1 /* 2 * Time of day based timer functions. 3 * 4 * S390 version 5 * Copyright IBM Corp. 1999, 2008 6 * Author(s): Hartmut Penner (hp@de.ibm.com), 7 * Martin Schwidefsky (schwidefsky@de.ibm.com), 8 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 9 * 10 * Derived from "arch/i386/kernel/time.c" 11 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 12 */ 13 14 #define KMSG_COMPONENT "time" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/errno.h> 19 #include <linux/export.h> 20 #include <linux/sched.h> 21 #include <linux/sched/clock.h> 22 #include <linux/kernel.h> 23 #include <linux/param.h> 24 #include <linux/string.h> 25 #include <linux/mm.h> 26 #include <linux/interrupt.h> 27 #include <linux/cpu.h> 28 #include <linux/stop_machine.h> 29 #include <linux/time.h> 30 #include <linux/device.h> 31 #include <linux/delay.h> 32 #include <linux/init.h> 33 #include <linux/smp.h> 34 #include <linux/types.h> 35 #include <linux/profile.h> 36 #include <linux/timex.h> 37 #include <linux/notifier.h> 38 #include <linux/timekeeper_internal.h> 39 #include <linux/clockchips.h> 40 #include <linux/gfp.h> 41 #include <linux/kprobes.h> 42 #include <linux/uaccess.h> 43 #include <asm/facility.h> 44 #include <asm/delay.h> 45 #include <asm/div64.h> 46 #include <asm/vdso.h> 47 #include <asm/irq.h> 48 #include <asm/irq_regs.h> 49 #include <asm/vtimer.h> 50 #include <asm/stp.h> 51 #include <asm/cio.h> 52 #include "entry.h" 53 54 u64 sched_clock_base_cc = -1; /* Force to data section. */ 55 EXPORT_SYMBOL_GPL(sched_clock_base_cc); 56 57 static DEFINE_PER_CPU(struct clock_event_device, comparators); 58 59 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); 60 EXPORT_SYMBOL(s390_epoch_delta_notifier); 61 62 unsigned char ptff_function_mask[16]; 63 64 static unsigned long long lpar_offset; 65 static unsigned long long initial_leap_seconds; 66 static unsigned long long tod_steering_end; 67 static long long tod_steering_delta; 68 69 /* 70 * Get time offsets with PTFF 71 */ 72 void __init time_early_init(void) 73 { 74 struct ptff_qto qto; 75 struct ptff_qui qui; 76 77 /* Initialize TOD steering parameters */ 78 tod_steering_end = sched_clock_base_cc; 79 vdso_data->ts_end = tod_steering_end; 80 81 if (!test_facility(28)) 82 return; 83 84 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); 85 86 /* get LPAR offset */ 87 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 88 lpar_offset = qto.tod_epoch_difference; 89 90 /* get initial leap seconds */ 91 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) 92 initial_leap_seconds = (unsigned long long) 93 ((long) qui.old_leap * 4096000000L); 94 } 95 96 /* 97 * Scheduler clock - returns current time in nanosec units. 98 */ 99 unsigned long long notrace sched_clock(void) 100 { 101 return tod_to_ns(get_tod_clock_monotonic()); 102 } 103 NOKPROBE_SYMBOL(sched_clock); 104 105 /* 106 * Monotonic_clock - returns # of nanoseconds passed since time_init() 107 */ 108 unsigned long long monotonic_clock(void) 109 { 110 return sched_clock(); 111 } 112 EXPORT_SYMBOL(monotonic_clock); 113 114 static void tod_to_timeval(__u64 todval, struct timespec64 *xt) 115 { 116 unsigned long long sec; 117 118 sec = todval >> 12; 119 do_div(sec, 1000000); 120 xt->tv_sec = sec; 121 todval -= (sec * 1000000) << 12; 122 xt->tv_nsec = ((todval * 1000) >> 12); 123 } 124 125 void clock_comparator_work(void) 126 { 127 struct clock_event_device *cd; 128 129 S390_lowcore.clock_comparator = -1ULL; 130 cd = this_cpu_ptr(&comparators); 131 cd->event_handler(cd); 132 } 133 134 static int s390_next_event(unsigned long delta, 135 struct clock_event_device *evt) 136 { 137 S390_lowcore.clock_comparator = get_tod_clock() + delta; 138 set_clock_comparator(S390_lowcore.clock_comparator); 139 return 0; 140 } 141 142 /* 143 * Set up lowcore and control register of the current cpu to 144 * enable TOD clock and clock comparator interrupts. 