1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Time of day based timer functions. 4 * 5 * S390 version 6 * Copyright IBM Corp. 1999, 2008 7 * Author(s): Hartmut Penner (hp@de.ibm.com), 8 * Martin Schwidefsky (schwidefsky@de.ibm.com), 9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 10 * 11 * Derived from "arch/i386/kernel/time.c" 12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 13 */ 14 15 #define KMSG_COMPONENT "time" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/kernel_stat.h> 19 #include <linux/errno.h> 20 #include <linux/export.h> 21 #include <linux/sched.h> 22 #include <linux/sched/clock.h> 23 #include <linux/kernel.h> 24 #include <linux/param.h> 25 #include <linux/string.h> 26 #include <linux/mm.h> 27 #include <linux/interrupt.h> 28 #include <linux/cpu.h> 29 #include <linux/stop_machine.h> 30 #include <linux/time.h> 31 #include <linux/device.h> 32 #include <linux/delay.h> 33 #include <linux/init.h> 34 #include <linux/smp.h> 35 #include <linux/types.h> 36 #include <linux/profile.h> 37 #include <linux/timex.h> 38 #include <linux/notifier.h> 39 #include <linux/clockchips.h> 40 #include <linux/gfp.h> 41 #include <linux/kprobes.h> 42 #include <linux/uaccess.h> 43 #include <vdso/vsyscall.h> 44 #include <vdso/clocksource.h> 45 #include <vdso/helpers.h> 46 #include <asm/facility.h> 47 #include <asm/delay.h> 48 #include <asm/div64.h> 49 #include <asm/vdso.h> 50 #include <asm/irq.h> 51 #include <asm/irq_regs.h> 52 #include <asm/vtimer.h> 53 #include <asm/stp.h> 54 #include <asm/cio.h> 55 #include "entry.h" 56 57 union tod_clock tod_clock_base __section(".data"); 58 EXPORT_SYMBOL_GPL(tod_clock_base); 59 60 u64 clock_comparator_max = -1ULL; 61 EXPORT_SYMBOL_GPL(clock_comparator_max); 62 63 static DEFINE_PER_CPU(struct clock_event_device, comparators); 64 65 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); 66 EXPORT_SYMBOL(s390_epoch_delta_notifier); 67 68 unsigned char ptff_function_mask[16]; 69 70 static unsigned long lpar_offset; 71 static unsigned long initial_leap_seconds; 72 static unsigned long tod_steering_end; 73 static long tod_steering_delta; 74 75 /* 76 * Get time offsets with PTFF 77 */ 78 void __init time_early_init(void) 79 { 80 struct ptff_qto qto; 81 struct ptff_qui qui; 82 int cs; 83 84 /* Initialize TOD steering parameters */ 85 tod_steering_end = tod_clock_base.tod; 86 for (cs = 0; cs < CS_BASES; cs++) 87 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end; 88 89 if (!test_facility(28)) 90 return; 91 92 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); 93 94 /* get LPAR offset */ 95 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 96 lpar_offset = qto.tod_epoch_difference; 97 98 /* get initial leap seconds */ 99 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) 100 initial_leap_seconds = (unsigned long) 101 ((long) qui.old_leap * 4096000000L); 102 } 103 104 unsigned long long noinstr sched_clock_noinstr(void) 105 { 106 return tod_to_ns(__get_tod_clock_monotonic()); 107 } 108 109 /* 110 * Scheduler clock - returns current time in nanosec units. 111 */ 112 unsigned long long notrace sched_clock(void) 113 { 114 return tod_to_ns(get_tod_clock_monotonic()); 115 } 116 NOKPROBE_SYMBOL(sched_clock); 117 118 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt) 119 { 120 unsigned long rem, sec, nsec; 121 122 sec = clk->us; 123 rem = do_div(sec, 1000000); 124 nsec = ((clk->sus + (rem << 12)) * 125) >> 9; 125 xt->tv_sec = sec; 126 xt->tv_nsec = nsec; 127 } 128 129 void clock_comparator_work(void) 130 { 131 struct clock_event_device *cd; 132 133 get_lowcore()->clock_comparator = clock_comparator_max; 134 cd = this_cpu_ptr(&comparators); 135 cd->event_handler(cd); 136 } 137 138 static int s390_next_event(unsigned long delta, 139 struct clock_event_device *evt) 140 { 141 get_lowcore()->clock_comparator = get_tod_clock() + delta; 142 set_clock_comparator(get_lowcore()->clock_comparator); 143 return 0; 144 } 145 146 /* 147 * Set up lowcore and control register of the current cpu to 148 * enable TOD clock and clock comparator interrupts. 