1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Time of day based timer functions. 4 * 5 * S390 version 6 * Copyright IBM Corp. 1999, 2008 7 * Author(s): Hartmut Penner (hp@de.ibm.com), 8 * Martin Schwidefsky (schwidefsky@de.ibm.com), 9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 10 * 11 * Derived from "arch/i386/kernel/time.c" 12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 13 */ 14 15 #define KMSG_COMPONENT "time" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/kernel_stat.h> 19 #include <linux/errno.h> 20 #include <linux/export.h> 21 #include <linux/sched.h> 22 #include <linux/sched/clock.h> 23 #include <linux/kernel.h> 24 #include <linux/param.h> 25 #include <linux/string.h> 26 #include <linux/mm.h> 27 #include <linux/interrupt.h> 28 #include <linux/cpu.h> 29 #include <linux/stop_machine.h> 30 #include <linux/time.h> 31 #include <linux/device.h> 32 #include <linux/delay.h> 33 #include <linux/init.h> 34 #include <linux/smp.h> 35 #include <linux/types.h> 36 #include <linux/profile.h> 37 #include <linux/timex.h> 38 #include <linux/notifier.h> 39 #include <linux/timekeeper_internal.h> 40 #include <linux/clockchips.h> 41 #include <linux/gfp.h> 42 #include <linux/kprobes.h> 43 #include <linux/uaccess.h> 44 #include <vdso/vsyscall.h> 45 #include <vdso/clocksource.h> 46 #include <vdso/helpers.h> 47 #include <asm/facility.h> 48 #include <asm/delay.h> 49 #include <asm/div64.h> 50 #include <asm/vdso.h> 51 #include <asm/irq.h> 52 #include <asm/irq_regs.h> 53 #include <asm/vtimer.h> 54 #include <asm/stp.h> 55 #include <asm/cio.h> 56 #include "entry.h" 57 58 union tod_clock tod_clock_base __section(".data"); 59 EXPORT_SYMBOL_GPL(tod_clock_base); 60 61 u64 clock_comparator_max = -1ULL; 62 EXPORT_SYMBOL_GPL(clock_comparator_max); 63 64 static DEFINE_PER_CPU(struct clock_event_device, comparators); 65 66 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); 67 EXPORT_SYMBOL(s390_epoch_delta_notifier); 68 69 unsigned char ptff_function_mask[16]; 70 71 static unsigned long lpar_offset; 72 static unsigned long initial_leap_seconds; 73 static unsigned long tod_steering_end; 74 static long tod_steering_delta; 75 76 /* 77 * Get time offsets with PTFF 78 */ 79 void __init time_early_init(void) 80 { 81 struct ptff_qto qto; 82 struct ptff_qui qui; 83 int cs; 84 85 /* Initialize TOD steering parameters */ 86 tod_steering_end = tod_clock_base.tod; 87 for (cs = 0; cs < CS_BASES; cs++) 88 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end; 89 90 if (!test_facility(28)) 91 return; 92 93 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); 94 95 /* get LPAR offset */ 96 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 97 lpar_offset = qto.tod_epoch_difference; 98 99 /* get initial leap seconds */ 100 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) 101 initial_leap_seconds = (unsigned long) 102 ((long) qui.old_leap * 4096000000L); 103 } 104 105 /* 106 * Scheduler clock - returns current time in nanosec units. 107 */ 108 unsigned long long notrace sched_clock(void) 109 { 110 return tod_to_ns(get_tod_clock_monotonic()); 111 } 112 NOKPROBE_SYMBOL(sched_clock); 113 114 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt) 115 { 116 unsigned long rem, sec, nsec; 117 118 sec = clk->us; 119 rem = do_div(sec, 1000000); 120 nsec = ((clk->sus + (rem << 12)) * 125) >> 9; 121 xt->tv_sec = sec; 122 xt->tv_nsec = nsec; 123 } 124 125 void clock_comparator_work(void) 126 { 127 struct clock_event_device *cd; 128 129 S390_lowcore.clock_comparator = clock_comparator_max; 130 cd = this_cpu_ptr(&comparators); 131 cd->event_handler(cd); 132 } 133 134 static int s390_next_event(unsigned long delta, 135 struct clock_event_device *evt) 136 { 137 S390_lowcore.clock_comparator = get_tod_clock() + delta; 138 set_clock_comparator(S390_lowcore.clock_comparator); 139 return 0; 140 } 141 142 /* 143 * Set up lowcore and control register of the current cpu to 144 * enable TOD clock and clock comparator interrupts. 