145 */ 146 void init_cpu_timer(void) 147 { 148 struct clock_event_device *cd; 149 int cpu; 150 151 S390_lowcore.clock_comparator = -1ULL; 152 set_clock_comparator(S390_lowcore.clock_comparator); 153 154 cpu = smp_processor_id(); 155 cd = &per_cpu(comparators, cpu); 156 cd->name = "comparator"; 157 cd->features = CLOCK_EVT_FEAT_ONESHOT; 158 cd->mult = 16777; 159 cd->shift = 12; 160 cd->min_delta_ns = 1; 161 cd->min_delta_ticks = 1; 162 cd->max_delta_ns = LONG_MAX; 163 cd->max_delta_ticks = ULONG_MAX; 164 cd->rating = 400; 165 cd->cpumask = cpumask_of(cpu); 166 cd->set_next_event = s390_next_event; 167 168 clockevents_register_device(cd); 169 170 /* Enable clock comparator timer interrupt. */ 171 __ctl_set_bit(0,11); 172 173 /* Always allow the timing alert external interrupt. */ 174 __ctl_set_bit(0, 4); 175 } 176 177 static void clock_comparator_interrupt(struct ext_code ext_code, 178 unsigned int param32, 179 unsigned long param64) 180 { 181 inc_irq_stat(IRQEXT_CLK); 182 if (S390_lowcore.clock_comparator == -1ULL) 183 set_clock_comparator(S390_lowcore.clock_comparator); 184 } 185 186 static void stp_timing_alert(struct stp_irq_parm *); 187 188 static void timing_alert_interrupt(struct ext_code ext_code, 189 unsigned int param32, unsigned long param64) 190 { 191 inc_irq_stat(IRQEXT_TLA); 192 if (param32 & 0x00038000) 193 stp_timing_alert((struct stp_irq_parm *) ¶m32); 194 } 195 196 static void stp_reset(void); 197 198 void read_persistent_clock64(struct timespec64 *ts) 199 { 200 __u64 clock; 201 202 clock = get_tod_clock() - initial_leap_seconds; 203 tod_to_timeval(clock - TOD_UNIX_EPOCH, ts); 204 } 205 206 void read_boot_clock64(struct timespec64 *ts) 207 { 208 __u64 clock; 209 210 clock = sched_clock_base_cc - initial_leap_seconds; 211 tod_to_timeval(clock - TOD_UNIX_EPOCH, ts); 212 } 213 214 static u64 read_tod_clock(struct clocksource *cs) 215 { 216 unsigned long long now, adj; 217 218 preempt_disable(); /* protect from changes to steering parameters */ 219 now = get_tod_clock(); 220 adj = tod_steering_end - now; 221 if (unlikely((s64) adj >= 0)) 222 /* 223 * manually steer by 1 cycle every 2^16 cycles. This 224 * corresponds to shifting the tod delta by 15. 1s is 225 * therefore steered in ~9h. The adjust will decrease 226 * over time, until it finally reaches 0. 227 */ 228 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15); 229 preempt_enable(); 230 return now; 231 } 232 233 static struct clocksource clocksource_tod = { 234 .name = "tod", 235 .rating = 400, 236 .read = read_tod_clock, 237 .mask = -1ULL, 238 .mult = 1000, 239 .shift = 12, 240 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 241 }; 242 243 struct clocksource * __init clocksource_default_clock(void) 244 { 245 return &clocksource_tod; 246 } 247 248 void update_vsyscall(struct timekeeper *tk) 249 { 250 u64 nsecps; 251 252 if (tk->tkr_mono.clock != &clocksource_tod) 253 return; 254 255 /* Make userspace gettimeofday spin until we're done. */ 256 ++vdso_data->tb_update_count; 257 smp_wmb(); 258 vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last; 259 vdso_data->xtime_clock_sec = tk->xtime_sec; 260 vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec; 261 vdso_data->wtom_clock_sec = 262 tk->xtime_sec + tk->wall_to_monotonic.tv_sec; 263 vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec + 264 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift); 265 nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift; 266 while (vdso_data->wtom_clock_nsec >= nsecps) { 267 vdso_data->wtom_clock_nsec -= nsecps; 268 vdso_data->wtom_clock_sec++; 269 } 270 271 vdso_data->xtime_coarse_sec = tk->xtime_sec; 272 vdso_data->xtime_coarse_nsec = 273 (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 274 vdso_data->wtom_coarse_sec = 275 vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec; 276 vdso_data->wtom_coarse_nsec = 277 vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec; 278 while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) { 279 vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC; 