149 */ 150 void init_cpu_timer(void) 151 { 152 struct clock_event_device *cd; 153 int cpu; 154 155 get_lowcore()->clock_comparator = clock_comparator_max; 156 set_clock_comparator(get_lowcore()->clock_comparator); 157 158 cpu = smp_processor_id(); 159 cd = &per_cpu(comparators, cpu); 160 cd->name = "comparator"; 161 cd->features = CLOCK_EVT_FEAT_ONESHOT; 162 cd->mult = 16777; 163 cd->shift = 12; 164 cd->min_delta_ns = 1; 165 cd->min_delta_ticks = 1; 166 cd->max_delta_ns = LONG_MAX; 167 cd->max_delta_ticks = ULONG_MAX; 168 cd->rating = 400; 169 cd->cpumask = cpumask_of(cpu); 170 cd->set_next_event = s390_next_event; 171 172 clockevents_register_device(cd); 173 174 /* Enable clock comparator timer interrupt. */ 175 local_ctl_set_bit(0, CR0_CLOCK_COMPARATOR_SUBMASK_BIT); 176 177 /* Always allow the timing alert external interrupt. */ 178 local_ctl_set_bit(0, CR0_ETR_SUBMASK_BIT); 179 } 180 181 static void clock_comparator_interrupt(struct ext_code ext_code, 182 unsigned int param32, 183 unsigned long param64) 184 { 185 inc_irq_stat(IRQEXT_CLK); 186 if (get_lowcore()->clock_comparator == clock_comparator_max) 187 set_clock_comparator(get_lowcore()->clock_comparator); 188 } 189 190 static void stp_timing_alert(struct stp_irq_parm *); 191 192 static void timing_alert_interrupt(struct ext_code ext_code, 193 unsigned int param32, unsigned long param64) 194 { 195 inc_irq_stat(IRQEXT_TLA); 196 if (param32 & 0x00038000) 197 stp_timing_alert((struct stp_irq_parm *) ¶m32); 198 } 199 200 static void stp_reset(void); 201 202 void read_persistent_clock64(struct timespec64 *ts) 203 { 204 union tod_clock clk; 205 u64 delta; 206 207 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 208 store_tod_clock_ext(&clk); 209 clk.eitod -= delta; 210 ext_to_timespec64(&clk, ts); 211 } 212 213 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 214 struct timespec64 *boot_offset) 215 { 216 struct timespec64 boot_time; 217 union tod_clock clk; 218 u64 delta; 219 220 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 221 clk = tod_clock_base; 222 clk.eitod -= delta; 223 ext_to_timespec64(&clk, &boot_time); 224 225 read_persistent_clock64(wall_time); 226 *boot_offset = timespec64_sub(*wall_time, boot_time); 227 } 228 229 static u64 read_tod_clock(struct clocksource *cs) 230 { 231 unsigned long now, adj; 232 233 preempt_disable(); /* protect from changes to steering parameters */ 234 now = get_tod_clock(); 235 adj = tod_steering_end - now; 236 if (unlikely((s64) adj > 0)) 237 /* 238 * manually steer by 1 cycle every 2^16 cycles. This 239 * corresponds to shifting the tod delta by 15. 1s is 240 * therefore steered in ~9h. The adjust will decrease 241 * over time, until it finally reaches 0. 242 */ 243 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15); 244 preempt_enable(); 245 return now; 246 } 247 248 static struct clocksource clocksource_tod = { 249 .name = "tod", 250 .rating = 400, 251 .read = read_tod_clock, 252 .mask = CLOCKSOURCE_MASK(64), 253 .mult = 4096000, 254 .shift = 24, 255 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 256 .vdso_clock_mode = VDSO_CLOCKMODE_TOD, 257 }; 258 259 struct clocksource * __init clocksource_default_clock(void) 260 { 261 return &clocksource_tod; 262 } 263 264 /* 265 * Initialize the TOD clock and the CPU timer of 266 * the