145 */ 146 void init_cpu_timer(void) 147 { 148 struct clock_event_device *cd; 149 int cpu; 150 151 S390_lowcore.clock_comparator = clock_comparator_max; 152 set_clock_comparator(S390_lowcore.clock_comparator); 153 154 cpu = smp_processor_id(); 155 cd = &per_cpu(comparators, cpu); 156 cd->name = "comparator"; 157 cd->features = CLOCK_EVT_FEAT_ONESHOT; 158 cd->mult = 16777; 159 cd->shift = 12; 160 cd->min_delta_ns = 1; 161 cd->min_delta_ticks = 1; 162 cd->max_delta_ns = LONG_MAX; 163 cd->max_delta_ticks = ULONG_MAX; 164 cd->rating = 400; 165 cd->cpumask = cpumask_of(cpu); 166 cd->set_next_event = s390_next_event; 167 168 clockevents_register_device(cd); 169 170 /* Enable clock comparator timer interrupt. */ 171 __ctl_set_bit(0,11); 172 173 /* Always allow the timing alert external interrupt. */ 174 __ctl_set_bit(0, 4); 175 } 176 177 static void clock_comparator_interrupt(struct ext_code ext_code, 178 unsigned int param32, 179 unsigned long param64) 180 { 181 inc_irq_stat(IRQEXT_CLK); 182 if (S390_lowcore.clock_comparator == clock_comparator_max) 183 set_clock_comparator(S390_lowcore.clock_comparator); 184 } 185 186 static void stp_timing_alert(struct stp_irq_parm *); 187 188 static void timing_alert_interrupt(struct ext_code ext_code, 189 unsigned int param32, unsigned long param64) 190 { 191 inc_irq_stat(IRQEXT_TLA); 192 if (param32 & 0x00038000) 193 stp_timing_alert((struct stp_irq_parm *) ¶m32); 194 } 195 196 static void stp_reset(void); 197 198 void read_persistent_clock64(struct timespec64 *ts) 199 { 200 union tod_clock clk; 201 u64 delta; 202 203 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 204 store_tod_clock_ext(&clk); 205 clk.eitod -= delta; 206 ext_to_timespec64(&clk, ts); 207 } 208 209 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 210 struct timespec64 *boot_offset) 211 { 212 struct timespec64 boot_time; 213 union tod_clock clk; 214 u64 delta; 215 216 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 217 clk = tod_clock_base; 218 clk.eitod -= delta; 219 ext_to_timespec64(&clk, &boot_time); 220 221 read_persistent_clock64(wall_time); 222 *boot_offset = timespec64_sub(*wall_time, boot_time); 223 } 224 225 static u64 read_tod_clock(struct clocksource *cs) 226 { 227 unsigned long now, adj; 228 229 preempt_disable(); /* protect from changes to steering parameters */ 230 now = get_tod_clock(); 231 adj = tod_steering_end - now; 232 if (unlikely((s64) adj > 0)) 233 /* 234 * manually steer by 1 cycle every 2^16 cycles. This 235 * corresponds to shifting the tod delta by 15. 1s is 236 * therefore steered in ~9h. The adjust will decrease 237 * over time, until it finally reaches 0. 238 */ 239 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15); 240 preempt_enable(); 241 return now; 242 } 243 244 static struct clocksource clocksource_tod = { 245 .name = "tod", 246 .rating = 400, 247 .read = read_tod_clock, 248 .mask = CLOCKSOURCE_MASK(64), 249 .mult = 1000, 250 .shift = 12, 251 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 252 .vdso_clock_mode = VDSO_CLOCKMODE_TOD, 253 }; 254 255 struct clocksource * __init clocksource_default_clock(void) 256 { 257 return &clocksource_tod; 258 } 259 260 /* 261 * Initialize the TOD clock and the CPU timer of 262 * the boot cpu. 263 */ 264 void __init time_init(void) 265 { 266 /* Reset time synchronization interfaces. */ 267 stp_reset(); 