280 vdso_data->wtom_coarse_sec++; 281 } 282 283 vdso_data->tk_mult = tk->tkr_mono.mult; 284 vdso_data->tk_shift = tk->tkr_mono.shift; 285 smp_wmb(); 286 ++vdso_data->tb_update_count; 287 } 288 289 extern struct timezone sys_tz; 290 291 void update_vsyscall_tz(void) 292 { 293 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 294 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 295 } 296 297 /* 298 * Initialize the TOD clock and the CPU timer of 299 * the boot cpu. 300 */ 301 void __init time_init(void) 302 { 303 /* Reset time synchronization interfaces. */ 304 stp_reset(); 305 306 /* request the clock comparator external interrupt */ 307 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) 308 panic("Couldn't request external interrupt 0x1004"); 309 310 /* request the timing alert external interrupt */ 311 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) 312 panic("Couldn't request external interrupt 0x1406"); 313 314 if (__clocksource_register(&clocksource_tod) != 0) 315 panic("Could not register TOD clock source"); 316 317 /* Enable TOD clock interrupts on the boot cpu. */ 318 init_cpu_timer(); 319 320 /* Enable cpu timer interrupts on the boot cpu. */ 321 vtime_init(); 322 } 323 324 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 325 static DEFINE_MUTEX(clock_sync_mutex); 326 static unsigned long clock_sync_flags; 327 328 #define CLOCK_SYNC_HAS_STP 0 329 #define CLOCK_SYNC_STP 1 330 331 /* 332 * The get_clock function for the physical clock. It will get the current 333 * TOD clock, subtract the LPAR offset and write the result to *clock. 334 * The function returns 0 if the clock is in sync with the external time 335 * source. If the clock mode is local it will return -EOPNOTSUPP and 336 * -EAGAIN if the clock is not in sync with the external reference. 337 */ 338 int get_phys_clock(unsigned long long *clock) 339 { 340 atomic_t *sw_ptr; 341 unsigned int sw0, sw1; 342 343 sw_ptr = &get_cpu_var(clock_sync_word); 344 sw0 = atomic_read(sw_ptr); 345 *clock = get_tod_clock() - lpar_offset; 346 sw1 = atomic_read(sw_ptr); 347 put_cpu_var(clock_sync_word); 348 if (sw0 == sw1 && (sw0 & 0x80000000U)) 349 /* Success: time is in sync. */ 350 return 0; 351 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 352 return -EOPNOTSUPP; 353 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 354 return -EACCES; 355 return -EAGAIN; 356 } 357 EXPORT_SYMBOL(get_phys_clock); 358 359 /* 360 * Make get_phys_clock() return -EAGAIN. 361 */ 362 static void disable_sync_clock(void *dummy) 363 { 364 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 365 /* 366 * Clear the in-sync bit 2^31. All get_phys_clock calls will 367 * fail until the sync bit is turned back on. In addition 368 * increase the "sequence" counter to avoid the race of an 369 * stp event and the complete recovery against get_phys_clock. 370 */ 371 atomic_andnot(0x80000000, sw_ptr); 372 atomic_inc(sw_ptr); 373 } 374 375 /* 376 * Make get_phys_clock() return 0 again. 377 * Needs to be called from a context disabled for preemption. 378 */ 379 static void enable_sync_clock(void) 380 { 381 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 382 atomic_or(0x80000000, sw_ptr); 383 } 384 385 /* 386 * Function to check if the clock is in sync. 387 */ 388 static inline int check_sync_clock(void) 389 { 390 atomic_t *sw_ptr; 391 int rc; 392 393 sw_ptr = &get_cpu_var(clock_sync_word); 394 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 395 put_cpu_var(clock_sync_word); 396 return rc; 397 } 398 399 /* 400 * Apply clock delta to the global data structures. 401 * This is called once on the CPU that performed the clock sync. 402 */ 403 static void clock_sync_global(unsigned long long delta) 404 { 405 unsigned long now, adj; 406 struct ptff_qto qto; 407 408 /* Fixup the monotonic sched clock. */ 409 sched_clock_base_cc += delta; 410 /* Adjust TOD steering parameters. */ 411 vdso_data->tb_update_count++; 412 now = get_tod_clock(); 413 adj = tod_steering_end - now; 414 if (unlikely((s64) adj >= 0)) 415 /* Calculate how much of the old adjustment is left. */ 416 tod_steering_delta = (tod_steering_delta < 0) ? 