xref: /linux/arch/s390/kernel/time.c (revision 89fe5117928b2c1272c9376362131ded561c91ad)
1 /*
2  *  arch/s390/kernel/time.c
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #include <linux/errno.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/kernel.h>
19 #include <linux/param.h>
20 #include <linux/string.h>
21 #include <linux/mm.h>
22 #include <linux/interrupt.h>
23 #include <linux/time.h>
24 #include <linux/sysdev.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/smp.h>
28 #include <linux/types.h>
29 #include <linux/profile.h>
30 #include <linux/timex.h>
31 #include <linux/notifier.h>
32 #include <linux/clocksource.h>
33 #include <linux/clockchips.h>
34 #include <asm/uaccess.h>
35 #include <asm/delay.h>
36 #include <asm/s390_ext.h>
37 #include <asm/div64.h>
38 #include <asm/irq.h>
39 #include <asm/irq_regs.h>
40 #include <asm/timer.h>
41 #include <asm/etr.h>
42 #include <asm/cio.h>
43 
44 /* change this if you have some constant time drift */
45 #define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
46 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
47 
48 /* The value of the TOD clock for 1.1.1970. */
49 #define TOD_UNIX_EPOCH 0x7d91048bca000000ULL
50 
51 /*
52  * Create a small time difference between the timer interrupts
53  * on the different cpus to avoid lock contention.
54  */
55 #define CPU_DEVIATION       (smp_processor_id() << 12)
56 
57 #define TICK_SIZE tick
58 
59 static ext_int_info_t ext_int_info_cc;
60 static ext_int_info_t ext_int_etr_cc;
61 static u64 jiffies_timer_cc;
62 
63 static DEFINE_PER_CPU(struct clock_event_device, comparators);
64 
65 /*
66  * Scheduler clock - returns current time in nanosec units.
67  */
68 unsigned long long sched_clock(void)
69 {
70 	return ((get_clock_xt() - jiffies_timer_cc) * 125) >> 9;
71 }
72 
73 /*
74  * Monotonic_clock - returns # of nanoseconds passed since time_init()
75  */
76 unsigned long long monotonic_clock(void)
77 {
78 	return sched_clock();
79 }
80 EXPORT_SYMBOL(monotonic_clock);
81 
82 void tod_to_timeval(__u64 todval, struct timespec *xtime)
83 {
84 	unsigned long long sec;
85 
86 	sec = todval >> 12;
87 	do_div(sec, 1000000);
88 	xtime->tv_sec = sec;
89 	todval -= (sec * 1000000) << 12;
90 	xtime->tv_nsec = ((todval * 1000) >> 12);
91 }
92 
93 #ifdef CONFIG_PROFILING
94 #define s390_do_profile()	profile_tick(CPU_PROFILING)
95 #else
96 #define s390_do_profile()	do { ; } while(0)
97 #endif /* CONFIG_PROFILING */
98 
99 void clock_comparator_work(void)
100 {
101 	struct clock_event_device *cd;
102 
103 	S390_lowcore.clock_comparator = -1ULL;
104 	set_clock_comparator(S390_lowcore.clock_comparator);
105 	cd = &__get_cpu_var(comparators);
106 	cd->event_handler(cd);
107 	s390_do_profile();
108 }
109 
110 /*
111  * Fixup the clock comparator.
112  */
113 static void fixup_clock_comparator(unsigned long long delta)
114 {
115 	/* If nobody is waiting there's nothing to fix. */
116 	if (S390_lowcore.clock_comparator == -1ULL)
117 		return;
118 	S390_lowcore.clock_comparator += delta;
119 	set_clock_comparator(S390_lowcore.clock_comparator);
120 }
121 
122 static int s390_next_event(unsigned long delta,
123 			   struct clock_event_device *evt)
124 {
125 	S390_lowcore.clock_comparator = get_clock() + delta;
126 	set_clock_comparator(S390_lowcore.clock_comparator);
127 	return 0;
128 }
129 
130 static void s390_set_mode(enum clock_event_mode mode,
131 			  struct clock_event_device *evt)
132 {
133 }
134 
135 /*
136  * Set up lowcore and control register of the current cpu to
137  * enable TOD clock and clock comparator interrupts.
138  */
139 void init_cpu_timer(void)
140 {
141 	struct clock_event_device *cd;
142 	int cpu;
143 
144 	S390_lowcore.clock_comparator = -1ULL;
145 	set_clock_comparator(S390_lowcore.clock_comparator);
146 
147 	cpu = smp_processor_id();
148 	cd = &per_cpu(comparators, cpu);
149 	cd->name		= "comparator";
150 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
151 	cd->mult		= 16777;
152 	cd->shift		= 12;
153 	cd->min_delta_ns	= 1;
154 	cd->max_delta_ns	= LONG_MAX;
155 	cd->rating		= 400;
156 	cd->cpumask		= cpumask_of_cpu(cpu);
157 	cd->set_next_event	= s390_next_event;
158 	cd->set_mode		= s390_set_mode;
159 
160 	clockevents_register_device(cd);
161 
162 	/* Enable clock comparator timer interrupt. */
163 	__ctl_set_bit(0,11);
164 
165 	/* Always allow ETR external interrupts, even without an ETR. */
166 	__ctl_set_bit(0, 4);
167 }
168 
169 static void clock_comparator_interrupt(__u16 code)
170 {
171 }
172 
173 static void etr_reset(void);
174 static void etr_ext_handler(__u16);
175 
176 /*
177  * Get the TOD clock running.