268 269 /* request the clock comparator external interrupt */ 270 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) 271 panic("Couldn't request external interrupt 0x1004"); 272 273 /* request the timing alert external interrupt */ 274 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) 275 panic("Couldn't request external interrupt 0x1406"); 276 277 if (__clocksource_register(&clocksource_tod) != 0) 278 panic("Could not register TOD clock source"); 279 280 /* Enable TOD clock interrupts on the boot cpu. */ 281 init_cpu_timer(); 282 283 /* Enable cpu timer interrupts on the boot cpu. */ 284 vtime_init(); 285 } 286 287 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 288 static DEFINE_MUTEX(stp_mutex); 289 static unsigned long clock_sync_flags; 290 291 #define CLOCK_SYNC_HAS_STP 0 292 #define CLOCK_SYNC_STP 1 293 #define CLOCK_SYNC_STPINFO_VALID 2 294 295 /* 296 * The get_clock function for the physical clock. It will get the current 297 * TOD clock, subtract the LPAR offset and write the result to *clock. 298 * The function returns 0 if the clock is in sync with the external time 299 * source. If the clock mode is local it will return -EOPNOTSUPP and 300 * -EAGAIN if the clock is not in sync with the external reference. 301 */ 302 int get_phys_clock(unsigned long *clock) 303 { 304 atomic_t *sw_ptr; 305 unsigned int sw0, sw1; 306 307 sw_ptr = &get_cpu_var(clock_sync_word); 308 sw0 = atomic_read(sw_ptr); 309 *clock = get_tod_clock() - lpar_offset; 310 sw1 = atomic_read(sw_ptr); 311 put_cpu_var(clock_sync_word); 312 if (sw0 == sw1 && (sw0 & 0x80000000U)) 313 /* Success: time is in sync. */ 314 return 0; 315 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 316 return -EOPNOTSUPP; 317 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 318 return -EACCES; 319 return -EAGAIN; 320 } 321 EXPORT_SYMBOL(get_phys_clock); 322 323 /* 324 * Make get_phys_clock() return -EAGAIN. 325 */ 326 static void disable_sync_clock(void *dummy) 327 { 328 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 329 /* 330 * Clear the in-sync bit 2^31. All get_phys_clock calls will 331 * fail until the sync bit is turned back on. In addition 332 * increase the "sequence" counter to avoid the race of an 333 * stp event and the complete recovery against get_phys_clock. 334 */ 335 atomic_andnot(0x80000000, sw_ptr); 336 atomic_inc(sw_ptr); 337 } 338 339 /* 340 * Make get_phys_clock() return 0 again. 341 * Needs to be called from a context disabled for preemption. 342 */ 343 static void enable_sync_clock(void) 344 { 345 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 346 atomic_or(0x80000000, sw_ptr); 347 } 348 349 /* 350 * Function to check if the clock is in sync. 351 */ 352 static inline int check_sync_clock(void) 353 { 354 atomic_t *sw_ptr; 355 int rc; 356 357 sw_ptr = &get_cpu_var(clock_sync_word); 358 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 359 put_cpu_var(clock_sync_word); 360 return rc; 361 } 362 363 /* 364 * Apply clock delta to the global data structures. 365 * This is called once on the CPU that performed the clock sync. 366 */ 367 static void clock_sync_global(unsigned long delta) 368 { 369 unsigned long now, adj; 370 struct ptff_qto qto; 371 int cs; 372 373 /* Fixup the monotonic sched clock. */ 374 tod_clock_base.eitod += delta; 375 /* Adjust TOD steering parameters. */ 376 now = get_tod_clock(); 377 adj = tod_steering_end - now; 378 if (unlikely((s64) adj >= 0)) 379 /* Calculate how much of the old adjustment is left. */ 380 tod_steering_delta = (tod_steering_delta < 0) ? 