417 -(adj >> 15) : (adj >> 15); 418 tod_steering_delta += delta; 419 if ((abs(tod_steering_delta) >> 48) != 0) 420 panic("TOD clock sync offset %lli is too large to drift\n", 421 tod_steering_delta); 422 tod_steering_end = now + (abs(tod_steering_delta) << 15); 423 vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1; 424 vdso_data->ts_end = tod_steering_end; 425 vdso_data->tb_update_count++; 426 /* Update LPAR offset. */ 427 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 428 lpar_offset = qto.tod_epoch_difference; 429 /* Call the TOD clock change notifier. */ 430 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); 431 } 432 433 /* 434 * Apply clock delta to the per-CPU data structures of this CPU. 435 * This is called for each online CPU after the call to clock_sync_global. 436 */ 437 static void clock_sync_local(unsigned long long delta) 438 { 439 /* Add the delta to the clock comparator. */ 440 if (S390_lowcore.clock_comparator != -1ULL) { 441 S390_lowcore.clock_comparator += delta; 442 set_clock_comparator(S390_lowcore.clock_comparator); 443 } 444 /* Adjust the last_update_clock time-stamp. */ 445 S390_lowcore.last_update_clock += delta; 446 } 447 448 /* Single threaded workqueue used for stp sync events */ 449 static struct workqueue_struct *time_sync_wq; 450 451 static void __init time_init_wq(void) 452 { 453 if (time_sync_wq) 454 return; 455 time_sync_wq = create_singlethread_workqueue("timesync"); 456 } 457 458 struct clock_sync_data { 459 atomic_t cpus; 460 int in_sync; 461 unsigned long long clock_delta; 462 }; 463 464 /* 465 * Server Time Protocol (STP) code. 466 */ 467 static bool stp_online; 468 static struct stp_sstpi stp_info; 469 static void *stp_page; 470 471 static void stp_work_fn(struct work_struct *work); 472 static DEFINE_MUTEX(stp_work_mutex); 473 static DECLARE_WORK(stp_work, stp_work_fn); 474 static struct timer_list stp_timer; 475 476 static int __init early_parse_stp(char *p) 477 { 478 return kstrtobool(p, &stp_online); 479 } 480 early_param("stp", early_parse_stp); 481 482 /* 483 * Reset STP attachment. 484 */ 485 static void __init stp_reset(void) 486 { 487 int rc; 488 489 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 490 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 491 if (rc == 0) 492 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 493 else if (stp_online) { 494 pr_warn("The real or virtual hardware system does not provide an STP interface\n"); 495 free_page((unsigned long) stp_page); 496 stp_page = NULL; 497 stp_online = false; 498 } 499 } 500 501 static void stp_timeout(unsigned long dummy) 502 { 503 queue_work(time_sync_wq, &stp_work); 504 } 505 506 static int __init stp_init(void) 507 { 508 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 509 return 0; 510 setup_timer(&stp_timer, stp_timeout, 0UL); 511 time_init_wq(); 512 if (!stp_online) 513 return 0; 514 queue_work(time_sync_wq, &stp_work); 515 return 0; 516 } 517 518 arch_initcall(stp_init); 519 520 /* 521 * STP timing alert. There are three causes: 522 * 1) timing status change 523 * 2) link availability change 524 * 3) time control parameter change 525 * In all three cases we are only interested in the clock source state. 526 * If a STP clock source is now available use it. 527 */ 528 static void stp_timing_alert(struct stp_irq_parm *intparm) 529 { 530 if (intparm->tsc || intparm->lac || intparm->tcpc) 531 queue_work(time_sync_wq, &stp_work); 532 } 533 534 /* 535 * STP sync check machine check. This is called when the timing state 536 * changes from the synchronized state to the unsynchronized state. 