boot cpu. 267 */ 268 void __init time_init(void) 269 { 270 /* Reset time synchronization interfaces. */ 271 stp_reset(); 272 273 /* request the clock comparator external interrupt */ 274 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) 275 panic("Couldn't request external interrupt 0x1004"); 276 277 /* request the timing alert external interrupt */ 278 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) 279 panic("Couldn't request external interrupt 0x1406"); 280 281 if (__clocksource_register(&clocksource_tod) != 0) 282 panic("Could not register TOD clock source"); 283 284 /* Enable TOD clock interrupts on the boot cpu. */ 285 init_cpu_timer(); 286 287 /* Enable cpu timer interrupts on the boot cpu. */ 288 vtime_init(); 289 } 290 291 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 292 static DEFINE_MUTEX(stp_mutex); 293 static unsigned long clock_sync_flags; 294 295 #define CLOCK_SYNC_HAS_STP 0 296 #define CLOCK_SYNC_STP 1 297 #define CLOCK_SYNC_STPINFO_VALID 2 298 299 /* 300 * The get_clock function for the physical clock. It will get the current 301 * TOD clock, subtract the LPAR offset and write the result to *clock. 302 * The function returns 0 if the clock is in sync with the external time 303 * source. If the clock mode is local it will return -EOPNOTSUPP and 304 * -EAGAIN if the clock is not in sync with the external reference. 305 */ 306 int get_phys_clock(unsigned long *clock) 307 { 308 atomic_t *sw_ptr; 309 unsigned int sw0, sw1; 310 311 sw_ptr = &get_cpu_var(clock_sync_word); 312 sw0 = atomic_read(sw_ptr); 313 *clock = get_tod_clock() - lpar_offset; 314 sw1 = atomic_read(sw_ptr); 315 put_cpu_var(clock_sync_word); 316 if (sw0 == sw1 && (sw0 & 0x80000000U)) 317 /* Success: time is in sync. */ 318 return 0; 319 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 320 return -EOPNOTSUPP; 321 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 322 return -EACCES; 323 return -EAGAIN; 324 } 325 EXPORT_SYMBOL(get_phys_clock); 326 327 /* 328 * Make get_phys_clock() return -EAGAIN. 329 */ 330 static void disable_sync_clock(void *dummy) 331 { 332 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 333 /* 334 * Clear the in-sync bit 2^31. All get_phys_clock calls will 335 * fail until the sync bit is turned back on. In addition 336 * increase the "sequence" counter to avoid the race of an 337 * stp event and the complete recovery against get_phys_clock. 338 */ 339 atomic_andnot(0x80000000, sw_ptr); 340 atomic_inc(sw_ptr); 341 } 342 343 /* 344 * Make get_phys_clock() return 0 again. 345 * Needs to be called from a context disabled for preemption. 346 */ 347 static void enable_sync_clock(void) 348 { 349 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 350 atomic_or(0x80000000, sw_ptr); 351 } 352 353 /* 354 * Function to check if the clock is in sync. 355 */ 356 static inline int check_sync_clock(void) 357 { 358 atomic_t *sw_ptr; 359 int rc; 360 361 sw_ptr = &get_cpu_var(clock_sync_word); 362 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 363 put_cpu_var(clock_sync_word); 364 return rc; 365 } 366 367 /* 368 * Apply clock delta to the global data structures. 369 * This is called once on the CPU that performed the clock sync. 370 */ 371 static void clock_sync_global(long delta) 372 { 373 unsigned long now, adj; 374 struct ptff_qto qto; 375 int cs; 376 377 /* Fixup the monotonic sched clock. */ 378 tod_clock_base.eitod += delta; 379 /* Adjust TOD steering parameters. */ 380 now = get_tod_clock(); 381 adj = tod_steering_end - now; 382 if (unlikely((s64) adj >= 0)) 383 /* Calculate how much of the old adjustment is left. */ 384 tod_steering_delta = (tod_steering_delta < 0) ? 