1 /* 2 * arch/s390/kernel/time.c 3 * Time of day based timer functions. 4 * 5 * S390 version 6 * Copyright IBM Corp. 1999, 2008 7 * Author(s): Hartmut Penner (hp@de.ibm.com), 8 * Martin Schwidefsky (schwidefsky@de.ibm.com), 9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 10 * 11 * Derived from "arch/i386/kernel/time.c" 12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 13 */ 14 15 #define KMSG_COMPONENT "time" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/errno.h> 19 #include <linux/module.h> 20 #include <linux/sched.h> 21 #include <linux/kernel.h> 22 #include <linux/param.h> 23 #include <linux/string.h> 24 #include <linux/mm.h> 25 #include <linux/interrupt.h> 26 #include <linux/cpu.h> 27 #include <linux/stop_machine.h> 28 #include <linux/time.h> 29 #include <linux/sysdev.h> 30 #include <linux/delay.h> 31 #include <linux/init.h> 32 #include <linux/smp.h> 33 #include <linux/types.h> 34 #include <linux/profile.h> 35 #include <linux/timex.h> 36 #include <linux/notifier.h> 37 #include <linux/clocksource.h> 38 #include <linux/clockchips.h> 39 #include <linux/gfp.h> 40 #include <asm/uaccess.h> 41 #include <asm/delay.h> 42 #include <asm/s390_ext.h> 43 #include <asm/div64.h> 44 #include <asm/vdso.h> 45 #include <asm/irq.h> 46 #include <asm/irq_regs.h> 47 #include <asm/timer.h> 48 #include <asm/etr.h> 49 #include <asm/cio.h> 50 51 /* change this if you have some constant time drift */ 52 #define USECS_PER_JIFFY ((unsigned long) 1000000/HZ) 53 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12) 54 55 u64 sched_clock_base_cc = -1; /* Force to data section. */ 56 EXPORT_SYMBOL_GPL(sched_clock_base_cc); 57 58 static DEFINE_PER_CPU(struct clock_event_device, comparators); 59 60 /* 61 * Scheduler clock - returns current time in nanosec units. 62 */ 63 unsigned long long notrace sched_clock(void) 64 { 65 return (get_clock_monotonic() * 125) >> 9; 66 } 67 68 /* 69 * Monotonic_clock - returns # of nanoseconds passed since time_init() 70 */ 71 unsigned long long monotonic_clock(void) 72 { 73 return sched_clock(); 74 } 75 EXPORT_SYMBOL(monotonic_clock); 76 77 void tod_to_timeval(__u64 todval, struct timespec *xt) 78 { 79 unsigned long long sec; 80 81 sec = todval >> 12; 82 do_div(sec, 1000000); 83 xt->tv_sec = sec; 84 todval -= (sec * 1000000) << 12; 85 xt->tv_nsec = ((todval * 1000) >> 12); 86 } 87 EXPORT_SYMBOL(tod_to_timeval); 88 89 void clock_comparator_work(void) 90 { 91 struct clock_event_device *cd; 92 93 S390_lowcore.clock_comparator = -1ULL; 94 set_clock_comparator(S390_lowcore.clock_comparator); 95 cd = &__get_cpu_var(comparators); 96 cd->event_handler(cd); 97 } 98 99 /* 100 * Fixup the clock comparator. 101 */ 102 static void fixup_clock_comparator(unsigned long long delta) 103 { 104 /* If nobody is waiting there's nothing to fix. */ 105 if (S390_lowcore.clock_comparator == -1ULL) 106 return; 107 S390_lowcore.clock_comparator += delta; 108 set_clock_comparator(S390_lowcore.clock_comparator); 109 } 110 111 static int s390_next_event(unsigned long delta, 112 struct clock_event_device *evt) 113 { 114 S390_lowcore.clock_comparator = get_clock() + delta; 115 set_clock_comparator(S390_lowcore.clock_comparator); 116 return 0; 117 } 118 119 static void s390_set_mode(enum clock_event_mode mode, 120 struct clock_event_device *evt) 121 { 122 } 123 124 /* 125 * Set up lowcore and control register of the current cpu to 126 * enable TOD clock and clock comparator interrupts. 127 */ 128 void init_cpu_timer(void) 129 { 130 struct clock_event_device *cd; 131 int cpu; 132 133 S390_lowcore.clock_comparator = -1ULL; 134 set_clock_comparator(S390_lowcore.clock_comparator); 135 136 cpu = smp_processor_id(); 137 cd = &per_cpu(comparators, cpu); 138 cd->name = "comparator"; 139 cd->features = CLOCK_EVT_FEAT_ONESHOT; 140 cd->mult = 16777; 141 cd->shift = 12; 142 cd->min_delta_ns = 1; 143 cd->max_delta_ns = LONG_MAX; 144 cd->rating = 400; 145 cd->cpumask = cpumask_of(cpu); 146 cd->set_next_event = s390_next_event; 147 cd->set_mode = s390_set_mode; 148 149 clockevents_register_device(cd); 150 151 /* Enable clock comparator timer interrupt. */ 152 __ctl_set_bit(0,11); 153 154 /* Always allow the timing alert external interrupt. */ 155 __ctl_set_bit(0, 4); 156 } 157 158 static void clock_comparator_interrupt(__u16 code) 159 { 160 if (S390_lowcore.clock_comparator == -1ULL) 161 set_clock_comparator(S390_lowcore.clock_comparator); 162 } 163 164 static void etr_timing_alert(struct etr_irq_parm *); 165 static void stp_timing_alert(struct stp_irq_parm *); 166 167 static void timing_alert_interrupt(__u16 code) 168 { 169 if (S390_lowcore.ext_params & 0x00c40000) 170 etr_timing_alert((struct etr_irq_parm *) 171 &S390_lowcore.ext_params); 172 if (S390_lowcore.ext_params & 0x00038000) 173 stp_timing_alert((struct stp_irq_parm *) 174 &S390_lowcore.ext_params); 175 } 176 177 static void etr_reset(void); 178 static void stp_reset(void); 179 180 void read_persistent_clock(struct timespec *ts) 181 { 182 tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, ts); 183 } 184 185 void read_boot_clock(struct timespec *ts) 186 { 187 tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts); 188 } 189 190 static cycle_t read_tod_clock(struct clocksource *cs) 191 { 192 return get_clock(); 193 } 194 195 static struct clocksource clocksource_tod = { 196 .name = "tod", 197 .rating = 400, 198 .read = read_tod_clock, 199 .mask = -1ULL, 200 .mult = 1000, 201 .shift = 12, 202 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 203 }; 204 205 struct clocksource * __init clocksource_default_clock(void) 206 { 207 return &clocksource_tod; 208 } 209 210 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock, 211 u32 mult) 212 { 213 if (clock != &clocksource_tod) 214 return; 215 216 /* Make userspace gettimeofday spin until we're done. */ 217 ++vdso_data->tb_update_count; 218 smp_wmb(); 219 vdso_data->xtime_tod_stamp = clock->cycle_last; 220 vdso_data->xtime_clock_sec = wall_time->tv_sec; 221 vdso_data->xtime_clock_nsec = wall_time->tv_nsec; 222 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec; 223 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec; 224 vdso_data->ntp_mult = mult; 225 smp_wmb(); 226 ++vdso_data->tb_update_count; 227 } 228 229 extern struct timezone sys_tz; 230 231 void update_vsyscall_tz(void) 232 { 233 /* Make userspace gettimeofday spin until we're done. */ 234 ++vdso_data->tb_update_count; 235 smp_wmb(); 236 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 237 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 