178  */
179 static u64 __init reset_tod_clock(void)
180 {
181 	u64 time;
182 
183 	etr_reset();
184 	if (store_clock(&time) == 0)
185 		return time;
186 	/* TOD clock not running. Set the clock to Unix Epoch. */
187 	if (set_clock(TOD_UNIX_EPOCH) != 0 || store_clock(&time) != 0)
188 		panic("TOD clock not operational.");
189 
190 	return TOD_UNIX_EPOCH;
191 }
192 
193 static cycle_t read_tod_clock(void)
194 {
195 	return get_clock();
196 }
197 
198 static struct clocksource clocksource_tod = {
199 	.name		= "tod",
200 	.rating		= 400,
201 	.read		= read_tod_clock,
202 	.mask		= -1ULL,
203 	.mult		= 1000,
204 	.shift		= 12,
205 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
206 };
207 
208 
209 /*
210  * Initialize the TOD clock and the CPU timer of
211  * the boot cpu.
212  */
213 void __init time_init(void)
214 {
215 	u64 init_timer_cc;
216 
217 	init_timer_cc = reset_tod_clock();
218 	jiffies_timer_cc = init_timer_cc - jiffies_64 * CLK_TICKS_PER_JIFFY;
219 
220 	/* set xtime */
221 	tod_to_timeval(init_timer_cc - TOD_UNIX_EPOCH, &xtime);
222         set_normalized_timespec(&wall_to_monotonic,
223                                 -xtime.tv_sec, -xtime.tv_nsec);
224 
225 	/* request the clock comparator external interrupt */
226 	if (register_early_external_interrupt(0x1004,
227 					      clock_comparator_interrupt,
228 					      &ext_int_info_cc) != 0)
229                 panic("Couldn't request external interrupt 0x1004");
230 
231 	if (clocksource_register(&clocksource_tod) != 0)
232 		panic("Could not register TOD clock source");
233 
234 	/* request the etr external interrupt */
235 	if (register_early_external_interrupt(0x1406, etr_ext_handler,
236 					      &ext_int_etr_cc) != 0)
237 		panic("Couldn't request external interrupt 0x1406");
238 
239 	/* Enable TOD clock interrupts on the boot cpu. */
240 	init_cpu_timer();
241 
242 #ifdef CONFIG_VIRT_TIMER
243 	vtime_init();
244 #endif
245 }
246 
247 /*
248  * External Time Reference (ETR) code.
249  */
250 static int etr_port0_online;
251 static int etr_port1_online;
252 
253 static int __init early_parse_etr(char *p)
254 {
255 	if (strncmp(p, "off", 3) == 0)
256 		etr_port0_online = etr_port1_online = 0;
257 	else if (strncmp(p, "port0", 5) == 0)
258 		etr_port0_online = 1;
259 	else if (strncmp(p, "port1", 5) == 0)
260 		etr_port1_online = 1;
261 	else if (strncmp(p, "on", 2) == 0)
262 		etr_port0_online = etr_port1_online = 1;
263 	return 0;
264 }
265 early_param("etr", early_parse_etr);
266 
267 enum etr_event {
268 	ETR_EVENT_PORT0_CHANGE,
269 	ETR_EVENT_PORT1_CHANGE,
270 	ETR_EVENT_PORT_ALERT,
271 	ETR_EVENT_SYNC_CHECK,
272 	ETR_EVENT_SWITCH_LOCAL,
273 	ETR_EVENT_UPDATE,
274 };
275 
276 enum etr_flags {
277 	ETR_FLAG_ENOSYS,
278 	ETR_FLAG_EACCES,
279 	ETR_FLAG_STEAI,
280 };
281 
282 /*
283  * Valid bit combinations of the eacr register are (x = don't care):
284  * e0 e1 dp p0 p1 ea es sl
285  *  0  0  x  0	0  0  0  0  initial, disabled state
286  *  0  0  x  0	1  1  0  0  port 1 online
287  *  0  0  x  1	0  1  0  0  port 0 online
288  *  0  0  x  1	1  1  0  0  both ports online
289  *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
290  *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
291  *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
292  *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
293  *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
294  *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
295  *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
296  *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
297  *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
298  *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
299  *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
300  *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
301  *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
302  *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
303  *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
304  *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
305  */
306 static struct etr_eacr etr_eacr;
307 static u64 etr_tolec;			/* time of last eacr update */
308 static unsigned long etr_flags;
309 static struct etr_aib etr_port0;
310 static int etr_port0_uptodate;
311 static struct etr_aib etr_port1;
312 static int etr_port1_uptodate;
313 static unsigned long etr_events;
314 static struct timer_list etr_timer;
315 static DEFINE_PER_CPU(atomic_t, etr_sync_word);
316 
317 static void etr_timeout(unsigned long dummy);
318 static void etr_work_fn(struct work_struct *work);
319 static DECLARE_WORK(etr_work, etr_work_fn);
320 
321 /*
322  * The etr get_clock function. It will write the current clock value
323  * to the clock pointer and return 0 if the clock is in sync with the
324  * external time source. If the clock mode is local it will return
325  * -ENOSYS and -EAGAIN if the clock is not in sync with the external
326  * reference. This function is what ETR is all about..