381 -(adj >> 15) : (adj >> 15); 382 tod_steering_delta += delta; 383 if ((abs(tod_steering_delta) >> 48) != 0) 384 panic("TOD clock sync offset %li is too large to drift\n", 385 tod_steering_delta); 386 tod_steering_end = now + (abs(tod_steering_delta) << 15); 387 for (cs = 0; cs < CS_BASES; cs++) { 388 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end; 389 vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta; 390 } 391 392 /* Update LPAR offset. */ 393 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 394 lpar_offset = qto.tod_epoch_difference; 395 /* Call the TOD clock change notifier. */ 396 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); 397 } 398 399 /* 400 * Apply clock delta to the per-CPU data structures of this CPU. 401 * This is called for each online CPU after the call to clock_sync_global. 402 */ 403 static void clock_sync_local(unsigned long delta) 404 { 405 /* Add the delta to the clock comparator. */ 406 if (S390_lowcore.clock_comparator != clock_comparator_max) { 407 S390_lowcore.clock_comparator += delta; 408 set_clock_comparator(S390_lowcore.clock_comparator); 409 } 410 /* Adjust the last_update_clock time-stamp. */ 411 S390_lowcore.last_update_clock += delta; 412 } 413 414 /* Single threaded workqueue used for stp sync events */ 415 static struct workqueue_struct *time_sync_wq; 416 417 static void __init time_init_wq(void) 418 { 419 if (time_sync_wq) 420 return; 421 time_sync_wq = create_singlethread_workqueue("timesync"); 422 } 423 424 struct clock_sync_data { 425 atomic_t cpus; 426 int in_sync; 427 unsigned long clock_delta; 428 }; 429 430 /* 431 * Server Time Protocol (STP) code. 432 */ 433 static bool stp_online; 434 static struct stp_sstpi stp_info; 435 static void *stp_page; 436 437 static void stp_work_fn(struct work_struct *work); 438 static DECLARE_WORK(stp_work, stp_work_fn); 439 static struct timer_list stp_timer; 440 441 static int __init early_parse_stp(char *p) 442 { 443 return kstrtobool(p, &stp_online); 444 } 445 early_param("stp", early_parse_stp); 446 447 /* 448 * Reset STP attachment. 449 */ 450 static void __init stp_reset(void) 451 { 452 int rc; 453 454 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 455 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 456 if (rc == 0) 457 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 458 else if (stp_online) { 459 pr_warn("The real or virtual hardware system does not provide an STP interface\n"); 460 free_page((unsigned long) stp_page); 461 stp_page = NULL; 462 stp_online = false; 463 } 464 } 465 466 static void stp_timeout(struct timer_list *unused) 467 { 468 queue_work(time_sync_wq, &stp_work); 469 } 470 471 static int __init stp_init(void) 472 { 473 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 474 return 0; 475 timer_setup(&stp_timer, stp_timeout, 0); 476 time_init_wq(); 477 if (!stp_online) 478 return 0; 479 queue_work(time_sync_wq, &stp_work); 480 return 0; 481 } 482 483 arch_initcall(stp_init); 484 485 /* 486 * STP timing alert. There are three causes: 487 * 1) timing status change 488 * 2) link availability change 489 * 3) time control parameter change 490 * In all three cases we are only interested in the clock source state. 491 * If a STP clock source is now available use it. 492 */ 493 static void stp_timing_alert(struct stp_irq_parm *intparm) 494 { 495 if (intparm->tsc || intparm->lac || intparm->tcpc) 496 queue_work(time_sync_wq, &stp_work); 497 } 498 499 /* 500 * STP sync check machine check. This is called when the timing state 501 * changes from the synchronized state to the unsynchronized state. 