238 smp_wmb(); 239 ++vdso_data->tb_update_count; 240 } 241 242 /* 243 * Initialize the TOD clock and the CPU timer of 244 * the boot cpu. 245 */ 246 void __init time_init(void) 247 { 248 /* Reset time synchronization interfaces. */ 249 etr_reset(); 250 stp_reset(); 251 252 /* request the clock comparator external interrupt */ 253 if (register_external_interrupt(0x1004, clock_comparator_interrupt)) 254 panic("Couldn't request external interrupt 0x1004"); 255 256 /* request the timing alert external interrupt */ 257 if (register_external_interrupt(0x1406, timing_alert_interrupt)) 258 panic("Couldn't request external interrupt 0x1406"); 259 260 if (clocksource_register(&clocksource_tod) != 0) 261 panic("Could not register TOD clock source"); 262 263 /* Enable TOD clock interrupts on the boot cpu. */ 264 init_cpu_timer(); 265 266 /* Enable cpu timer interrupts on the boot cpu. */ 267 vtime_init(); 268 } 269 270 /* 271 * The time is "clock". old is what we think the time is. 272 * Adjust the value by a multiple of jiffies and add the delta to ntp. 273 * "delay" is an approximation how long the synchronization took. If 274 * the time correction is positive, then "delay" is subtracted from 275 * the time difference and only the remaining part is passed to ntp. 276 */ 277 static unsigned long long adjust_time(unsigned long long old, 278 unsigned long long clock, 279 unsigned long long delay) 280 { 281 unsigned long long delta, ticks; 282 struct timex adjust; 283 284 if (clock > old) { 285 /* It is later than we thought. */ 286 delta = ticks = clock - old; 287 delta = ticks = (delta < delay) ? 0 : delta - delay; 288 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY); 289 adjust.offset = ticks * (1000000 / HZ); 290 } else { 291 /* It is earlier than we thought. */ 292 delta = ticks = old - clock; 293 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY); 294 delta = -delta; 295 adjust.offset = -ticks * (1000000 / HZ); 296 } 297 sched_clock_base_cc += delta; 298 if (adjust.offset != 0) { 299 pr_notice("The ETR interface has adjusted the clock " 300 "by %li microseconds\n", adjust.offset); 301 adjust.modes = ADJ_OFFSET_SINGLESHOT; 302 do_adjtimex(&adjust); 303 } 304 return delta; 305 } 306 307 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 308 static DEFINE_MUTEX(clock_sync_mutex); 309 static unsigned long clock_sync_flags; 310 311 #define CLOCK_SYNC_HAS_ETR 0 312 #define CLOCK_SYNC_HAS_STP 1 313 #define CLOCK_SYNC_ETR 2 314 #define CLOCK_SYNC_STP 3 315 316 /* 317 * The synchronous get_clock function. It will write the current clock 318 * value to the clock pointer and return 0 if the clock is in sync with 319 * the external time source. If the clock mode is local it will return 320 * -ENOSYS and -EAGAIN if the clock is not in sync with the external 321 * reference. 322 */ 323 int get_sync_clock(unsigned long long *clock) 324 { 325 atomic_t *sw_ptr; 326 unsigned int sw0, sw1; 327 328 sw_ptr = &get_cpu_var(clock_sync_word); 329 sw0 = atomic_read(sw_ptr); 330 *clock = get_clock(); 331 sw1 = atomic_read(sw_ptr); 332 put_cpu_var(clock_sync_word); 333 if (sw0 == sw1 && (sw0 & 0x80000000U)) 334 /* Success: time is in sync. */ 335 return 0; 336 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) && 337 !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 338 return -ENOSYS; 339 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) && 340 !test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 341 return -EACCES; 342 return -EAGAIN; 343 } 344 EXPORT_SYMBOL(get_sync_clock); 345 346 /* 347 * Make get_sync_clock return -EAGAIN. 348 */ 349 static void disable_sync_clock(void *dummy) 350 { 351 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word); 352 /* 353 * Clear the in-sync bit 2^31. All get_sync_clock calls will 354 * fail until the sync bit is turned back on. In addition 355 * increase the "sequence" counter to avoid the race of an 356 * etr event and the complete recovery against get_sync_clock. 357 */ 358 atomic_clear_mask(0x80000000, sw_ptr); 359 atomic_inc(sw_ptr); 360 } 361 362 /* 363 * Make get_sync_clock return 0 again. 364 * Needs to be called from a context disabled for preemption. 365 */ 366 static void enable_sync_clock(void) 367 { 368 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word); 369 atomic_set_mask(0x80000000, sw_ptr); 370 } 371 372 /* 373 * Function to check if the clock is in sync. 374 */ 375 static inline int check_sync_clock(void) 376 { 377 atomic_t *sw_ptr; 378 int rc; 379 380 sw_ptr = &get_cpu_var(clock_sync_word); 381 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 382 put_cpu_var(clock_sync_word); 383 return rc; 384 } 385 386 /* Single threaded workqueue used for etr and stp sync events */ 387 static struct workqueue_struct *time_sync_wq; 388 389 static void __init time_init_wq(void) 390 { 391 if (time_sync_wq) 392 return; 393 time_sync_wq = create_singlethread_workqueue("timesync"); 394 stop_machine_create(); 395 } 396 397 /* 398 * External Time Reference (ETR) code. 399 */ 400 static int etr_port0_online; 401 static int etr_port1_online; 402 static int etr_steai_available; 403 404 static int __init early_parse_etr(char *p) 405 { 406 if (strncmp(p, "off", 3) == 0) 407 etr_port0_online = etr_port1_online = 0; 408 else if (strncmp(p, "port0", 5) == 0) 409 etr_port0_online = 1; 410 else if (strncmp(p, "port1", 5) == 0) 411 etr_port1_online = 1; 412 else if (strncmp(p, "on", 2) == 0) 413 etr_port0_online = etr_port1_online = 1; 414 return 0; 415 } 416 early_param("etr", early_parse_etr); 417 418 enum etr_event { 419 ETR_EVENT_PORT0_CHANGE, 420 ETR_EVENT_PORT1_CHANGE, 421 ETR_EVENT_PORT_ALERT, 422 ETR_EVENT_SYNC_CHECK, 423 ETR_EVENT_SWITCH_LOCAL, 424 ETR_EVENT_UPDATE, 425 }; 426 427 /* 428 * Valid bit combinations of the eacr register are (x = don't care): 429 * e0 e1 dp p0 p1 ea es sl 430 * 0 0 x 0 0 0 0 0 initial, disabled state 431 * 0 0 x 0 1 1 0 0 port 1 online 432 * 0 0 x 1 0 1 0 0 port 0 online 433 * 0 0 x 1 1 1 0 0 both ports online 434 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode 435 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode 436 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync 437 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync 438 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable 439 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync 440 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync 441 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode 442 