327  */
328 int get_sync_clock(unsigned long long *clock)
329 {
330 	atomic_t *sw_ptr;
331 	unsigned int sw0, sw1;
332 
333 	sw_ptr = &get_cpu_var(etr_sync_word);
334 	sw0 = atomic_read(sw_ptr);
335 	*clock = get_clock();
336 	sw1 = atomic_read(sw_ptr);
337 	put_cpu_var(etr_sync_sync);
338 	if (sw0 == sw1 && (sw0 & 0x80000000U))
339 		/* Success: time is in sync. */
340 		return 0;
341 	if (test_bit(ETR_FLAG_ENOSYS, &etr_flags))
342 		return -ENOSYS;
343 	if (test_bit(ETR_FLAG_EACCES, &etr_flags))
344 		return -EACCES;
345 	return -EAGAIN;
346 }
347 EXPORT_SYMBOL(get_sync_clock);
348 
349 /*
350  * Make get_sync_clock return -EAGAIN.
351  */
352 static void etr_disable_sync_clock(void *dummy)
353 {
354 	atomic_t *sw_ptr = &__get_cpu_var(etr_sync_word);
355 	/*
356 	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
357 	 * fail until the sync bit is turned back on. In addition
358 	 * increase the "sequence" counter to avoid the race of an
359 	 * etr event and the complete recovery against get_sync_clock.
360 	 */
361 	atomic_clear_mask(0x80000000, sw_ptr);
362 	atomic_inc(sw_ptr);
363 }
364 
365 /*
366  * Make get_sync_clock return 0 again.
367  * Needs to be called from a context disabled for preemption.
368  */
369 static void etr_enable_sync_clock(void)
370 {
371 	atomic_t *sw_ptr = &__get_cpu_var(etr_sync_word);
372 	atomic_set_mask(0x80000000, sw_ptr);
373 }
374 
375 /*
376  * Reset ETR attachment.
377  */
378 static void etr_reset(void)
379 {
380 	etr_eacr =  (struct etr_eacr) {
381 		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
382 		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
383 		.es = 0, .sl = 0 };
384 	if (etr_setr(&etr_eacr) == 0)
385 		etr_tolec = get_clock();
386 	else {
387 		set_bit(ETR_FLAG_ENOSYS, &etr_flags);
388 		if (etr_port0_online || etr_port1_online) {
389 			printk(KERN_WARNING "Running on non ETR capable "
390 			       "machine, only local mode available.\n");
391 			etr_port0_online = etr_port1_online = 0;
392 		}
393 	}
394 }
395 
396 static int __init etr_init(void)
397 {
398 	struct etr_aib aib;
399 
400 	if (test_bit(ETR_FLAG_ENOSYS, &etr_flags))
401 		return 0;
402 	/* Check if this machine has the steai instruction. */
403 	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
404 		set_bit(ETR_FLAG_STEAI, &etr_flags);
405 	setup_timer(&etr_timer, etr_timeout, 0UL);
406 	if (!etr_port0_online && !etr_port1_online)
407 		set_bit(ETR_FLAG_EACCES, &etr_flags);
408 	if (etr_port0_online) {
409 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
410 		schedule_work(&etr_work);
411 	}
412 	if (etr_port1_online) {
413 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
414 		schedule_work(&etr_work);
415 	}
416 	return 0;
417 }
418 
419 arch_initcall(etr_init);
420 
421 /*
422  * Two sorts of ETR machine checks. The architecture reads:
423  * "When a machine-check niterruption occurs and if a switch-to-local or
424  *  ETR-sync-check interrupt request is pending but disabled, this pending
425  *  disabled interruption request is indicated and is cleared".
426  * Which means that we can get etr_switch_to_local events from the machine
427  * check handler although the interruption condition is disabled. Lovely..
428  */
429 
430 /*
431  * Switch to local machine check. This is called when the last usable
432  * ETR port goes inactive. After switch to local the clock is not in sync.
433  */
434 void etr_switch_to_local(void)
435 {
436 	if (!etr_eacr.sl)
437 		return;
438 	etr_disable_sync_clock(NULL);
439 	set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events);
440 	schedule_work(&etr_work);
441 }
442 
443 /*
444  * ETR sync check machine check. This is called when the ETR OTE and the
445  * local clock OTE are farther apart than the ETR sync check tolerance.
446  * After a ETR sync check the clock is not in sync. The machine check
447  * is broadcasted to all cpus at the same time.
448  */
449 void etr_sync_check(void)
450 {
451 	if (!etr_eacr.es)
452 		return;
453 	etr_disable_sync_clock(NULL);
454 	set_bit(ETR_EVENT_SYNC_CHECK, &etr_events);
455 	schedule_work(&etr_work);
456 }
457 
458 /*
459  * ETR external interrupt. There are two causes:
460  * 1) port state change, check the usability of the port
461  * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
462  *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
463  *    or ETR-data word 4 (edf4) has changed.
464  */
465 static void etr_ext_handler(__u16 code)
466 {
467 	struct etr_interruption_parameter *intparm =
468 		(struct etr_interruption_parameter *) &S390_lowcore.ext_params;
469 
470 	if (intparm->pc0)
471 		/* ETR port 0 state change. */
472 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
473 	if (intparm->pc1)
474 		/* ETR port 1 state change. */
475 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
476 	if (intparm->eai)
477 		/*
478 		 * ETR port alert on either port 0, 1 or both.
479 		 * Both ports are not up-to-date now.
480 		 */
481 		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
482 	schedule_work(&etr_work);
483 }
484 
485 static void etr_timeout(unsigned long dummy)
486 {
487 	set_bit(ETR_EVENT_UPDATE, &etr_events);
488 	schedule_work(&etr_work);
489 }
490 
491 /*
492  * Check if the etr mode is pss.