502 * After a STP sync check the clock is not in sync. The machine check 503 * is broadcasted to all cpus at the same time. 504 */ 505 int stp_sync_check(void) 506 { 507 disable_sync_clock(NULL); 508 return 1; 509 } 510 511 /* 512 * STP island condition machine check. This is called when an attached 513 * server attempts to communicate over an STP link and the servers 514 * have matching CTN ids and have a valid stratum-1 configuration 515 * but the configurations do not match. 516 */ 517 int stp_island_check(void) 518 { 519 disable_sync_clock(NULL); 520 return 1; 521 } 522 523 void stp_queue_work(void) 524 { 525 queue_work(time_sync_wq, &stp_work); 526 } 527 528 static int __store_stpinfo(void) 529 { 530 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 531 532 if (rc) 533 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 534 else 535 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 536 return rc; 537 } 538 539 static int stpinfo_valid(void) 540 { 541 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 542 } 543 544 static int stp_sync_clock(void *data) 545 { 546 struct clock_sync_data *sync = data; 547 u64 clock_delta, flags; 548 static int first; 549 int rc; 550 551 enable_sync_clock(); 552 if (xchg(&first, 1) == 0) { 553 /* Wait until all other cpus entered the sync function. */ 554 while (atomic_read(&sync->cpus) != 0) 555 cpu_relax(); 556 rc = 0; 557 if (stp_info.todoff[0] || stp_info.todoff[1] || 558 stp_info.todoff[2] || stp_info.todoff[3] || 559 stp_info.tmd != 2) { 560 flags = vdso_update_begin(); 561 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, 562 &clock_delta); 563 if (rc == 0) { 564 sync->clock_delta = clock_delta; 565 clock_sync_global(clock_delta); 566 rc = __store_stpinfo(); 567 if (rc == 0 && stp_info.tmd != 2) 568 rc = -EAGAIN; 569 } 570 vdso_update_end(flags); 571 } 572 sync->in_sync = rc ? -EAGAIN : 1; 573 xchg(&first, 0); 574 } else { 575 /* Slave */ 576 atomic_dec(&sync->cpus); 577 /* Wait for in_sync to be set. */ 578 while (READ_ONCE(sync->in_sync) == 0) 579 __udelay(1); 580 } 581 if (sync->in_sync != 1) 582 /* Didn't work. Clear per-cpu in sync bit again. */ 583 disable_sync_clock(NULL); 584 /* Apply clock delta to per-CPU fields of this CPU. */ 585 clock_sync_local(sync->clock_delta); 586 587 return 0; 588 } 589 590 static int stp_clear_leap(void) 591 { 592 struct __kernel_timex txc; 593 int ret; 594 595 memset(&txc, 0, sizeof(txc)); 596 597 ret = do_adjtimex(&txc); 598 if (ret < 0) 599 return ret; 600 601 txc.modes = ADJ_STATUS; 602 txc.status &= ~(STA_INS|STA_DEL); 603 return do_adjtimex(&txc); 604 } 605 606 static void stp_check_leap(void) 607 { 608 struct stp_stzi stzi; 609 struct stp_lsoib *lsoib = &stzi.lsoib; 610 struct __kernel_timex txc; 611 int64_t timediff; 612 int leapdiff, ret; 613 614 if (!stp_info.lu || !check_sync_clock()) { 615 /* 616 * Either a scheduled leap second was removed by the operator, 617 * or STP is out of sync. In both cases, clear the leap second 618 * kernel flags. 619 */ 620 if (stp_clear_leap() < 0) 621 pr_err("failed to clear leap second flags\n"); 622 return; 623 } 624 625 if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) { 626 pr_err("stzi failed\n"); 627 return; 628 } 629 630 timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC; 631 leapdiff = lsoib->nlso - lsoib->also; 632 633 if (leapdiff != 1 && leapdiff != -1) { 634 pr_err("Cannot schedule %d leap seconds\n", leapdiff); 635 return; 636 } 637 638 if (timediff < 0) { 639 if (stp_clear_leap() < 0) 640 pr_err("failed to clear leap second flags\n"); 641 } else if (timediff < 7200) { 642 memset(&txc, 0, sizeof(txc)); 643 ret = do_adjtimex(&txc); 644 if (ret < 0) 645 return; 646 647 txc.modes = ADJ_STATUS; 648 if (leapdiff > 0) 649 txc.status |= STA_INS; 650 else 651 txc.status |= STA_DEL; 652 ret = do_adjtimex(&txc); 653 if (ret < 0) 654 pr_err("failed to set leap second flags\n"); 655 /* arm Timer to clear leap second flags */ 656 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC)); 657 } else { 658 /* The day the leap second is scheduled for hasn't been reached. Retry 659 * in one hour. 660 */ 661 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC)); 662 } 663 } 664 665 /* 666 * STP work. Check for the STP state and take over the clock 667 * synchronization if the STP clock source is usable. 