537 * After a STP sync check the clock is not in sync. The machine check 538 * is broadcasted to all cpus at the same time. 539 */ 540 int stp_sync_check(void) 541 { 542 disable_sync_clock(NULL); 543 return 1; 544 } 545 546 /* 547 * STP island condition machine check. This is called when an attached 548 * server attempts to communicate over an STP link and the servers 549 * have matching CTN ids and have a valid stratum-1 configuration 550 * but the configurations do not match. 551 */ 552 int stp_island_check(void) 553 { 554 disable_sync_clock(NULL); 555 return 1; 556 } 557 558 void stp_queue_work(void) 559 { 560 queue_work(time_sync_wq, &stp_work); 561 } 562 563 static int stp_sync_clock(void *data) 564 { 565 struct clock_sync_data *sync = data; 566 unsigned long long clock_delta; 567 static int first; 568 int rc; 569 570 enable_sync_clock(); 571 if (xchg(&first, 1) == 0) { 572 /* Wait until all other cpus entered the sync function. */ 573 while (atomic_read(&sync->cpus) != 0) 574 cpu_relax(); 575 rc = 0; 576 if (stp_info.todoff[0] || stp_info.todoff[1] || 577 stp_info.todoff[2] || stp_info.todoff[3] || 578 stp_info.tmd != 2) { 579 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, 580 &clock_delta); 581 if (rc == 0) { 582 sync->clock_delta = clock_delta; 583 clock_sync_global(clock_delta); 584 rc = chsc_sstpi(stp_page, &stp_info, 585 sizeof(struct stp_sstpi)); 586 if (rc == 0 && stp_info.tmd != 2) 587 rc = -EAGAIN; 588 } 589 } 590 sync->in_sync = rc ? -EAGAIN : 1; 591 xchg(&first, 0); 592 } else { 593 /* Slave */ 594 atomic_dec(&sync->cpus); 595 /* Wait for in_sync to be set. */ 596 while (READ_ONCE(sync->in_sync) == 0) 597 __udelay(1); 598 } 599 if (sync->in_sync != 1) 600 /* Didn't work. Clear per-cpu in sync bit again. */ 601 disable_sync_clock(NULL); 602 /* Apply clock delta to per-CPU fields of this CPU. */ 603 clock_sync_local(sync->clock_delta); 604 605 return 0; 606 } 607 608 /* 609 * STP work. Check for the STP state and take over the clock 610 * synchronization if the STP clock source is usable. 611 */ 612 static void stp_work_fn(struct work_struct *work) 613 { 614 struct clock_sync_data stp_sync; 615 int rc; 616 617 /* prevent multiple execution. */ 618 mutex_lock(&stp_work_mutex); 619 620 if (!stp_online) { 621 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 622 del_timer_sync(&stp_timer); 623 goto out_unlock; 624 } 625 626 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL); 627 if (rc) 628 goto out_unlock; 629 630 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 631 if (rc || stp_info.c == 0) 632 goto out_unlock; 633 634 /* Skip synchronization if the clock is already in sync. */ 635 if (check_sync_clock()) 636 goto out_unlock; 637 638 memset(&stp_sync, 0, sizeof(stp_sync)); 639 cpus_read_lock(); 640 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 641 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask); 642 cpus_read_unlock(); 643 644 if (!check_sync_clock()) 645 /* 646 * There is a usable clock but the synchonization failed. 647 * Retry after a second. 648 */ 649 mod_timer(&stp_timer, jiffies + HZ); 650 651 out_unlock: 652 mutex_unlock(&stp_work_mutex); 653 } 654 655 /* 656 * STP subsys sysfs interface functions 657 */ 658 static struct bus_type stp_subsys = { 659 .name = "stp", 660 .dev_name = "stp", 661 }; 662 663 static ssize_t stp_ctn_id_show(struct device *dev, 664 struct device_attribute *attr, 665 char *buf) 666 { 667 if (!stp_online) 668 return -ENODATA; 669 return sprintf(buf, "%016llx\n", 670 *(unsigned long long *) stp_info.ctnid); 671 } 672 673 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL); 674 675 static ssize_t stp_ctn_type_show(struct device *dev, 676 struct device_attribute *attr, 677 char *buf) 678 { 679 if (!stp_online) 680 return -ENODATA; 681 return sprintf(buf, "%i\n", stp_info.ctn); 682 } 683 684 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL); 685 686 static ssize_t stp_dst_offset_show(struct device *dev, 687 struct device_attribute *attr, 688 char *buf) 689 { 690 if (!stp_online || !