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode 443 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync 444 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync 445 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable 446 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync 447 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync 448 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync 449 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync 450 */ 451 static struct etr_eacr etr_eacr; 452 static u64 etr_tolec; /* time of last eacr update */ 453 static struct etr_aib etr_port0; 454 static int etr_port0_uptodate; 455 static struct etr_aib etr_port1; 456 static int etr_port1_uptodate; 457 static unsigned long etr_events; 458 static struct timer_list etr_timer; 459 460 static void etr_timeout(unsigned long dummy); 461 static void etr_work_fn(struct work_struct *work); 462 static DEFINE_MUTEX(etr_work_mutex); 463 static DECLARE_WORK(etr_work, etr_work_fn); 464 465 /* 466 * Reset ETR attachment. 467 */ 468 static void etr_reset(void) 469 { 470 etr_eacr = (struct etr_eacr) { 471 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0, 472 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0, 473 .es = 0, .sl = 0 }; 474 if (etr_setr(&etr_eacr) == 0) { 475 etr_tolec = get_clock(); 476 set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags); 477 if (etr_port0_online && etr_port1_online) 478 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 479 } else if (etr_port0_online || etr_port1_online) { 480 pr_warning("The real or virtual hardware system does " 481 "not provide an ETR interface\n"); 482 etr_port0_online = etr_port1_online = 0; 483 } 484 } 485 486 static int __init etr_init(void) 487 { 488 struct etr_aib aib; 489 490 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags)) 491 return 0; 492 time_init_wq(); 493 /* Check if this machine has the steai instruction. */ 494 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0) 495 etr_steai_available = 1; 496 setup_timer(&etr_timer, etr_timeout, 0UL); 497 if (etr_port0_online) { 498 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 499 queue_work(time_sync_wq, &etr_work); 500 } 501 if (etr_port1_online) { 502 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 503 queue_work(time_sync_wq, &etr_work); 504 } 505 return 0; 506 } 507 508 arch_initcall(etr_init); 509 510 /* 511 * Two sorts of ETR machine checks. The architecture reads: 512 * "When a machine-check niterruption occurs and if a switch-to-local or 513 * ETR-sync-check interrupt request is pending but disabled, this pending 514 * disabled interruption request is indicated and is cleared". 515 * Which means that we can get etr_switch_to_local events from the machine 516 * check handler although the interruption condition is disabled. Lovely.. 517 */ 518 519 /* 520 * Switch to local machine check. This is called when the last usable 521 * ETR port goes inactive. After switch to local the clock is not in sync. 522 */ 523 void etr_switch_to_local(void) 524 { 525 if (!etr_eacr.sl) 526 return; 527 disable_sync_clock(NULL); 528 set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events); 529 queue_work(time_sync_wq, &etr_work); 530 } 531 532 /* 533 * ETR sync check machine check. This is called when the ETR OTE and the 534 * local clock OTE are farther apart than the ETR sync check tolerance. 535 * After a ETR sync check the clock is not in sync. The machine check 536 * is broadcasted to all cpus at the same time. 537 */ 538 void etr_sync_check(void) 539 { 540 if (!etr_eacr.es) 541 return; 542 disable_sync_clock(NULL); 543 set_bit(ETR_EVENT_SYNC_CHECK, &etr_events); 544 queue_work(time_sync_wq, &etr_work); 545 } 546 547 /* 548 * ETR timing alert. There are two causes: 549 * 1) port state change, check the usability of the port 550 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the 551 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3) 552 * or ETR-data word 4 (edf4) has changed. 553 */ 554 static void etr_timing_alert(struct etr_irq_parm *intparm) 555 { 556 if (intparm->pc0) 557 /* ETR port 0 state change. */ 558 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 559 if (intparm->pc1) 560 /* ETR port 1 state change. */ 561 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 562 if (intparm->eai) 563 /* 564 * ETR port alert on either port 0, 1 or both. 565 * Both ports are not up-to-date now. 566 */ 567 set_bit(ETR_EVENT_PORT_ALERT, &etr_events); 568 queue_work(time_sync_wq, &etr_work); 569 } 570 571 static void etr_timeout(unsigned long dummy) 572 { 573 set_bit(ETR_EVENT_UPDATE, &etr_events); 574 queue_work(time_sync_wq, &etr_work); 575 } 576 577 /* 578 * Check if the etr mode is pss. 579 */ 580 static inline int etr_mode_is_pps(struct etr_eacr eacr) 581 { 582 return eacr.es && !eacr.sl; 583 } 584 585 /* 586 * Check if the etr mode is etr. 587 */ 588 static inline int etr_mode_is_etr(struct etr_eacr eacr) 589 { 590 return eacr.es && eacr.sl; 591 } 592 593 /* 594 * Check if the port can be used for TOD synchronization. 595 * For PPS mode the port has to receive OTEs. For ETR mode 596 * the port has to receive OTEs, the ETR stepping bit has to 597 * be zero and the validity bits for data frame 1, 2, and 3 598 * have to be 1. 599 */ 600 static int etr_port_valid(struct etr_aib *aib, int port) 601 { 602 unsigned int psc; 603 604 /* Check that this port is receiving OTEs. */ 605 if (aib->tsp == 0) 606 return 0; 607 608 psc = port ? aib->esw.psc1 : aib->esw.psc0; 609 if (psc == etr_lpsc_pps_mode) 610 return 1; 611 if (psc == etr_lpsc_operational_step) 612 return !aib->esw.y && aib->slsw.v1 && 613 aib->slsw.v2 && aib->slsw.v3; 614 return 0; 615 } 616 617 /* 618 * Check if two ports are on the same network. 619 */ 620 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2) 621 { 622 // FIXME: any other fields we have to compare? 623 return aib1->edf1.net_id == aib2->edf1.net_id; 624 } 625 626 /* 627 * Wrapper for etr_stei that converts physical port states 628 * to logical port states to be consistent with the output 629 * of stetr (see etr_psc vs. etr_lpsc). 630 */ 631 static void etr_steai_cv(struct etr_aib *aib, unsigned int func) 632 { 633 BUG_ON(etr_steai(aib, func) != 0); 634 /* Convert port state to logical port state. */ 635 if (aib->esw.psc0 == 1) 636 aib->esw.psc0 = 2; 637 else if (aib->esw.psc0 == 0 && aib->esw.p == 0) 638 aib->esw.psc0 = 1; 639 if (aib->esw.psc1 == 1) 640 aib->esw.psc1 = 2; 641 else if (aib->esw.psc1 == 0 && aib->esw.p == 1) 642 aib->esw.psc1 = 1; 643 } 644 645 /* 646 * Check if the aib a2 is still connected to the same attachment as 647 * aib a1, the etv values differ by one and a2 is valid. 