493  */
494 static inline int etr_mode_is_pps(struct etr_eacr eacr)
495 {
496 	return eacr.es && !eacr.sl;
497 }
498 
499 /*
500  * Check if the etr mode is etr.
501  */
502 static inline int etr_mode_is_etr(struct etr_eacr eacr)
503 {
504 	return eacr.es && eacr.sl;
505 }
506 
507 /*
508  * Check if the port can be used for TOD synchronization.
509  * For PPS mode the port has to receive OTEs. For ETR mode
510  * the port has to receive OTEs, the ETR stepping bit has to
511  * be zero and the validity bits for data frame 1, 2, and 3
512  * have to be 1.
513  */
514 static int etr_port_valid(struct etr_aib *aib, int port)
515 {
516 	unsigned int psc;
517 
518 	/* Check that this port is receiving OTEs. */
519 	if (aib->tsp == 0)
520 		return 0;
521 
522 	psc = port ? aib->esw.psc1 : aib->esw.psc0;
523 	if (psc == etr_lpsc_pps_mode)
524 		return 1;
525 	if (psc == etr_lpsc_operational_step)
526 		return !aib->esw.y && aib->slsw.v1 &&
527 			aib->slsw.v2 && aib->slsw.v3;
528 	return 0;
529 }
530 
531 /*
532  * Check if two ports are on the same network.
533  */
534 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
535 {
536 	// FIXME: any other fields we have to compare?
537 	return aib1->edf1.net_id == aib2->edf1.net_id;
538 }
539 
540 /*
541  * Wrapper for etr_stei that converts physical port states
542  * to logical port states to be consistent with the output
543  * of stetr (see etr_psc vs. etr_lpsc).
544  */
545 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
546 {
547 	BUG_ON(etr_steai(aib, func) != 0);
548 	/* Convert port state to logical port state. */
549 	if (aib->esw.psc0 == 1)
550 		aib->esw.psc0 = 2;
551 	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
552 		aib->esw.psc0 = 1;
553 	if (aib->esw.psc1 == 1)
554 		aib->esw.psc1 = 2;
555 	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
556 		aib->esw.psc1 = 1;
557 }
558 
559 /*
560  * Check if the aib a2 is still connected to the same attachment as
561  * aib a1, the etv values differ by one and a2 is valid.
562  */
563 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
564 {
565 	int state_a1, state_a2;
566 
567 	/* Paranoia check: e0/e1 should better be the same. */
568 	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
569 	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
570 		return 0;
571 
572 	/* Still connected to the same etr ? */
573 	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
574 	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
575 	if (state_a1 == etr_lpsc_operational_step) {
576 		if (state_a2 != etr_lpsc_operational_step ||
577 		    a1->edf1.net_id != a2->edf1.net_id ||
578 		    a1->edf1.etr_id != a2->edf1.etr_id ||
579 		    a1->edf1.etr_pn != a2->edf1.etr_pn)
580 			return 0;
581 	} else if (state_a2 != etr_lpsc_pps_mode)
582 		return 0;
583 
584 	/* The ETV value of a2 needs to be ETV of a1 + 1. */
585 	if (a1->edf2.etv + 1 != a2->edf2.etv)
586 		return 0;
587 
588 	if (!etr_port_valid(a2, p))
589 		return 0;
590 
591 	return 1;
592 }
593 
594 /*
595  * The time is "clock". old is what we think the time is.
596  * Adjust the value by a multiple of jiffies and add the delta to ntp.
597  * "delay" is an approximation how long the synchronization took. If
598  * the time correction is positive, then "delay" is subtracted from
599  * the time difference and only the remaining part is passed to ntp.
600  */
601 static unsigned long long etr_adjust_time(unsigned long long old,
602 					  unsigned long long clock,
603 					  unsigned long long delay)
604 {
605 	unsigned long long delta, ticks;
606 	struct timex adjust;
607 
608 	if (clock > old) {
609 		/* It is later than we thought. */
610 		delta = ticks = clock - old;
611 		delta = ticks = (delta < delay) ? 0 : delta - delay;
612 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
613 		adjust.offset = ticks * (1000000 / HZ);
614 	} else {
615 		/* It is earlier than we thought. */
616 		delta = ticks = old - clock;
617 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
618 		delta = -delta;
619 		adjust.offset = -ticks * (1000000 / HZ);
620 	}
621 	jiffies_timer_cc += delta;
622 	if (adjust.offset != 0) {
623 		printk(KERN_NOTICE "etr: time adjusted by %li micro-seconds\n",
624 		       adjust.offset);
625 		adjust.modes = ADJ_OFFSET_SINGLESHOT;
626 		do_adjtimex(&adjust);
627 	}
628 	return delta;
629 }
630 
631 static struct {
632 	int in_sync;
633 	unsigned long long fixup_cc;
634 } etr_sync;
635 
636 static void etr_sync_cpu_start(void *dummy)
637 {
638 	etr_enable_sync_clock();
639 	/*
640 	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
641 	 * is called on all other cpus while the TOD clocks is stopped.
642 	 * __udelay will stop the cpu on an enabled wait psw until the
643 	 * TOD is running again.
644 	 */
645 	while (etr_sync.in_sync == 0) {
646 		__udelay(1);
647 		/*
648 		 * A different cpu changes *in_sync. Therefore use
649 		 * barrier() to force memory access.
650 		 */
651 		barrier();
652 	}
653 	if (etr_sync.in_sync != 1)
654 		/* Didn't work. Clear per-cpu in sync bit again. */
655 		etr_disable_sync_clock(NULL);
656 	/*
657 	 * This round of TOD syncing is done. Set the clock comparator
658 	 * to the next tick and let the processor continue.