(stp_info.vbits & 0x2000)) 691 return -ENODATA; 692 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); 693 } 694 695 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL); 696 697 static ssize_t stp_leap_seconds_show(struct device *dev, 698 struct device_attribute *attr, 699 char *buf) 700 { 701 if (!stp_online || !(stp_info.vbits & 0x8000)) 702 return -ENODATA; 703 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); 704 } 705 706 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL); 707 708 static ssize_t stp_stratum_show(struct device *dev, 709 struct device_attribute *attr, 710 char *buf) 711 { 712 if (!stp_online) 713 return -ENODATA; 714 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); 715 } 716 717 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL); 718 719 static ssize_t stp_time_offset_show(struct device *dev, 720 struct device_attribute *attr, 721 char *buf) 722 { 723 if (!stp_online || !(stp_info.vbits & 0x0800)) 724 return -ENODATA; 725 return sprintf(buf, "%i\n", (int) stp_info.tto); 726 } 727 728 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL); 729 730 static ssize_t stp_time_zone_offset_show(struct device *dev, 731 struct device_attribute *attr, 732 char *buf) 733 { 734 if (!stp_online || !(stp_info.vbits & 0x4000)) 735 return -ENODATA; 736 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); 737 } 738 739 static DEVICE_ATTR(time_zone_offset, 0400, 740 stp_time_zone_offset_show, NULL); 741 742 static ssize_t stp_timing_mode_show(struct device *dev, 743 struct device_attribute *attr, 744 char *buf) 745 { 746 if (!stp_online) 747 return -ENODATA; 748 return sprintf(buf, "%i\n", stp_info.tmd); 749 } 750 751 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL); 752 753 static ssize_t stp_timing_state_show(struct device *dev, 754 struct device_attribute *attr, 755 char *buf) 756 { 757 if (!stp_online) 758 return -ENODATA; 759 return sprintf(buf, "%i\n", stp_info.tst); 760 } 761 762 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL); 763 764 static ssize_t stp_online_show(struct device *dev, 765 struct device_attribute *attr, 766 char *buf) 767 { 768 return sprintf(buf, "%i\n", stp_online); 769 } 770 771 static ssize_t stp_online_store(struct device *dev, 772 struct device_attribute *attr, 773 const char *buf, size_t count) 774 { 775 unsigned int value; 776 777 value = simple_strtoul(buf, NULL, 0); 778 if (value != 0 && value != 1) 779 return -EINVAL; 780 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 781 return -EOPNOTSUPP; 782 mutex_lock(&clock_sync_mutex); 783 stp_online = value; 784 if (stp_online) 785 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 786 else 787 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 788 queue_work(time_sync_wq, &stp_work); 789 mutex_unlock(&clock_sync_mutex); 790 return count; 791 } 792 793 /* 794 * Can't use DEVICE_ATTR because the attribute should be named 795 * stp/online but dev_attr_online already exists in this file .. 796 */ 797 static struct device_attribute dev_attr_stp_online = { 798 .attr = { .name = "online", .mode = 0600 }, 799 .show = stp_online_show, 800 .store = stp_online_store, 801 }; 802 803 static struct device_attribute *stp_attributes[] = { 804 &dev_attr_ctn_id, 805 &dev_attr_ctn_type, 806 &dev_attr_dst_offset, 807 &dev_attr_leap_seconds, 808 &dev_attr_stp_online, 809 &dev_attr_stratum, 810 &dev_attr_time_offset, 811 &dev_attr_time_zone_offset, 812 &dev_attr_timing_mode, 813 &dev_attr_timing_state, 814 NULL 815 }; 816 817 static int __init stp_init_sysfs(void) 818 { 819 struct device_attribute **attr; 820 int rc; 821 822 rc = subsys_system_register(&stp_subsys, NULL); 823 if (rc) 824 goto out; 825 for (attr = stp_attributes; *attr; attr++) { 826 rc = device_create_file(stp_subsys.dev_root, *attr); 827 if (rc) 828 goto out_unreg; 829 } 830 return 0; 831 out_unreg: 832 for (; attr >= stp_attributes; attr--) 833 device_remove_file(stp_subsys.dev_root, *attr); 834 bus_unregister(&stp_subsys); 835 out: 836 return rc; 837 } 838 839 device_initcall(stp_init_sysfs); 840