648 */ 649 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p) 650 { 651 int state_a1, state_a2; 652 653 /* Paranoia check: e0/e1 should better be the same. */ 654 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 || 655 a1->esw.eacr.e1 != a2->esw.eacr.e1) 656 return 0; 657 658 /* Still connected to the same etr ? */ 659 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0; 660 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0; 661 if (state_a1 == etr_lpsc_operational_step) { 662 if (state_a2 != etr_lpsc_operational_step || 663 a1->edf1.net_id != a2->edf1.net_id || 664 a1->edf1.etr_id != a2->edf1.etr_id || 665 a1->edf1.etr_pn != a2->edf1.etr_pn) 666 return 0; 667 } else if (state_a2 != etr_lpsc_pps_mode) 668 return 0; 669 670 /* The ETV value of a2 needs to be ETV of a1 + 1. */ 671 if (a1->edf2.etv + 1 != a2->edf2.etv) 672 return 0; 673 674 if (!etr_port_valid(a2, p)) 675 return 0; 676 677 return 1; 678 } 679 680 struct clock_sync_data { 681 atomic_t cpus; 682 int in_sync; 683 unsigned long long fixup_cc; 684 int etr_port; 685 struct etr_aib *etr_aib; 686 }; 687 688 static void clock_sync_cpu(struct clock_sync_data *sync) 689 { 690 atomic_dec(&sync->cpus); 691 enable_sync_clock(); 692 /* 693 * This looks like a busy wait loop but it isn't. etr_sync_cpus 694 * is called on all other cpus while the TOD clocks is stopped. 695 * __udelay will stop the cpu on an enabled wait psw until the 696 * TOD is running again. 697 */ 698 while (sync->in_sync == 0) { 699 __udelay(1); 700 /* 701 * A different cpu changes *in_sync. Therefore use 702 * barrier() to force memory access. 703 */ 704 barrier(); 705 } 706 if (sync->in_sync != 1) 707 /* Didn't work. Clear per-cpu in sync bit again. */ 708 disable_sync_clock(NULL); 709 /* 710 * This round of TOD syncing is done. Set the clock comparator 711 * to the next tick and let the processor continue. 712 */ 713 fixup_clock_comparator(sync->fixup_cc); 714 } 715 716 /* 717 * Sync the TOD clock using the port refered to by aibp. This port 718 * has to be enabled and the other port has to be disabled. The 719 * last eacr update has to be more than 1.6 seconds in the past. 720 */ 721 static int etr_sync_clock(void *data) 722 { 723 static int first; 724 unsigned long long clock, old_clock, delay, delta; 725 struct clock_sync_data *etr_sync; 726 struct etr_aib *sync_port, *aib; 727 int port; 728 int rc; 729 730 etr_sync = data; 731 732 if (xchg(&first, 1) == 1) { 733 /* Slave */ 734 clock_sync_cpu(etr_sync); 735 return 0; 736 } 737 738 /* Wait until all other cpus entered the sync function. */ 739 while (atomic_read(&etr_sync->cpus) != 0) 740 cpu_relax(); 741 742 port = etr_sync->etr_port; 743 aib = etr_sync->etr_aib; 744 sync_port = (port == 0) ? &etr_port0 : &etr_port1; 745 enable_sync_clock(); 746 747 /* Set clock to next OTE. */ 748 __ctl_set_bit(14, 21); 749 __ctl_set_bit(0, 29); 750 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32; 751 old_clock = get_clock(); 752 if (set_clock(clock) == 0) { 753 __udelay(1); /* Wait for the clock to start. */ 754 __ctl_clear_bit(0, 29); 755 __ctl_clear_bit(14, 21); 756 etr_stetr(aib); 757 /* Adjust Linux timing variables. */ 758 delay = (unsigned long long) 759 (aib->edf2.etv - sync_port->edf2.etv) << 32; 760 delta = adjust_time(old_clock, clock, delay); 761 etr_sync->fixup_cc = delta; 762 fixup_clock_comparator(delta); 763 /* Verify that the clock is properly set. */ 764 if (!etr_aib_follows(sync_port, aib, port)) { 765 /* Didn't work. */ 766 disable_sync_clock(NULL); 767 etr_sync->in_sync = -EAGAIN; 768 rc = -EAGAIN; 769 } else { 770 etr_sync->in_sync = 1; 771 rc = 0; 772 } 773 } else { 774 /* Could not set the clock ?!? */ 775 __ctl_clear_bit(0, 29); 776 __ctl_clear_bit(14, 21); 777 disable_sync_clock(NULL); 778 etr_sync->in_sync = -EAGAIN; 779 rc = -EAGAIN; 780 } 781 xchg(&first, 0); 782 return rc; 783 } 784 785 static int etr_sync_clock_stop(struct etr_aib *aib, int port) 786 { 787 struct clock_sync_data etr_sync; 788 struct etr_aib *sync_port; 789 int follows; 790 int rc; 791 792 /* Check if the current aib is adjacent to the sync port aib. */ 793 sync_port = (port == 0) ? &etr_port0 : &etr_port1; 794 follows = etr_aib_follows(sync_port, aib, port); 795 memcpy(sync_port, aib, sizeof(*aib)); 796 if (!follows) 797 return -EAGAIN; 798 memset(&etr_sync, 0, sizeof(etr_sync)); 799 etr_sync.etr_aib = aib; 800 etr_sync.etr_port = port; 801 get_online_cpus(); 802 atomic_set(&etr_sync.cpus, num_online_cpus() - 1); 803 rc = stop_machine(etr_sync_clock, &etr_sync, &cpu_online_map); 804 put_online_cpus(); 805 return rc; 806 } 807 808 /* 809 * Handle the immediate effects of the different events. 810 * The port change event is used for online/offline changes. 811 */ 812 static struct etr_eacr etr_handle_events(struct etr_eacr eacr) 813 { 814 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) 815 eacr.es = 0; 816 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) 817 eacr.es = eacr.sl = 0; 818 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events)) 819 etr_port0_uptodate = etr_port1_uptodate = 0; 820 821 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) { 822 if (eacr.e0) 823 /* 824 * Port change of an enabled port. We have to 825 * assume that this can have caused an stepping 826 * port switch. 827 */ 828 etr_tolec = get_clock(); 829 eacr.p0 = etr_port0_online; 830 if (!eacr.p0) 831 eacr.e0 = 0; 832 etr_port0_uptodate = 0; 833 } 834 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) { 835 if (eacr.e1) 836 /* 837 * Port change of an enabled port. We have to 838 * assume that this can have caused an stepping 839 * port switch. 840 */ 841 etr_tolec = get_clock(); 842 eacr.p1 = etr_port1_online; 843 if (!eacr.p1) 844 eacr.e1 = 0; 845 etr_port1_uptodate = 0; 846 } 847 clear_bit(ETR_EVENT_UPDATE, &etr_events); 848 return eacr; 849 } 850 851 /* 852 * Set up a timer that expires after the etr_tolec + 1.6 seconds if 853 * one of the ports needs an update. 854 */ 855 static void etr_set_tolec_timeout(unsigned long long now) 856 { 857 unsigned long micros; 858 859 if ((!etr_eacr.p0 || etr_port0_uptodate) && 860 (!etr_eacr.p1 || etr_port1_uptodate)) 861 return; 862 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0; 863 micros = (micros > 1600000) ? 