668 */ 669 static void stp_work_fn(struct work_struct *work) 670 { 671 struct clock_sync_data stp_sync; 672 int rc; 673 674 /* prevent multiple execution. */ 675 mutex_lock(&stp_mutex); 676 677 if (!stp_online) { 678 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 679 del_timer_sync(&stp_timer); 680 goto out_unlock; 681 } 682 683 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL); 684 if (rc) 685 goto out_unlock; 686 687 rc = __store_stpinfo(); 688 if (rc || stp_info.c == 0) 689 goto out_unlock; 690 691 /* Skip synchronization if the clock is already in sync. */ 692 if (!check_sync_clock()) { 693 memset(&stp_sync, 0, sizeof(stp_sync)); 694 cpus_read_lock(); 695 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 696 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask); 697 cpus_read_unlock(); 698 } 699 700 if (!check_sync_clock()) 701 /* 702 * There is a usable clock but the synchonization failed. 703 * Retry after a second. 704 */ 705 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC)); 706 else if (stp_info.lu) 707 stp_check_leap(); 708 709 out_unlock: 710 mutex_unlock(&stp_mutex); 711 } 712 713 /* 714 * STP subsys sysfs interface functions 715 */ 716 static struct bus_type stp_subsys = { 717 .name = "stp", 718 .dev_name = "stp", 719 }; 720 721 static ssize_t ctn_id_show(struct device *dev, 722 struct device_attribute *attr, 723 char *buf) 724 { 725 ssize_t ret = -ENODATA; 726 727 mutex_lock(&stp_mutex); 728 if (stpinfo_valid()) 729 ret = sprintf(buf, "%016lx\n", 730 *(unsigned long *) stp_info.ctnid); 731 mutex_unlock(&stp_mutex); 732 return ret; 733 } 734 735 static DEVICE_ATTR_RO(ctn_id); 736 737 static ssize_t ctn_type_show(struct device *dev, 738 struct device_attribute *attr, 739 char *buf) 740 { 741 ssize_t ret = -ENODATA; 742 743 mutex_lock(&stp_mutex); 744 if (stpinfo_valid()) 745 ret = sprintf(buf, "%i\n", stp_info.ctn); 746 mutex_unlock(&stp_mutex); 747 return ret; 748 } 749 750 static DEVICE_ATTR_RO(ctn_type); 751 752 static ssize_t dst_offset_show(struct device *dev, 753 struct device_attribute *attr, 754 char *buf) 755 { 756 ssize_t ret = -ENODATA; 757 758 mutex_lock(&stp_mutex); 759 if (stpinfo_valid() && (stp_info.vbits & 0x2000)) 760 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); 761 mutex_unlock(&stp_mutex); 762 return ret; 763 } 764 765 static DEVICE_ATTR_RO(dst_offset); 766 767 static ssize_t leap_seconds_show(struct device *dev, 768 struct device_attribute *attr, 769 char *buf) 770 { 771 ssize_t ret = -ENODATA; 772 773 mutex_lock(&stp_mutex); 774 if (stpinfo_valid() && (stp_info.vbits & 0x8000)) 775 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); 776 mutex_unlock(&stp_mutex); 777 return ret; 778 } 779 780 static DEVICE_ATTR_RO(leap_seconds); 781 782 static ssize_t leap_seconds_scheduled_show(struct device *dev, 783 struct device_attribute *attr, 784 char *buf) 785 { 786 struct stp_stzi stzi; 787 ssize_t ret; 788 789 mutex_lock(&stp_mutex); 790 if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) { 791 mutex_unlock(&stp_mutex); 792 return -ENODATA; 793 } 794 795 ret = chsc_stzi(stp_page, &stzi, sizeof(stzi)); 796 mutex_unlock(&stp_mutex); 797 if (ret < 0) 798 return ret; 