385 -(adj >> 15) : (adj >> 15); 386 tod_steering_delta += delta; 387 if ((abs(tod_steering_delta) >> 48) != 0) 388 panic("TOD clock sync offset %li is too large to drift\n", 389 tod_steering_delta); 390 tod_steering_end = now + (abs(tod_steering_delta) << 15); 391 for (cs = 0; cs < CS_BASES; cs++) { 392 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end; 393 vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta; 394 } 395 396 /* Update LPAR offset. */ 397 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 398 lpar_offset = qto.tod_epoch_difference; 399 /* Call the TOD clock change notifier. */ 400 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); 401 } 402 403 /* 404 * Apply clock delta to the per-CPU data structures of this CPU. 405 * This is called for each online CPU after the call to clock_sync_global. 406 */ 407 static void clock_sync_local(long delta) 408 { 409 /* Add the delta to the clock comparator. */ 410 if (get_lowcore()->clock_comparator != clock_comparator_max) { 411 get_lowcore()->clock_comparator += delta; 412 set_clock_comparator(get_lowcore()->clock_comparator); 413 } 414 /* Adjust the last_update_clock time-stamp. */ 415 get_lowcore()->last_update_clock += delta; 416 } 417 418 /* Single threaded workqueue used for stp sync events */ 419 static struct workqueue_struct *time_sync_wq; 420 421 static void __init time_init_wq(void) 422 { 423 if (time_sync_wq) 424 return; 425 time_sync_wq = create_singlethread_workqueue("timesync"); 426 } 427 428 struct clock_sync_data { 429 atomic_t cpus; 430 int in_sync; 431 long clock_delta; 432 }; 433 434 /* 435 * Server Time Protocol (STP) code. 436 */ 437 static bool stp_online; 438 static struct stp_sstpi stp_info; 439 static void *stp_page; 440 441 static void stp_work_fn(struct work_struct *work); 442 static DECLARE_WORK(stp_work, stp_work_fn); 443 static struct timer_list stp_timer; 444 445 static int __init early_parse_stp(char *p) 446 { 447 return kstrtobool(p, &stp_online); 448 } 449 early_param("stp", early_parse_stp); 450 451 /* 452 * Reset STP attachment. 453 */ 454 static void __init stp_reset(void) 455 { 456 int rc; 457 458 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 459 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 460 if (rc == 0) 461 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 462 else if (stp_online) { 463 pr_warn("The real or virtual hardware system does not provide an STP interface\n"); 464 free_page((unsigned long) stp_page); 465 stp_page = NULL; 466 stp_online = false; 467 } 468 } 469 470 static void stp_timeout(struct timer_list *unused) 471 { 472 queue_work(time_sync_wq, &stp_work); 473 } 474 475 static int __init stp_init(void) 476 { 477 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 478 return 0; 479 timer_setup(&stp_timer, stp_timeout, 0); 480 time_init_wq(); 481 if (!stp_online) 482 return 0; 483 queue_work(time_sync_wq, &stp_work); 484 return 0; 485 } 486 487 arch_initcall(stp_init); 488 489 /* 490 * STP timing alert. There are three causes: 491 * 1) timing status change 492 * 2) link availability change 493 * 3) time control parameter change 494 * In all three cases we are only interested in the clock source state. 495 * If a STP clock source is now available use it. 496 */ 497 static void stp_timing_alert(struct stp_irq_parm *intparm) 498 { 499 if (intparm->tsc || intparm->lac || intparm->tcpc) 500 queue_work(time_sync_wq, &stp_work); 501 } 502 503 /* 504 * STP sync check machine check. This is called when the timing state 505 * changes from the synchronized state to the unsynchronized state. 