0 : 1600000 - micros; 864 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1); 865 } 866 867 /* 868 * Set up a time that expires after 1/2 second. 869 */ 870 static void etr_set_sync_timeout(void) 871 { 872 mod_timer(&etr_timer, jiffies + HZ/2); 873 } 874 875 /* 876 * Update the aib information for one or both ports. 877 */ 878 static struct etr_eacr etr_handle_update(struct etr_aib *aib, 879 struct etr_eacr eacr) 880 { 881 /* With both ports disabled the aib information is useless. */ 882 if (!eacr.e0 && !eacr.e1) 883 return eacr; 884 885 /* Update port0 or port1 with aib stored in etr_work_fn. */ 886 if (aib->esw.q == 0) { 887 /* Information for port 0 stored. */ 888 if (eacr.p0 && !etr_port0_uptodate) { 889 etr_port0 = *aib; 890 if (etr_port0_online) 891 etr_port0_uptodate = 1; 892 } 893 } else { 894 /* Information for port 1 stored. */ 895 if (eacr.p1 && !etr_port1_uptodate) { 896 etr_port1 = *aib; 897 if (etr_port0_online) 898 etr_port1_uptodate = 1; 899 } 900 } 901 902 /* 903 * Do not try to get the alternate port aib if the clock 904 * is not in sync yet. 905 */ 906 if (!check_sync_clock()) 907 return eacr; 908 909 /* 910 * If steai is available we can get the information about 911 * the other port immediately. If only stetr is available the 912 * data-port bit toggle has to be used. 913 */ 914 if (etr_steai_available) { 915 if (eacr.p0 && !etr_port0_uptodate) { 916 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0); 917 etr_port0_uptodate = 1; 918 } 919 if (eacr.p1 && !etr_port1_uptodate) { 920 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1); 921 etr_port1_uptodate = 1; 922 } 923 } else { 924 /* 925 * One port was updated above, if the other 926 * port is not uptodate toggle dp bit. 927 */ 928 if ((eacr.p0 && !etr_port0_uptodate) || 929 (eacr.p1 && !etr_port1_uptodate)) 930 eacr.dp ^= 1; 931 else 932 eacr.dp = 0; 933 } 934 return eacr; 935 } 936 937 /* 938 * Write new etr control register if it differs from the current one. 939 * Return 1 if etr_tolec has been updated as well. 940 */ 941 static void etr_update_eacr(struct etr_eacr eacr) 942 { 943 int dp_changed; 944 945 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0) 946 /* No change, return. */ 947 return; 948 /* 949 * The disable of an active port of the change of the data port 950 * bit can/will cause a change in the data port. 951 */ 952 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 || 953 (etr_eacr.dp ^ eacr.dp) != 0; 954 etr_eacr = eacr; 955 etr_setr(&etr_eacr); 956 if (dp_changed) 957 etr_tolec = get_clock(); 958 } 959 960 /* 961 * ETR work. In this function you'll find the main logic. In 962 * particular this is the only function that calls etr_update_eacr(), 963 * it "controls" the etr control register. 964 */ 965 static void etr_work_fn(struct work_struct *work) 966 { 967 unsigned long long now; 968 struct etr_eacr eacr; 969 struct etr_aib aib; 970 int sync_port; 971 972 /* prevent multiple execution. */ 973 mutex_lock(&etr_work_mutex); 974 975 /* Create working copy of etr_eacr. */ 976 eacr = etr_eacr; 977 978 /* Check for the different events and their immediate effects. */ 979 eacr = etr_handle_events(eacr); 980 981 /* Check if ETR is supposed to be active. */ 982 eacr.ea = eacr.p0 || eacr.p1; 983 if (!eacr.ea) { 984 /* Both ports offline. Reset everything. */ 985 eacr.dp = eacr.es = eacr.sl = 0; 986 on_each_cpu(disable_sync_clock, NULL, 1); 987 del_timer_sync(&etr_timer); 988 etr_update_eacr(eacr); 989 goto out_unlock; 990 } 991 992 /* Store aib to get the current ETR status word. */ 993 BUG_ON(etr_stetr(&aib) != 0); 994 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */ 995 now = get_clock(); 996 997 /* 998 * Update the port information if the last stepping port change 999 * or data port change is older than 1.6 seconds. 1000 */ 1001 if (now >= etr_tolec + (1600000 << 12)) 1002 eacr = etr_handle_update(&aib, eacr); 1003 1004 /* 1005 * Select ports to enable. The prefered synchronization mode is PPS. 1006 * If a port can be enabled depends on a number of things: 1007 * 1) The port needs to be online and uptodate. A port is not 1008 * disabled just because it is not uptodate, but it is only 1009 * enabled if it is uptodate. 1010 * 2) The port needs to have the same mode (pps / etr). 1011 * 3) The port needs to be usable -> etr_port_valid() == 1 1012 * 4) To enable the second port the clock needs to be in sync. 1013 * 5) If both ports are useable and are ETR ports, the network id 1014 * has to be the same. 1015 * The eacr.sl bit is used to indicate etr mode vs. pps mode. 1016 */ 1017 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) { 1018 eacr.sl = 0; 1019 eacr.e0 = 1; 1020 if (!etr_mode_is_pps(etr_eacr)) 1021 eacr.es = 0; 1022 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode) 1023 eacr.e1 = 0; 1024 // FIXME: uptodate checks ? 1025 else if (etr_port0_uptodate && etr_port1_uptodate) 1026 eacr.e1 = 1; 1027 sync_port = (etr_port0_uptodate && 1028 etr_port_valid(&etr_port0, 0)) ? 0 : -1; 1029 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) { 1030 eacr.sl = 0; 1031 eacr.e0 = 0; 1032 eacr.e1 = 1; 1033 if (!etr_mode_is_pps(etr_eacr)) 1034 eacr.es = 0; 1035 sync_port = (etr_port1_uptodate && 1036 etr_port_valid(&etr_port1, 1)) ? 1 : -1; 1037 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) { 1038 eacr.sl = 1; 1039 eacr.e0 = 1; 1040 if (!etr_mode_is_etr(etr_eacr)) 1041 eacr.es = 0; 1042 if (!eacr.es || !eacr.p1 || 1043 aib.esw.psc1 != etr_lpsc_operational_alt) 1044 eacr.e1 = 0; 1045 else if (etr_port0_uptodate && etr_port1_uptodate && 1046 etr_compare_network(&etr_port0, &etr_port1)) 1047 eacr.e1 = 1; 1048 sync_port = (etr_port0_uptodate && 1049 etr_port_valid(&etr_port0, 0)) ? 0 : -1; 1050 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) { 1051 eacr.sl = 1; 1052 eacr.e0 = 0; 1053 eacr.e1 = 1; 1054 if (!etr_mode_is_etr(etr_eacr)) 1055 eacr.es = 0; 1056 sync_port = (etr_port1_uptodate && 1057 etr_port_valid(&etr_port1, 1)) ? 1 : -1; 1058 } else { 1059 /* Both ports not usable. */ 1060 eacr.es = eacr.sl = 0; 1061 sync_port = -1; 1062 } 1063 1064 /* 1065 * If the clock is in sync just update the eacr and return. 1066 * If there is no valid sync port wait for a port update. 1067 */ 1068 if (check_sync_clock() || sync_port < 0) { 1069 etr_update_eacr(eacr); 1070 etr_set_tolec_timeout(now); 1071 goto out_unlock; 1072 } 1073 1074 /* 1075 * Prepare control register for clock syncing 1076 * (reset data port bit, set sync check control. 