776 static DEVICE_ATTR_RO(timing_state); 777 778 static ssize_t online_show(struct device *dev, 779 struct device_attribute *attr, 780 char *buf) 781 { 782 return sysfs_emit(buf, "%i\n", stp_online); 783 } 784 785 static ssize_t online_store(struct device *dev, 786 struct device_attribute *attr, 787 const char *buf, size_t count) 788 { 789 unsigned int value; 790 791 value = simple_strtoul(buf, NULL, 0); 792 if (value != 0 && value != 1) 793 return -EINVAL; 794 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 795 return -EOPNOTSUPP; 796 mutex_lock(&stp_mutex); 797 stp_online = value; 798 if (stp_online) 799 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 800 else 801 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 802 queue_work(time_sync_wq, &stp_work); 803 mutex_unlock(&stp_mutex); 804 return count; 805 } 806 807 /* 808 * Can't use DEVICE_ATTR because the attribute should be named 809 * stp/online but dev_attr_online already exists in this file .. 810 */ 811 static DEVICE_ATTR_RW(online); 812 813 static struct attribute *stp_dev_attrs[] = { 814 &dev_attr_ctn_id.attr, 815 &dev_attr_ctn_type.attr, 816 &dev_attr_dst_offset.attr, 817 &dev_attr_leap_seconds.attr, 818 &dev_attr_online.attr, 819 &dev_attr_leap_seconds_scheduled.attr, 820 &dev_attr_stratum.attr, 821 &dev_attr_time_offset.attr, 822 &dev_attr_time_zone_offset.attr, 823 &dev_attr_timing_mode.attr, 824 &dev_attr_timing_state.attr, 825 NULL 826 }; 827 ATTRIBUTE_GROUPS(stp_dev); 828 829 static int __init stp_init_sysfs(void) 830 { 831 return subsys_system_register(&stp_subsys, stp_dev_groups); 832 } 833 834 device_initcall(stp_init_sysfs); 835