506 * After a STP sync check the clock is not in sync. The machine check 507 * is broadcasted to all cpus at the same time. 508 */ 509 int stp_sync_check(void) 510 { 511 disable_sync_clock(NULL); 512 return 1; 513 } 514 515 /* 516 * STP island condition machine check. This is called when an attached 517 * server attempts to communicate over an STP link and the servers 518 * have matching CTN ids and have a valid stratum-1 configuration 519 * but the configurations do not match. 520 */ 521 int stp_island_check(void) 522 { 523 disable_sync_clock(NULL); 524 return 1; 525 } 526 527 void stp_queue_work(void) 528 { 529 queue_work(time_sync_wq, &stp_work); 530 } 531 532 static int __store_stpinfo(void) 533 { 534 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 535 536 if (rc) 537 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 538 else 539 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 540 return rc; 541 } 542 543 static int stpinfo_valid(void) 544 { 545 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 546 } 547 548 static int stp_sync_clock(void *data) 549 { 550 struct clock_sync_data *sync = data; 551 long clock_delta, flags; 552 static int first; 553 int rc; 554 555 enable_sync_clock(); 556 if (xchg(&first, 1) == 0) { 557 /* Wait until all other cpus entered the sync function. */ 558 while (atomic_read(&sync->cpus) != 0) 559 cpu_relax(); 560 rc = 0; 561 if (stp_info.todoff || stp_info.tmd != 2) { 562 flags = vdso_update_begin(); 563 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, 564 &clock_delta); 565 if (rc == 0) { 566 sync->clock_delta = clock_delta; 567 clock_sync_global(clock_delta); 568 rc = __store_stpinfo(); 569 if (rc == 0 && stp_info.tmd != 2) 570 rc = -EAGAIN; 571 } 572 vdso_update_end(flags); 573 } 574 sync->in_sync = rc ? -EAGAIN : 1; 575 xchg(&first, 0); 576 } else { 577 /* Slave */ 578 atomic_dec(&sync->cpus); 579 /* Wait for in_sync to be set. */ 580 while (READ_ONCE(sync->in_sync) == 0) 581 __udelay(1); 582 } 583 if (sync->in_sync != 1) 584 /* Didn't work. Clear per-cpu in sync bit again. */ 585 disable_sync_clock(NULL); 586 /* Apply clock delta to per-CPU fields of this CPU. */ 587 clock_sync_local(sync->clock_delta); 588 589 return 0; 590 } 591 592 static int stp_clear_leap(void) 593 { 594 struct __kernel_timex txc; 595 int ret; 596 597 memset(&txc, 0, sizeof(txc)); 598 599 ret = do_adjtimex(&txc); 600 if (ret < 0) 601 return ret; 602 603 txc.modes = ADJ_STATUS; 604 txc.status &= ~(STA_INS|STA_DEL); 605 return do_adjtimex(&txc); 606 } 607 608 static void stp_check_leap(void) 609 { 610 struct stp_stzi stzi; 611 struct stp_lsoib *lsoib = &stzi.lsoib; 612 struct __kernel_timex txc; 613 int64_t timediff; 614 int leapdiff, ret; 615 616 if (!stp_info.lu || !check_sync_clock()) { 617 /* 618 * Either a scheduled leap second was removed by the operator, 619 * or STP is out of sync. In both cases, clear the leap second 620 * kernel flags. 621 */ 622 if (stp_clear_leap() < 0) 623 pr_err("failed to clear leap second flags\n"); 624 return; 625 } 626 627 if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) { 628 pr_err("stzi failed\n"); 629 return; 630 } 631 632 timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC; 633 leapdiff = lsoib->nlso - lsoib->also; 634 635 if (leapdiff != 1 && leapdiff != -1) { 636 pr_err("Cannot schedule %d leap seconds\n", leapdiff); 637 return; 638 } 639 640 if (timediff < 0) { 641 if (stp_clear_leap() < 0) 642 pr_err("failed to clear leap second flags\n"); 643 } else if (timediff < 7200) { 644 memset(&txc, 0, sizeof(txc)); 645 ret = do_adjtimex(&txc); 646 if (ret < 0) 647 return; 648 649 txc.modes = ADJ_STATUS; 650 if (leapdiff > 0) 651 txc.status |= STA_INS; 652 else 653 txc.status |= STA_DEL; 654 ret = do_adjtimex(&txc); 655 if (ret < 0) 656 pr_err("failed to set leap second flags\n"); 657 /* arm Timer to clear leap second flags */ 658 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC)); 659 } else { 660 /* The day the leap second is scheduled for hasn't been reached. Retry 661 * in one hour. 662 */ 663 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC)); 664 } 665 } 666 667 /* 668 * STP work. Check for the STP state and take over the clock 669 * synchronization if the STP clock source is usable. 