1077 */ 1078 eacr.dp = 0; 1079 eacr.es = 1; 1080 1081 /* 1082 * Update eacr and try to synchronize the clock. If the update 1083 * of eacr caused a stepping port switch (or if we have to 1084 * assume that a stepping port switch has occured) or the 1085 * clock syncing failed, reset the sync check control bit 1086 * and set up a timer to try again after 0.5 seconds 1087 */ 1088 etr_update_eacr(eacr); 1089 if (now < etr_tolec + (1600000 << 12) || 1090 etr_sync_clock_stop(&aib, sync_port) != 0) { 1091 /* Sync failed. Try again in 1/2 second. */ 1092 eacr.es = 0; 1093 etr_update_eacr(eacr); 1094 etr_set_sync_timeout(); 1095 } else 1096 etr_set_tolec_timeout(now); 1097 out_unlock: 1098 mutex_unlock(&etr_work_mutex); 1099 } 1100 1101 /* 1102 * Sysfs interface functions 1103 */ 1104 static struct sysdev_class etr_sysclass = { 1105 .name = "etr", 1106 }; 1107 1108 static struct sys_device etr_port0_dev = { 1109 .id = 0, 1110 .cls = &etr_sysclass, 1111 }; 1112 1113 static struct sys_device etr_port1_dev = { 1114 .id = 1, 1115 .cls = &etr_sysclass, 1116 }; 1117 1118 /* 1119 * ETR class attributes 1120 */ 1121 static ssize_t etr_stepping_port_show(struct sysdev_class *class, 1122 struct sysdev_class_attribute *attr, 1123 char *buf) 1124 { 1125 return sprintf(buf, "%i\n", etr_port0.esw.p); 1126 } 1127 1128 static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL); 1129 1130 static ssize_t etr_stepping_mode_show(struct sysdev_class *class, 1131 struct sysdev_class_attribute *attr, 1132 char *buf) 1133 { 1134 char *mode_str; 1135 1136 if (etr_mode_is_pps(etr_eacr)) 1137 mode_str = "pps"; 1138 else if (etr_mode_is_etr(etr_eacr)) 1139 mode_str = "etr"; 1140 else 1141 mode_str = "local"; 1142 return sprintf(buf, "%s\n", mode_str); 1143 } 1144 1145 static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL); 1146 1147 /* 1148 * ETR port attributes 1149 */ 1150 static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev) 1151 { 1152 if (dev == &etr_port0_dev) 1153 return etr_port0_online ? &etr_port0 : NULL; 1154 else 1155 return etr_port1_online ? &etr_port1 : NULL; 1156 } 1157 1158 static ssize_t etr_online_show(struct sys_device *dev, 1159 struct sysdev_attribute *attr, 1160 char *buf) 1161 { 1162 unsigned int online; 1163 1164 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online; 1165 return sprintf(buf, "%i\n", online); 1166 } 1167 1168 static ssize_t etr_online_store(struct sys_device *dev, 1169 struct sysdev_attribute *attr, 1170 const char *buf, size_t count) 1171 { 1172 unsigned int value; 1173 1174 value = simple_strtoul(buf, NULL, 0); 1175 if (value != 0 && value != 1) 1176 return -EINVAL; 1177 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags)) 1178 return -EOPNOTSUPP; 1179 mutex_lock(&clock_sync_mutex); 1180 if (dev == &etr_port0_dev) { 1181 if (etr_port0_online == value) 1182 goto out; /* Nothing to do. */ 1183 etr_port0_online = value; 1184 if (etr_port0_online && etr_port1_online) 1185 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1186 else 1187 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1188 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 1189 queue_work(time_sync_wq, &etr_work); 1190 } else { 1191 if (etr_port1_online == value) 1192 goto out; /* Nothing to do. */ 1193 etr_port1_online = value; 1194 if (etr_port0_online && etr_port1_online) 1195 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1196 else 1197 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1198 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 1199 queue_work(time_sync_wq, &etr_work); 1200 } 1201 out: 1202 mutex_unlock(&clock_sync_mutex); 1203 return count; 1204 } 1205 1206 static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store); 1207 1208 static ssize_t etr_stepping_control_show(struct sys_device *dev, 1209 struct sysdev_attribute *attr, 1210 char *buf) 1211 { 1212 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ? 1213 etr_eacr.e0 : etr_eacr.e1); 1214 } 1215 1216 static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL); 1217 1218 static ssize_t etr_mode_code_show(struct sys_device *dev, 1219 struct sysdev_attribute *attr, char *buf) 1220 { 1221 if (!etr_port0_online && !etr_port1_online) 1222 /* Status word is not uptodate if both ports are offline. */ 1223 return -ENODATA; 1224 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ? 1225 etr_port0.esw.psc0 : etr_port0.esw.psc1); 1226 } 1227 1228 static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL); 1229 1230 static ssize_t etr_untuned_show(struct sys_device *dev, 1231 struct sysdev_attribute *attr, char *buf) 1232 { 1233 struct etr_aib *aib = etr_aib_from_dev(dev); 1234 1235 if (!aib || !aib->slsw.v1) 1236 return -ENODATA; 1237 return sprintf(buf, "%i\n", aib->edf1.u); 1238 } 1239 1240 static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL); 1241 1242 static ssize_t etr_network_id_show(struct sys_device *dev, 1243 struct sysdev_attribute *attr, char *buf) 1244 { 1245 struct etr_aib *aib = etr_aib_from_dev(dev); 1246 1247 if (!aib || !aib->slsw.v1) 1248 return -ENODATA; 1249 return sprintf(buf, "%i\n", aib->edf1.net_id); 1250 } 1251 1252 static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL); 1253 1254 static ssize_t etr_id_show(struct sys_device *dev, 1255 struct sysdev_attribute *attr, char *buf) 1256 { 1257 struct etr_aib *aib = etr_aib_from_dev(dev); 1258 1259 if (!aib || !aib->slsw.v1) 1260 return -ENODATA; 1261 return sprintf(buf, "%i\n", aib->edf1.etr_id); 1262 } 1263 1264 static SYSDEV_ATTR(id, 0400, etr_id_show, NULL); 1265 1266 static ssize_t etr_port_number_show(struct sys_device *dev, 1267 struct sysdev_attribute *attr, char *buf) 1268 { 1269 struct etr_aib *aib = etr_aib_from_dev(dev); 1270 1271 if (!aib || !aib->slsw.v1) 1272 return -ENODATA; 1273 return sprintf(buf, "%i\n", aib->edf1.etr_pn); 1274 } 1275 1276 static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL); 1277 1278 static ssize_t etr_coupled_show(struct sys_device *dev, 1279 struct sysdev_attribute *attr, char *buf) 1280 { 1281 struct etr_aib *aib = etr_aib_from_dev(dev); 1282 1283 if (!aib || !aib->slsw.v3) 1284 return -ENODATA; 1285 return sprintf(buf, "%i\n", aib->edf3.c); 1286 } 1287 1288 static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL); 1289 1290 static ssize_t etr_local_time_show(struct sys_device *dev, 1291 struct sysdev_attribute *attr, char *buf) 1292 { 1293 struct etr_aib *aib = etr_aib_from_dev(dev); 1294 1295 if (!aib || !aib->slsw.v3) 1296 return -ENODATA; 1297 return sprintf(buf, "%i\n", aib->edf3.blto); 1298 } 1299 1300 