659 	 */
660 	fixup_clock_comparator(etr_sync.fixup_cc);
661 }
662 
663 static void etr_sync_cpu_end(void *dummy)
664 {
665 }
666 
667 /*
668  * Sync the TOD clock using the port refered to by aibp. This port
669  * has to be enabled and the other port has to be disabled. The
670  * last eacr update has to be more than 1.6 seconds in the past.
671  */
672 static int etr_sync_clock(struct etr_aib *aib, int port)
673 {
674 	struct etr_aib *sync_port;
675 	unsigned long long clock, old_clock, delay, delta;
676 	int follows;
677 	int rc;
678 
679 	/* Check if the current aib is adjacent to the sync port aib. */
680 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
681 	follows = etr_aib_follows(sync_port, aib, port);
682 	memcpy(sync_port, aib, sizeof(*aib));
683 	if (!follows)
684 		return -EAGAIN;
685 
686 	/*
687 	 * Catch all other cpus and make them wait until we have
688 	 * successfully synced the clock. smp_call_function will
689 	 * return after all other cpus are in etr_sync_cpu_start.
690 	 */
691 	memset(&etr_sync, 0, sizeof(etr_sync));
692 	preempt_disable();
693 	smp_call_function(etr_sync_cpu_start, NULL, 0, 0);
694 	local_irq_disable();
695 	etr_enable_sync_clock();
696 
697 	/* Set clock to next OTE. */
698 	__ctl_set_bit(14, 21);
699 	__ctl_set_bit(0, 29);
700 	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
701 	old_clock = get_clock();
702 	if (set_clock(clock) == 0) {
703 		__udelay(1);	/* Wait for the clock to start. */
704 		__ctl_clear_bit(0, 29);
705 		__ctl_clear_bit(14, 21);
706 		etr_stetr(aib);
707 		/* Adjust Linux timing variables. */
708 		delay = (unsigned long long)
709 			(aib->edf2.etv - sync_port->edf2.etv) << 32;
710 		delta = etr_adjust_time(old_clock, clock, delay);
711 		etr_sync.fixup_cc = delta;
712 		fixup_clock_comparator(delta);
713 		/* Verify that the clock is properly set. */
714 		if (!etr_aib_follows(sync_port, aib, port)) {
715 			/* Didn't work. */
716 			etr_disable_sync_clock(NULL);
717 			etr_sync.in_sync = -EAGAIN;
718 			rc = -EAGAIN;
719 		} else {
720 			etr_sync.in_sync = 1;
721 			rc = 0;
722 		}
723 	} else {
724 		/* Could not set the clock ?!? */
725 		__ctl_clear_bit(0, 29);
726 		__ctl_clear_bit(14, 21);
727 		etr_disable_sync_clock(NULL);
728 		etr_sync.in_sync = -EAGAIN;
729 		rc = -EAGAIN;
730 	}
731 	local_irq_enable();
732 	smp_call_function(etr_sync_cpu_end,NULL,0,0);
733 	preempt_enable();
734 	return rc;
735 }
736 
737 /*
738  * Handle the immediate effects of the different events.
739  * The port change event is used for online/offline changes.
740  */
741 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
742 {
743 	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
744 		eacr.es = 0;
745 	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
746 		eacr.es = eacr.sl = 0;
747 	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
748 		etr_port0_uptodate = etr_port1_uptodate = 0;
749 
750 	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
751 		if (eacr.e0)
752 			/*
753 			 * Port change of an enabled port. We have to
754 			 * assume that this can have caused an stepping
755 			 * port switch.
756 			 */
757 			etr_tolec = get_clock();
758 		eacr.p0 = etr_port0_online;
759 		if (!eacr.p0)
760 			eacr.e0 = 0;
761 		etr_port0_uptodate = 0;
762 	}
763 	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
764 		if (eacr.e1)
765 			/*
766 			 * Port change of an enabled port. We have to
767 			 * assume that this can have caused an stepping
768 			 * port switch.
769 			 */
770 			etr_tolec = get_clock();
771 		eacr.p1 = etr_port1_online;
772 		if (!eacr.p1)
773 			eacr.e1 = 0;
774 		etr_port1_uptodate = 0;
775 	}
776 	clear_bit(ETR_EVENT_UPDATE, &etr_events);
777 	return eacr;
778 }
779 
780 /*
781  * Set up a timer that expires after the etr_tolec + 1.6 seconds if
782  * one of the ports needs an update.
783  */
784 static void etr_set_tolec_timeout(unsigned long long now)
785 {
786 	unsigned long micros;
787 
788 	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
789 	    (!etr_eacr.p1 || etr_port1_uptodate))
790 		return;
791 	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
792 	micros = (micros > 1600000) ? 0 : 1600000 - micros;
793 	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
794 }
795 
796 /*
797  * Set up a time that expires after 1/2 second.
798  */
799 static void etr_set_sync_timeout(void)
800 {
801 	mod_timer(&etr_timer, jiffies + HZ/2);
802 }
803 
804 /*
805  * Update the aib information for one or both ports.