670 */ 671 static void stp_work_fn(struct work_struct *work) 672 { 673 struct clock_sync_data stp_sync; 674 int rc; 675 676 /* prevent multiple execution. */ 677 mutex_lock(&stp_mutex); 678 679 if (!stp_online) { 680 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 681 del_timer_sync(&stp_timer); 682 goto out_unlock; 683 } 684 685 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL); 686 if (rc) 687 goto out_unlock; 688 689 rc = __store_stpinfo(); 690 if (rc || stp_info.c == 0) 691 goto out_unlock; 692 693 /* Skip synchronization if the clock is already in sync. */ 694 if (!check_sync_clock()) { 695 memset(&stp_sync, 0, sizeof(stp_sync)); 696 cpus_read_lock(); 697 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 698 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask); 699 cpus_read_unlock(); 700 } 701 702 if (!check_sync_clock()) 703 /* 704 * There is a usable clock but the synchronization failed. 705 * Retry after a second. 706 */ 707 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC)); 708 else if (stp_info.lu) 709 stp_check_leap(); 710 711 out_unlock: 712 mutex_unlock(&stp_mutex); 713 } 714 715 /* 716 * STP subsys sysfs interface functions 717 */ 718 static const struct bus_type stp_subsys = { 719 .name = "stp", 720 .dev_name = "stp", 721 }; 722 723 static ssize_t ctn_id_show(struct device *dev, 724 struct device_attribute *attr, 725 char *buf) 726 { 727 ssize_t ret = -ENODATA; 728 729 mutex_lock(&stp_mutex); 730 if (stpinfo_valid()) 731 ret = sysfs_emit(buf, "%016lx\n", 732 *(unsigned long *)stp_info.ctnid); 733 mutex_unlock(&stp_mutex); 734 return ret; 735 } 736 737 static DEVICE_ATTR_RO(ctn_id); 738 739 static ssize_t ctn_type_show(struct device *dev, 740 struct device_attribute *attr, 741 char *buf) 742 { 743 ssize_t ret = -ENODATA; 744 745 mutex_lock(&stp_mutex); 746 if (stpinfo_valid()) 747 ret = sysfs_emit(buf, "%i\n", stp_info.ctn); 748 mutex_unlock(&stp_mutex); 749 return ret; 750 } 751 752 static DEVICE_ATTR_RO(ctn_type); 753 754 static ssize_t dst_offset_show(struct device *dev, 755 struct device_attribute *attr, 756 char *buf) 757 { 758 ssize_t ret = -ENODATA; 759 760 mutex_lock(&stp_mutex); 761 if (stpinfo_valid() && (stp_info.vbits & 0x2000)) 762 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.dsto); 763 mutex_unlock(&stp_mutex); 764 return ret; 765 } 766 767 static DEVICE_ATTR_RO(dst_offset); 768 769 static ssize_t leap_seconds_show(struct device *dev, 770 struct device_attribute *attr, 771 char *buf) 772 { 773 ssize_t ret = -ENODATA; 774 775 mutex_lock(&stp_mutex); 776 if (stpinfo_valid() && (stp_info.vbits & 0x8000)) 777 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.leaps); 778 mutex_unlock(&stp_mutex); 779 return ret; 780 } 781 782 static DEVICE_ATTR_RO(leap_seconds); 783 784 static ssize_t leap_seconds_scheduled_show(struct device *dev, 785 struct device_attribute *attr, 786 char *buf) 787 { 788 struct stp_stzi stzi; 789 ssize_t ret; 790 791 mutex_lock(&stp_mutex); 792 if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) { 793 mutex_unlock(&stp_mutex); 794 return -ENODATA; 795 } 796 797 ret = chsc_stzi(stp_page, &stzi, sizeof(stzi)); 798 mutex_unlock(&stp_mutex); 799 if (ret < 0) 800 return ret; 801 802 if (!stzi.lsoib.p) 803 return sysfs_emit(buf, "0,0\n"); 804 805 return sysfs_emit(buf, "%lu,%d\n", 806 tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC, 807 stzi.lsoib.nlso - stzi.lsoib.also); 808 } 809 810 static DEVICE_ATTR_RO(leap_seconds_scheduled); 811 812 static ssize_t stratum_show(struct device *dev, 813 struct device_attribute *attr, 814 char *buf) 815 { 816 ssize_t ret = -ENODATA; 817 818 mutex_lock(&stp_mutex); 819 if (stpinfo_valid()) 820 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.stratum); 821 mutex_unlock(&stp_mutex); 822 return ret; 823 } 824 825 static DEVICE_ATTR_RO(stratum); 826 827 static ssize_t time_offset_show(struct device *dev, 828 struct device_attribute *attr, 829 char *buf) 830 { 831 ssize_t ret = -ENODATA; 832 833 mutex_lock(&stp_mutex); 834 if (stpinfo_valid() && (stp_info.vbits & 0x0800)) 835 ret = sysfs_emit(buf, "%i\n", (int)stp_info.tto); 836 mutex_unlock(&stp_mutex); 837 return ret; 838 } 839 840 static DEVICE_ATTR_RO(time_offset); 841 842 static ssize_t time_zone_offset_show(struct device *dev, 843 struct device_attribute *attr, 844 char *buf) 845 { 846 ssize_t ret = -ENODATA; 847 848 mutex_lock(&stp_mutex); 849 if (stpinfo_valid() && (stp_info.vbits & 0x4000)) 850 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.tzo); 851 mutex_unlock(&stp_mutex); 852 return ret; 853 } 854 855 static DEVICE_ATTR_RO(time_zone_offset); 856 857 static ssize_t timing_mode_show(struct device *dev, 858 struct device_attribute *attr, 859 char *buf) 860 { 861 ssize_t ret = -ENODATA; 862 863 mutex_lock(&stp_mutex); 864 if (stpinfo_valid()) 865 ret = sysfs_emit(buf, "%i\n", stp_info.tmd); 866 mutex_unlock(&stp_mutex); 867 return ret; 868 } 869 870 static DEVICE_ATTR_RO(timing_mode); 871 872 static ssize_t timing_state_show(struct device *dev, 873 struct device_attribute *attr, 874 char *buf) 875 { 876 ssize_t ret = -ENODATA; 877 878 mutex_lock(&stp_mutex); 879 if (stpinfo_valid()) 880 ret = sysfs_emit(buf, "%i\n", stp_info.tst); 881 mutex_unlock(&stp_mutex); 882 return ret; 883 } 884 885 static DEVICE_ATTR_RO(timing_state); 886 887 static ssize_t online_show(struct device *dev, 888 struct device_attribute *attr, 889 char *buf) 890 { 891 return sysfs_emit(buf, "%i\n", stp_online); 892 } 893 894 static ssize_t online_store(struct device *dev, 895 struct device_attribute *attr, 896 const char *buf, size_t count) 897 { 898 unsigned int value; 899 900 value = simple_strtoul(buf, NULL, 0); 901 if (value != 0 && value != 1) 902 return -EINVAL; 903 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 904 return -EOPNOTSUPP; 905 mutex_lock(&stp_mutex); 906 stp_online = value; 907 if (stp_online) 908 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 909 else 910 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 911 queue_work(time_sync_wq, &stp_work); 912 mutex_unlock(&stp_mutex); 913 return count; 914 } 915 916 /* 917 * Can't use DEVICE_ATTR because the attribute should be named 918 * stp/online but dev_attr_online already exists in this file .. 919 */ 920 static DEVICE_ATTR_RW(online); 921 922 static struct attribute *stp_dev_attrs[] = { 923 &dev_attr_ctn_id.attr, 924 &dev_attr_ctn_type.attr, 925 &dev_attr_dst_offset.attr, 926 &dev_attr_leap_seconds.attr, 927 &dev_attr_online.attr, 928 &dev_attr_leap_seconds_scheduled.attr, 929 &dev_attr_stratum.attr, 930 &dev_attr_time_offset.attr, 931 &dev_attr_time_zone_offset.attr, 932 &dev_attr_timing_mode.attr, 933 &dev_attr_timing_state.attr, 934 NULL 935 }; 936 ATTRIBUTE_GROUPS(stp_dev); 937 938 static int __init stp_init_sysfs(void) 939 { 940 return subsys_system_register(&stp_subsys, stp_dev_groups); 941 } 942 943 device_initcall(stp_init_sysfs); 944