static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL); 1301 1302 static ssize_t etr_utc_offset_show(struct sys_device *dev, 1303 struct sysdev_attribute *attr, char *buf) 1304 { 1305 struct etr_aib *aib = etr_aib_from_dev(dev); 1306 1307 if (!aib || !aib->slsw.v3) 1308 return -ENODATA; 1309 return sprintf(buf, "%i\n", aib->edf3.buo); 1310 } 1311 1312 static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL); 1313 1314 static struct sysdev_attribute *etr_port_attributes[] = { 1315 &attr_online, 1316 &attr_stepping_control, 1317 &attr_state_code, 1318 &attr_untuned, 1319 &attr_network, 1320 &attr_id, 1321 &attr_port, 1322 &attr_coupled, 1323 &attr_local_time, 1324 &attr_utc_offset, 1325 NULL 1326 }; 1327 1328 static int __init etr_register_port(struct sys_device *dev) 1329 { 1330 struct sysdev_attribute **attr; 1331 int rc; 1332 1333 rc = sysdev_register(dev); 1334 if (rc) 1335 goto out; 1336 for (attr = etr_port_attributes; *attr; attr++) { 1337 rc = sysdev_create_file(dev, *attr); 1338 if (rc) 1339 goto out_unreg; 1340 } 1341 return 0; 1342 out_unreg: 1343 for (; attr >= etr_port_attributes; attr--) 1344 sysdev_remove_file(dev, *attr); 1345 sysdev_unregister(dev); 1346 out: 1347 return rc; 1348 } 1349 1350 static void __init etr_unregister_port(struct sys_device *dev) 1351 { 1352 struct sysdev_attribute **attr; 1353 1354 for (attr = etr_port_attributes; *attr; attr++) 1355 sysdev_remove_file(dev, *attr); 1356 sysdev_unregister(dev); 1357 } 1358 1359 static int __init etr_init_sysfs(void) 1360 { 1361 int rc; 1362 1363 rc = sysdev_class_register(&etr_sysclass); 1364 if (rc) 1365 goto out; 1366 rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port); 1367 if (rc) 1368 goto out_unreg_class; 1369 rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode); 1370 if (rc) 1371 goto out_remove_stepping_port; 1372 rc = etr_register_port(&etr_port0_dev); 1373 if (rc) 1374 goto out_remove_stepping_mode; 1375 rc = etr_register_port(&etr_port1_dev); 1376 if (rc) 1377 goto out_remove_port0; 1378 return 0; 1379 1380 out_remove_port0: 1381 etr_unregister_port(&etr_port0_dev); 1382 out_remove_stepping_mode: 1383 sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode); 1384 out_remove_stepping_port: 1385 sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port); 1386 out_unreg_class: 1387 sysdev_class_unregister(&etr_sysclass); 1388 out: 1389 return rc; 1390 } 1391 1392 device_initcall(etr_init_sysfs); 1393 1394 /* 1395 * Server Time Protocol (STP) code. 1396 */ 1397 static int stp_online; 1398 static struct stp_sstpi stp_info; 1399 static void *stp_page; 1400 1401 static void stp_work_fn(struct work_struct *work); 1402 static DEFINE_MUTEX(stp_work_mutex); 1403 static DECLARE_WORK(stp_work, stp_work_fn); 1404 static struct timer_list stp_timer; 1405 1406 static int __init early_parse_stp(char *p) 1407 { 1408 if (strncmp(p, "off", 3) == 0) 1409 stp_online = 0; 1410 else if (strncmp(p, "on", 2) == 0) 1411 stp_online = 1; 1412 return 0; 1413 } 1414 early_param("stp", early_parse_stp); 1415 1416 /* 1417 * Reset STP attachment. 1418 */ 1419 static void __init stp_reset(void) 1420 { 1421 int rc; 1422 1423 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 1424 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000); 1425 if (rc == 0) 1426 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 1427 else if (stp_online) { 1428 pr_warning("The real or virtual hardware system does " 1429 "not provide an STP interface\n"); 1430 free_page((unsigned long) stp_page); 1431 stp_page = NULL; 1432 stp_online = 0; 1433 } 1434 } 1435 1436 static void stp_timeout(unsigned long dummy) 1437 { 1438 queue_work(time_sync_wq, &stp_work); 1439 } 1440 1441 static int __init stp_init(void) 1442 { 1443 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 1444 return 0; 1445 setup_timer(&stp_timer, stp_timeout, 0UL); 1446 time_init_wq(); 1447 if (!stp_online) 1448 return 0; 1449 queue_work(time_sync_wq, &stp_work); 1450 return 0; 1451 } 1452 1453 arch_initcall(stp_init); 1454 1455 /* 1456 * STP timing alert. There are three causes: 1457 * 1) timing status change 1458 * 2) link availability change 1459 * 3) time control parameter change 1460 * In all three cases we are only interested in the clock source state. 1461 * If a STP clock source is now available use it. 1462 */ 1463 static void stp_timing_alert(struct stp_irq_parm *intparm) 1464 { 1465 if (intparm->tsc || intparm->lac || intparm->tcpc) 1466 queue_work(time_sync_wq, &stp_work); 1467 } 1468 1469 /* 1470 * STP sync check machine check. This is called when the timing state 1471 * changes from the synchronized state to the unsynchronized state. 1472 * After a STP sync check the clock is not in sync. The machine check 1473 * is broadcasted to all cpus at the same time. 1474 */ 1475 void stp_sync_check(void) 1476 { 1477 disable_sync_clock(NULL); 1478 queue_work(time_sync_wq, &stp_work); 1479 } 1480 1481 /* 1482 * STP island condition machine check. This is called when an attached 1483 * server attempts to communicate over an STP link and the servers 1484 * have matching CTN ids and have a valid stratum-1 configuration 1485 * but the configurations do not match. 1486 */ 1487 void stp_island_check(void) 1488 { 1489 disable_sync_clock(NULL); 1490 queue_work(time_sync_wq, &stp_work); 1491 } 1492 1493 1494 static int stp_sync_clock(void *data) 1495 { 1496 static int first; 1497 unsigned long long old_clock, delta; 1498 struct clock_sync_data *stp_sync; 1499 int rc; 1500 1501 stp_sync = data; 1502 1503 if (xchg(&first, 1) == 1) { 1504 /* Slave */ 1505 clock_sync_cpu(stp_sync); 1506 return 0; 1507 } 1508 1509 /* Wait until all other cpus entered the sync function. */ 1510 while (atomic_read(&stp_sync->cpus) != 0) 1511 cpu_relax(); 1512 1513 enable_sync_clock(); 1514 1515 rc = 0; 1516 if (stp_info.todoff[0] || stp_info.todoff[1] || 1517 stp_info.todoff[2] || stp_info.todoff[3] || 1518 stp_info.tmd != 2) { 1519 old_clock = get_clock(); 1520 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0); 1521 if (rc == 0) { 1522 delta = adjust_time(old_clock, get_clock(), 0); 1523 fixup_clock_comparator(delta); 1524 rc = chsc_sstpi(stp_page, &stp_info, 1525 sizeof(struct stp_sstpi)); 1526 if (rc == 0 && stp_info.tmd != 2) 1527 rc = -EAGAIN; 1528 } 1529 } 1530 if (rc) { 1531 disable_sync_clock(NULL); 1532 stp_sync->in_sync = -EAGAIN; 1533 } else 1534 stp_sync->in_sync = 1; 1535 xchg(&first, 0); 1536 return 0; 1537 } 1538 1539 /* 1540 * STP work. Check for the STP state and take over the clock 1541 * synchronization if the STP clock source is usable. 