806  */
807 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
808 					 struct etr_eacr eacr)
809 {
810 	/* With both ports disabled the aib information is useless. */
811 	if (!eacr.e0 && !eacr.e1)
812 		return eacr;
813 
814 	/* Update port0 or port1 with aib stored in etr_work_fn. */
815 	if (aib->esw.q == 0) {
816 		/* Information for port 0 stored. */
817 		if (eacr.p0 && !etr_port0_uptodate) {
818 			etr_port0 = *aib;
819 			if (etr_port0_online)
820 				etr_port0_uptodate = 1;
821 		}
822 	} else {
823 		/* Information for port 1 stored. */
824 		if (eacr.p1 && !etr_port1_uptodate) {
825 			etr_port1 = *aib;
826 			if (etr_port0_online)
827 				etr_port1_uptodate = 1;
828 		}
829 	}
830 
831 	/*
832 	 * Do not try to get the alternate port aib if the clock
833 	 * is not in sync yet.
834 	 */
835 	if (!eacr.es)
836 		return eacr;
837 
838 	/*
839 	 * If steai is available we can get the information about
840 	 * the other port immediately. If only stetr is available the
841 	 * data-port bit toggle has to be used.
842 	 */
843 	if (test_bit(ETR_FLAG_STEAI, &etr_flags)) {
844 		if (eacr.p0 && !etr_port0_uptodate) {
845 			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
846 			etr_port0_uptodate = 1;
847 		}
848 		if (eacr.p1 && !etr_port1_uptodate) {
849 			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
850 			etr_port1_uptodate = 1;
851 		}
852 	} else {
853 		/*
854 		 * One port was updated above, if the other
855 		 * port is not uptodate toggle dp bit.
856 		 */
857 		if ((eacr.p0 && !etr_port0_uptodate) ||
858 		    (eacr.p1 && !etr_port1_uptodate))
859 			eacr.dp ^= 1;
860 		else
861 			eacr.dp = 0;
862 	}
863 	return eacr;
864 }
865 
866 /*
867  * Write new etr control register if it differs from the current one.
868  * Return 1 if etr_tolec has been updated as well.
869  */
870 static void etr_update_eacr(struct etr_eacr eacr)
871 {
872 	int dp_changed;
873 
874 	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
875 		/* No change, return. */
876 		return;
877 	/*
878 	 * The disable of an active port of the change of the data port
879 	 * bit can/will cause a change in the data port.
880 	 */
881 	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
882 		(etr_eacr.dp ^ eacr.dp) != 0;
883 	etr_eacr = eacr;
884 	etr_setr(&etr_eacr);
885 	if (dp_changed)
886 		etr_tolec = get_clock();
887 }
888 
889 /*
890  * ETR tasklet. In this function you'll find the main logic. In
891  * particular this is the only function that calls etr_update_eacr(),
892  * it "controls" the etr control register.
893  */
894 static void etr_work_fn(struct work_struct *work)
895 {
896 	unsigned long long now;
897 	struct etr_eacr eacr;
898 	struct etr_aib aib;
899 	int sync_port;
900 
901 	/* Create working copy of etr_eacr. */
902 	eacr = etr_eacr;
903 
904 	/* Check for the different events and their immediate effects. */
905 	eacr = etr_handle_events(eacr);
906 
907 	/* Check if ETR is supposed to be active. */
908 	eacr.ea = eacr.p0 || eacr.p1;
909 	if (!eacr.ea) {
910 		/* Both ports offline. Reset everything. */
911 		eacr.dp = eacr.es = eacr.sl = 0;
912 		on_each_cpu(etr_disable_sync_clock, NULL, 0, 1);
913 		del_timer_sync(&etr_timer);
914 		etr_update_eacr(eacr);
915 		set_bit(ETR_FLAG_EACCES, &etr_flags);
916 		return;
917 	}
918 
919 	/* Store aib to get the current ETR status word. */
920 	BUG_ON(etr_stetr(&aib) != 0);
921 	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
922 	now = get_clock();
923 
924 	/*
925 	 * Update the port information if the last stepping port change
926 	 * or data port change is older than 1.6 seconds.
927 	 */
928 	if (now >= etr_tolec + (1600000 << 12))
929 		eacr = etr_handle_update(&aib, eacr);
930 
931 	/*
932 	 * Select ports to enable. The prefered synchronization mode is PPS.
933 	 * If a port can be enabled depends on a number of things:
934 	 * 1) The port needs to be online and uptodate. A port is not
935 	 *    disabled just because it is not uptodate, but it is only
936 	 *    enabled if it is uptodate.
937 	 * 2) The port needs to have the same mode (pps / etr).
938 	 * 3) The port needs to be usable -> etr_port_valid() == 1
939 	 * 4) To enable the second port the clock needs to be in sync.
940 	 * 5) If both ports are useable and are ETR ports, the network id
941 	 *    has to be the same.
942 	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
943 	 */
944 	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
945 		eacr.sl = 0;
946 		eacr.e0 = 1;
947 		if (!etr_mode_is_pps(etr_eacr))
948 			eacr.es = 0;
949 		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
950 			eacr.e1 = 0;
951 		// FIXME: uptodate checks ?