799 800 if (!stzi.lsoib.p) 801 return sprintf(buf, "0,0\n"); 802 803 return sprintf(buf, "%lu,%d\n", 804 tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC, 805 stzi.lsoib.nlso - stzi.lsoib.also); 806 } 807 808 static DEVICE_ATTR_RO(leap_seconds_scheduled); 809 810 static ssize_t stratum_show(struct device *dev, 811 struct device_attribute *attr, 812 char *buf) 813 { 814 ssize_t ret = -ENODATA; 815 816 mutex_lock(&stp_mutex); 817 if (stpinfo_valid()) 818 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); 819 mutex_unlock(&stp_mutex); 820 return ret; 821 } 822 823 static DEVICE_ATTR_RO(stratum); 824 825 static ssize_t time_offset_show(struct device *dev, 826 struct device_attribute *attr, 827 char *buf) 828 { 829 ssize_t ret = -ENODATA; 830 831 mutex_lock(&stp_mutex); 832 if (stpinfo_valid() && (stp_info.vbits & 0x0800)) 833 ret = sprintf(buf, "%i\n", (int) stp_info.tto); 834 mutex_unlock(&stp_mutex); 835 return ret; 836 } 837 838 static DEVICE_ATTR_RO(time_offset); 839 840 static ssize_t time_zone_offset_show(struct device *dev, 841 struct device_attribute *attr, 842 char *buf) 843 { 844 ssize_t ret = -ENODATA; 845 846 mutex_lock(&stp_mutex); 847 if (stpinfo_valid() && (stp_info.vbits & 0x4000)) 848 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); 849 mutex_unlock(&stp_mutex); 850 return ret; 851 } 852 853 static DEVICE_ATTR_RO(time_zone_offset); 854 855 static ssize_t timing_mode_show(struct device *dev, 856 struct device_attribute *attr, 857 char *buf) 858 { 859 ssize_t ret = -ENODATA; 860 861 mutex_lock(&stp_mutex); 862 if (stpinfo_valid()) 863 ret = sprintf(buf, "%i\n", stp_info.tmd); 864 mutex_unlock(&stp_mutex); 865 return ret; 866 } 867 868 static DEVICE_ATTR_RO(timing_mode); 869 870 static ssize_t timing_state_show(struct device *dev, 871 struct device_attribute *attr, 872 char *buf) 873 { 874 ssize_t ret = -ENODATA; 875 876 mutex_lock(&stp_mutex); 877 if (stpinfo_valid()) 878 ret = sprintf(buf, "%i\n", stp_info.tst); 879 mutex_unlock(&stp_mutex); 880 return ret; 881 } 882 883 static DEVICE_ATTR_RO(timing_state); 884 885 static ssize_t online_show(struct device *dev, 886 struct device_attribute *attr, 887 char *buf) 888 { 889 return sprintf(buf, "%i\n", stp_online); 890 } 891 892 static ssize_t online_store(struct device *dev, 893 struct device_attribute *attr, 894 const char *buf, size_t count) 895 { 896 unsigned int value; 897 898 value = simple_strtoul(buf, NULL, 0); 899 if (value != 0 && value != 1) 900 return -EINVAL; 901 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 902 return -EOPNOTSUPP; 903 mutex_lock(&stp_mutex); 904 stp_online = value; 905 if (stp_online) 906 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 907 else 908 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 909 queue_work(time_sync_wq, &stp_work); 910 mutex_unlock(&stp_mutex); 911 return count; 912 } 913 914 /* 915 * Can't use DEVICE_ATTR because the attribute should be named 916 * stp/online but dev_attr_online already exists in this file .. 917 */ 918 static DEVICE_ATTR_RW(online); 919 920 static struct attribute *stp_dev_attrs[] = { 921 &dev_attr_ctn_id.attr, 922 &dev_attr_ctn_type.attr, 923 &dev_attr_dst_offset.attr, 924 &dev_attr_leap_seconds.attr, 925 &dev_attr_online.attr, 926 &dev_attr_leap_seconds_scheduled.attr, 927 &dev_attr_stratum.attr, 928 &dev_attr_time_offset.attr, 929 &dev_attr_time_zone_offset.attr, 930 &dev_attr_timing_mode.attr, 931 &dev_attr_timing_state.attr, 932 NULL 933 }; 934 ATTRIBUTE_GROUPS(stp_dev); 935 936 static int __init stp_init_sysfs(void) 937 { 938 return subsys_system_register(&stp_subsys, stp_dev_groups); 939 } 940 941 device_initcall(stp_init_sysfs); 942