1542 */ 1543 static void stp_work_fn(struct work_struct *work) 1544 { 1545 struct clock_sync_data stp_sync; 1546 int rc; 1547 1548 /* prevent multiple execution. */ 1549 mutex_lock(&stp_work_mutex); 1550 1551 if (!stp_online) { 1552 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000); 1553 del_timer_sync(&stp_timer); 1554 goto out_unlock; 1555 } 1556 1557 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0); 1558 if (rc) 1559 goto out_unlock; 1560 1561 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 1562 if (rc || stp_info.c == 0) 1563 goto out_unlock; 1564 1565 /* Skip synchronization if the clock is already in sync. */ 1566 if (check_sync_clock()) 1567 goto out_unlock; 1568 1569 memset(&stp_sync, 0, sizeof(stp_sync)); 1570 get_online_cpus(); 1571 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 1572 stop_machine(stp_sync_clock, &stp_sync, &cpu_online_map); 1573 put_online_cpus(); 1574 1575 if (!check_sync_clock()) 1576 /* 1577 * There is a usable clock but the synchonization failed. 1578 * Retry after a second. 1579 */ 1580 mod_timer(&stp_timer, jiffies + HZ); 1581 1582 out_unlock: 1583 mutex_unlock(&stp_work_mutex); 1584 } 1585 1586 /* 1587 * STP class sysfs interface functions 1588 */ 1589 static struct sysdev_class stp_sysclass = { 1590 .name = "stp", 1591 }; 1592 1593 static ssize_t stp_ctn_id_show(struct sysdev_class *class, 1594 struct sysdev_class_attribute *attr, 1595 char *buf) 1596 { 1597 if (!stp_online) 1598 return -ENODATA; 1599 return sprintf(buf, "%016llx\n", 1600 *(unsigned long long *) stp_info.ctnid); 1601 } 1602 1603 static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL); 1604 1605 static ssize_t stp_ctn_type_show(struct sysdev_class *class, 1606 struct sysdev_class_attribute *attr, 1607 char *buf) 1608 { 1609 if (!stp_online) 1610 return -ENODATA; 1611 return sprintf(buf, "%i\n", stp_info.ctn); 1612 } 1613 1614 static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL); 1615 1616 static ssize_t stp_dst_offset_show(struct sysdev_class *class, 1617 struct sysdev_class_attribute *attr, 1618 char *buf) 1619 { 1620 if (!stp_online || !(stp_info.vbits & 0x2000)) 1621 return -ENODATA; 1622 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); 1623 } 1624 1625 static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL); 1626 1627 static ssize_t stp_leap_seconds_show(struct sysdev_class *class, 1628 struct sysdev_class_attribute *attr, 1629 char *buf) 1630 { 1631 if (!stp_online || !(stp_info.vbits & 0x8000)) 1632 return -ENODATA; 1633 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); 1634 } 1635 1636 static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL); 1637 1638 static ssize_t stp_stratum_show(struct sysdev_class *class, 1639 struct sysdev_class_attribute *attr, 1640 char *buf) 1641 { 1642 if (!stp_online) 1643 return -ENODATA; 1644 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); 1645 } 1646 1647 static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL); 1648 1649 static ssize_t stp_time_offset_show(struct sysdev_class *class, 1650 struct sysdev_class_attribute *attr, 1651 char *buf) 1652 { 1653 if (!stp_online || !(stp_info.vbits & 0x0800)) 1654 return -ENODATA; 1655 return sprintf(buf, "%i\n", (int) stp_info.tto); 1656 } 1657 1658 static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL); 1659 1660 static ssize_t stp_time_zone_offset_show(struct sysdev_class *class, 1661 struct sysdev_class_attribute *attr, 1662 char *buf) 1663 { 1664 if (!stp_online || !(stp_info.vbits & 0x4000)) 1665 return -ENODATA; 1666 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); 1667 } 1668 1669 static SYSDEV_CLASS_ATTR(time_zone_offset, 0400, 1670 stp_time_zone_offset_show, NULL); 1671 1672 static ssize_t stp_timing_mode_show(struct sysdev_class *class, 1673 struct sysdev_class_attribute *attr, 1674 char *buf) 1675 { 1676 if (!stp_online) 1677 return -ENODATA; 1678 return sprintf(buf, "%i\n", stp_info.tmd); 1679 } 1680 1681 static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL); 1682 1683 static ssize_t stp_timing_state_show(struct sysdev_class *class, 1684 struct sysdev_class_attribute *attr, 1685 char *buf) 1686 { 1687 if (!stp_online) 1688 return -ENODATA; 1689 return sprintf(buf, "%i\n", stp_info.tst); 1690 } 1691 1692 static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL); 1693 1694 static ssize_t stp_online_show(struct sysdev_class *class, 1695 struct sysdev_class_attribute *attr, 1696 char *buf) 1697 { 1698 return sprintf(buf, "%i\n", stp_online); 1699 } 1700 1701 static ssize_t stp_online_store(struct sysdev_class *class, 1702 struct sysdev_class_attribute *attr, 1703 const char *buf, size_t count) 1704 { 1705 unsigned int value; 1706 1707 value = simple_strtoul(buf, NULL, 0); 1708 if (value != 0 && value != 1) 1709 return -EINVAL; 1710 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 1711 return -EOPNOTSUPP; 1712 mutex_lock(&clock_sync_mutex); 1713 stp_online = value; 1714 if (stp_online) 1715 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 1716 else 1717 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 1718 queue_work(time_sync_wq, &stp_work); 1719 mutex_unlock(&clock_sync_mutex); 1720 return count; 1721 } 1722 1723 /* 1724 * Can't use SYSDEV_CLASS_ATTR because the attribute should be named 1725 * stp/online but attr_online already exists in this file .. 1726 */ 1727 static struct sysdev_class_attribute attr_stp_online = { 1728 .attr = { .name = "online", .mode = 0600 }, 1729 .show = stp_online_show, 1730 .store = stp_online_store, 1731 }; 1732 1733 static struct sysdev_class_attribute *stp_attributes[] = { 1734 &attr_ctn_id, 1735 &attr_ctn_type, 1736 &attr_dst_offset, 1737 &attr_leap_seconds, 1738 &attr_stp_online, 1739 &attr_stratum, 1740 &attr_time_offset, 1741 &attr_time_zone_offset, 1742 &attr_timing_mode, 1743 &attr_timing_state, 1744 NULL 1745 }; 1746 1747 static int __init stp_init_sysfs(void) 1748 { 1749 struct sysdev_class_attribute **attr; 1750 int rc; 1751 1752 rc = sysdev_class_register(&stp_sysclass); 1753 if (rc) 1754 goto out; 1755 for (attr = stp_attributes; *attr; attr++) { 1756 rc = sysdev_class_create_file(&stp_sysclass, *attr); 1757 if (rc) 1758 goto out_unreg; 1759 } 1760 return 0; 1761 out_unreg: 1762 for (; attr >= stp_attributes; attr--) 1763 sysdev_class_remove_file(&stp_sysclass, *attr); 1764 sysdev_class_unregister(&stp_sysclass); 1765 out: 1766 return rc; 1767 } 1768 1769 device_initcall(stp_init_sysfs); 1770