952 		else if (etr_port0_uptodate && etr_port1_uptodate)
953 			eacr.e1 = 1;
954 		sync_port = (etr_port0_uptodate &&
955 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
956 		clear_bit(ETR_FLAG_EACCES, &etr_flags);
957 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
958 		eacr.sl = 0;
959 		eacr.e0 = 0;
960 		eacr.e1 = 1;
961 		if (!etr_mode_is_pps(etr_eacr))
962 			eacr.es = 0;
963 		sync_port = (etr_port1_uptodate &&
964 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
965 		clear_bit(ETR_FLAG_EACCES, &etr_flags);
966 	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
967 		eacr.sl = 1;
968 		eacr.e0 = 1;
969 		if (!etr_mode_is_etr(etr_eacr))
970 			eacr.es = 0;
971 		if (!eacr.es || !eacr.p1 ||
972 		    aib.esw.psc1 != etr_lpsc_operational_alt)
973 			eacr.e1 = 0;
974 		else if (etr_port0_uptodate && etr_port1_uptodate &&
975 			 etr_compare_network(&etr_port0, &etr_port1))
976 			eacr.e1 = 1;
977 		sync_port = (etr_port0_uptodate &&
978 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
979 		clear_bit(ETR_FLAG_EACCES, &etr_flags);
980 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
981 		eacr.sl = 1;
982 		eacr.e0 = 0;
983 		eacr.e1 = 1;
984 		if (!etr_mode_is_etr(etr_eacr))
985 			eacr.es = 0;
986 		sync_port = (etr_port1_uptodate &&
987 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
988 		clear_bit(ETR_FLAG_EACCES, &etr_flags);
989 	} else {
990 		/* Both ports not usable. */
991 		eacr.es = eacr.sl = 0;
992 		sync_port = -1;
993 		set_bit(ETR_FLAG_EACCES, &etr_flags);
994 	}
995 
996 	/*
997 	 * If the clock is in sync just update the eacr and return.
998 	 * If there is no valid sync port wait for a port update.
999 	 */
1000 	if (eacr.es || sync_port < 0) {
1001 		etr_update_eacr(eacr);
1002 		etr_set_tolec_timeout(now);
1003 		return;
1004 	}
1005 
1006 	/*
1007 	 * Prepare control register for clock syncing
1008 	 * (reset data port bit, set sync check control.
1009 	 */
1010 	eacr.dp = 0;
1011 	eacr.es = 1;
1012 
1013 	/*
1014 	 * Update eacr and try to synchronize the clock. If the update
1015 	 * of eacr caused a stepping port switch (or if we have to
1016 	 * assume that a stepping port switch has occured) or the
1017 	 * clock syncing failed, reset the sync check control bit
1018 	 * and set up a timer to try again after 0.5 seconds
1019 	 */
1020 	etr_update_eacr(eacr);
1021 	if (now < etr_tolec + (1600000 << 12) ||
1022 	    etr_sync_clock(&aib, sync_port) != 0) {
1023 		/* Sync failed. Try again in 1/2 second. */
1024 		eacr.es = 0;
1025 		etr_update_eacr(eacr);
1026 		etr_set_sync_timeout();
1027 	} else
1028 		etr_set_tolec_timeout(now);
1029 }
1030 
1031 /*
1032  * Sysfs interface functions
1033  */
1034 static struct sysdev_class etr_sysclass = {
1035 	.name	= "etr",
1036 };
1037 
1038 static struct sys_device etr_port0_dev = {
1039 	.id	= 0,
1040 	.cls	= &etr_sysclass,
1041 };
1042 
1043 static struct sys_device etr_port1_dev = {
1044 	.id	= 1,
1045 	.cls	= &etr_sysclass,
1046 };
1047 
1048 /*
1049  * ETR class attributes
1050  */
1051 static ssize_t etr_stepping_port_show(struct sysdev_class *class, char *buf)
1052 {
1053 	return sprintf(buf, "%i\n", etr_port0.esw.p);
1054 }
1055 
1056 static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1057 
1058 static ssize_t etr_stepping_mode_show(struct sysdev_class *class, char *buf)
1059 {
1060 	char *mode_str;
1061 
1062 	if (etr_mode_is_pps(etr_eacr))
1063 		mode_str = "pps";
1064 	else if (etr_mode_is_etr(etr_eacr))
1065 		mode_str = "etr";
1066 	else
1067 		mode_str = "local";
1068 	return sprintf(buf, "%s\n", mode_str);
1069 }
1070 
1071 static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1072 
1073 /*
1074  * ETR port attributes
1075  */
1076 static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev)
1077 {
1078 	if (dev == &etr_port0_dev)
1079 		return etr_port0_online ? &etr_port0 : NULL;
1080 	else
1081 		return etr_port1_online ? &etr_port1 : NULL;
1082 }
1083 
1084 static ssize_t etr_online_show(struct sys_device *dev, char *buf)
1085 {
1086 	unsigned int online;
1087 
1088 	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1089 	return sprintf(buf, "%i\n", online);
1090 }
1091 
1092 static ssize_t etr_online_store(struct sys_device *dev,
1093 			      const char *buf, size_t count)
1094 {
1095 	unsigned int value;
1096 
1097 	value = simple_strtoul(buf, NULL, 0);
1098 	if (value != 0 && value != 1)
1099 		return -EINVAL;
1100 	if (test_bit(ETR_FLAG_ENOSYS, &etr_flags))
1101 		return -ENOSYS;
1102 	if (dev == &etr_port0_dev) {
1103 		if (etr_port0_online == value)
1104 			return count;	/* Nothing to do. */
1105 		etr_port0_online = value;
1106 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1107 		schedule_work(&etr_work);
1108 	} else {
1109 		if (etr_port1_online == value)
1110 			return count;	/* Nothing to do. */
1111 		etr_port1_online = value;
1112 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1113 		schedule_work(&etr_work);
1114 	}
1115 	return count;
1116 }
1117 
1118 static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store);
1119 
1120 static ssize_t etr_stepping_control_show(struct sys_device *dev, char *buf)
1121 {
1122 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1123 		       etr_eacr.e0 : etr_eacr.e1);
1124 }
1125 
1126 static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1127 
1128 static ssize_t etr_mode_code_show(struct sys_device *dev, char *buf)
1129 {
1130 	if (!etr_port0_online && !etr_port1_online)
1131 		/* Status word is not uptodate if both ports are offline. */
1132 		return -ENODATA;
1133 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1134 		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1135 }
1136 
1137 static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1138 
1139 static ssize_t etr_untuned_show(struct sys_device *dev, char *buf)
1140 {
1141 	struct etr_aib *aib = etr_aib_from_dev(dev);
1142 
1143 	if (!aib || !aib->slsw.v1)
1144 		return -ENODATA;
1145 	return sprintf(buf, "%i\n", aib->edf1.u);
1146 }
1147 
1148 static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL);
1149 
1150 static ssize_t etr_network_id_show(struct sys_device *dev, char *buf)
1151 {
1152 	struct etr_aib *aib = etr_aib_from_dev(dev);
1153 
1154 	if (!aib || !aib->slsw.v1)
1155 		return -ENODATA;
1156 	return sprintf(buf, "%i\n", aib->edf1.net_id);
1157 }
1158 
1159 static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL);
1160 
1161 static ssize_t etr_id_show(struct sys_device *dev, char *buf)
1162 {
1163 	struct etr_aib *aib = etr_aib_from_dev(dev);
1164 
1165 	if (!aib || !aib->slsw.v1)
1166 		return -ENODATA;
1167 	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1168 }
1169 
1170 static SYSDEV_ATTR(id, 0400, etr_id_show, NULL);
1171 
1172 static ssize_t etr_port_number_show(struct sys_device *dev, char *buf)
1173 {
1174 	struct etr_aib *aib = etr_aib_from_dev(dev);
1175 
1176 	if (!aib || !aib->slsw.v1)
1177 		return -ENODATA;
1178 	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1179 }
1180 
1181 static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL);
1182 
1183 static ssize_t etr_coupled_show(struct sys_device *dev, char *buf)
1184 {
1185 	struct etr_aib *aib = etr_aib_from_dev(dev);
1186 
1187 	if (!aib || !aib->slsw.v3)
1188 		return -ENODATA;
1189 	return sprintf(buf, "%i\n", aib->edf3.c);
1190 }
1191 
1192 static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL);
1193 
1194 static ssize_t etr_local_time_show(struct sys_device *dev, char *buf)
1195 {
1196 	struct etr_aib *aib = etr_aib_from_dev(dev);
1197 
1198 	if (!aib || !aib->slsw.v3)
1199 		return -ENODATA;
1200 	return sprintf(buf, "%i\n", aib->edf3.blto);
1201 }
1202 
1203 static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL);
1204 
1205 static ssize_t etr_utc_offset_show(struct sys_device *dev, char *buf)
1206 {
1207 	struct etr_aib *aib = etr_aib_from_dev(dev);
1208 
1209 	if (!aib || !aib->slsw.v3)
1210 		return -ENODATA;
1211 	return sprintf(buf, "%i\n", aib->edf3.buo);
1212 }
1213 
1214 static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1215 
1216 static struct sysdev_attribute *etr_port_attributes[] = {
1217 	&attr_online,
1218 	&attr_stepping_control,
1219 	&attr_state_code,
1220 	&attr_untuned,
1221 	&attr_network,
1222 	&attr_id,
1223 	&attr_port,
1224 	&attr_coupled,
1225 	&attr_local_time,
1226 	&attr_utc_offset,
1227 	NULL
1228 };
1229 
1230 static int __init etr_register_port(struct sys_device *dev)
1231 {
1232 	struct sysdev_attribute **attr;
1233 	int rc;
1234 
1235 	rc = sysdev_register(dev);
1236 	if (rc)
1237 		goto out;
1238 	for (attr = etr_port_attributes; *attr; attr++) {
1239 		rc = sysdev_create_file(dev, *attr);
1240 		if (rc)
1241 			goto out_unreg;
1242 	}
1243 	return 0;
1244 out_unreg:
1245 	for (; attr >= etr_port_attributes; attr--)
1246 		sysdev_remove_file(dev, *attr);
1247 	sysdev_unregister(dev);
1248 out:
1249 	return rc;
1250 }
1251 
1252 static void __init etr_unregister_port(struct sys_device *dev)
1253 {
1254 	struct sysdev_attribute **attr;
1255 
1256 	for (attr = etr_port_attributes; *attr; attr++)
1257 		sysdev_remove_file(dev, *attr);
1258 	sysdev_unregister(dev);
1259 }
1260 
1261 static int __init etr_init_sysfs(void)
1262 {
1263 	int rc;
1264 
1265 	rc = sysdev_class_register(&etr_sysclass);
1266 	if (rc)
1267 		goto out;
1268 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port);
1269 	if (rc)
1270 		goto out_unreg_class;
1271 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode);
1272 	if (rc)
1273 		goto out_remove_stepping_port;
1274 	rc = etr_register_port(&etr_port0_dev);
1275 	if (rc)
1276 		goto out_remove_stepping_mode;
1277 	rc = etr_register_port(&etr_port1_dev);
1278 	if (rc)
1279 		goto out_remove_port0;
1280 	return 0;
1281 
1282 out_remove_port0:
1283 	etr_unregister_port(&etr_port0_dev);
1284 out_remove_stepping_mode:
1285 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode);
1286 out_remove_stepping_port:
1287 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port);
1288 out_unreg_class:
1289 	sysdev_class_unregister(&etr_sysclass);
1290 out:
1291 	return rc;
1292 }
1293 
1294 device_initcall(etr_init_sysfs);
1295