1 /* 2 * arch/s390/kernel/time.c 3 * Time of day based timer functions. 4 * 5 * S390 version 6 * Copyright IBM Corp. 1999, 2008 7 * Author(s): Hartmut Penner (hp@de.ibm.com), 8 * Martin Schwidefsky (schwidefsky@de.ibm.com), 9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 10 * 11 * Derived from "arch/i386/kernel/time.c" 12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 13 */ 14 15 #include <linux/errno.h> 16 #include <linux/module.h> 17 #include <linux/sched.h> 18 #include <linux/kernel.h> 19 #include <linux/param.h> 20 #include <linux/string.h> 21 #include <linux/mm.h> 22 #include <linux/interrupt.h> 23 #include <linux/time.h> 24 #include <linux/sysdev.h> 25 #include <linux/delay.h> 26 #include <linux/init.h> 27 #include <linux/smp.h> 28 #include <linux/types.h> 29 #include <linux/profile.h> 30 #include <linux/timex.h> 31 #include <linux/notifier.h> 32 #include <linux/clocksource.h> 33 #include <linux/clockchips.h> 34 #include <linux/bootmem.h> 35 #include <asm/uaccess.h> 36 #include <asm/delay.h> 37 #include <asm/s390_ext.h> 38 #include <asm/div64.h> 39 #include <asm/irq.h> 40 #include <asm/irq_regs.h> 41 #include <asm/timer.h> 42 #include <asm/etr.h> 43 #include <asm/cio.h> 44 45 /* change this if you have some constant time drift */ 46 #define USECS_PER_JIFFY ((unsigned long) 1000000/HZ) 47 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12) 48 49 /* The value of the TOD clock for 1.1.1970. */ 50 #define TOD_UNIX_EPOCH 0x7d91048bca000000ULL 51 52 /* 53 * Create a small time difference between the timer interrupts 54 * on the different cpus to avoid lock contention. 55 */ 56 #define CPU_DEVIATION (smp_processor_id() << 12) 57 58 #define TICK_SIZE tick 59 60 static ext_int_info_t ext_int_info_cc; 61 static ext_int_info_t ext_int_etr_cc; 62 static u64 sched_clock_base_cc; 63 64 static DEFINE_PER_CPU(struct clock_event_device, comparators); 65 66 /* 67 * Scheduler clock - returns current time in nanosec units. 68 */ 69 unsigned long long sched_clock(void) 70 { 71 return ((get_clock_xt() - sched_clock_base_cc) * 125) >> 9; 72 } 73 74 /* 75 * Monotonic_clock - returns # of nanoseconds passed since time_init() 76 */ 77 unsigned long long monotonic_clock(void) 78 { 79 return sched_clock(); 80 } 81 EXPORT_SYMBOL(monotonic_clock); 82 83 void tod_to_timeval(__u64 todval, struct timespec *xtime) 84 { 85 unsigned long long sec; 86 87 sec = todval >> 12; 88 do_div(sec, 1000000); 89 xtime->tv_sec = sec; 90 todval -= (sec * 1000000) << 12; 91 xtime->tv_nsec = ((todval * 1000) >> 12); 92 } 93 94 #ifdef CONFIG_PROFILING 95 #define s390_do_profile() profile_tick(CPU_PROFILING) 96 #else 97 #define s390_do_profile() do { ; } while(0) 98 #endif /* CONFIG_PROFILING */ 99 100 void clock_comparator_work(void) 101 { 102 struct clock_event_device *cd; 103 104 S390_lowcore.clock_comparator = -1ULL; 105 set_clock_comparator(S390_lowcore.clock_comparator); 106 cd = &__get_cpu_var(comparators); 107 cd->event_handler(cd); 108 s390_do_profile(); 109 } 110 111 /* 112 * Fixup the clock comparator. 113 */ 114 static void fixup_clock_comparator(unsigned long long delta) 115 { 116 /* If nobody is waiting there's nothing to fix. */ 117 if (S390_lowcore.clock_comparator == -1ULL) 118 return; 119 S390_lowcore.clock_comparator += delta; 120 set_clock_comparator(S390_lowcore.clock_comparator); 121 } 122 123 static int s390_next_event(unsigned long delta, 124 struct clock_event_device *evt) 125 { 126 S390_lowcore.clock_comparator = get_clock() + delta; 127 set_clock_comparator(S390_lowcore.clock_comparator); 128 return 0; 129 } 130 131 static void s390_set_mode(enum clock_event_mode mode, 132 struct clock_event_device *evt) 133 { 134 } 135 136 /* 137 * Set up lowcore and control register of the current cpu to 138 * enable TOD clock and clock comparator interrupts. 139 */ 140 void init_cpu_timer(void) 141 { 142 struct clock_event_device *cd; 143 int cpu; 144 145 S390_lowcore.clock_comparator = -1ULL; 146 set_clock_comparator(S390_lowcore.clock_comparator); 147 148 cpu = smp_processor_id(); 149 cd = &per_cpu(comparators, cpu); 150 cd->name = "comparator"; 151 cd->features = CLOCK_EVT_FEAT_ONESHOT; 152 cd->mult = 16777; 153 cd->shift = 12; 154 cd->min_delta_ns = 1; 155 cd->max_delta_ns = LONG_MAX; 156 cd->rating = 400; 157 cd->cpumask = cpumask_of_cpu(cpu); 158 cd->set_next_event = s390_next_event; 159 cd->set_mode = s390_set_mode; 160 161 clockevents_register_device(cd); 162 163 /* Enable clock comparator timer interrupt. */ 164 __ctl_set_bit(0,11); 165 166 /* Always allow the timing alert external interrupt. */ 167 __ctl_set_bit(0, 4); 168 } 169 170 static void clock_comparator_interrupt(__u16 code) 171 { 172 if (S390_lowcore.clock_comparator == -1ULL) 173 set_clock_comparator(S390_lowcore.clock_comparator); 174 } 175 176 static void etr_timing_alert(struct etr_irq_parm *); 177 static void stp_timing_alert(struct stp_irq_parm *); 178 179 static void timing_alert_interrupt(__u16 code) 180 { 181 if (S390_lowcore.ext_params & 0x00c40000) 182 etr_timing_alert((struct etr_irq_parm *) 183 &S390_lowcore.ext_params); 184 if (S390_lowcore.ext_params & 0x00038000) 185 stp_timing_alert((struct stp_irq_parm *) 186 &S390_lowcore.ext_params); 187 } 188 189 static void etr_reset(void); 190 static void stp_reset(void); 191 192 /* 193 * Get the TOD clock running. 194 */ 195 static u64 __init reset_tod_clock(void) 196 { 197 u64 time; 198 199 etr_reset(); 200 stp_reset(); 201 if (store_clock(&time) == 0) 202 return time; 203 /* TOD clock not running. Set the clock to Unix Epoch. */ 204 if (set_clock(TOD_UNIX_EPOCH) != 0 || store_clock(&time) != 0) 205 panic("TOD clock not operational."); 206 207 return TOD_UNIX_EPOCH; 208 } 209 210 static cycle_t read_tod_clock(void) 211 { 212 return get_clock(); 213 } 214 215 static struct clocksource clocksource_tod = { 216 .name = "tod", 217 .rating = 400, 218 .read = read_tod_clock, 219 .mask = -1ULL, 220 .mult = 1000, 221 .shift = 12, 222 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 223 }; 224 225 226 /* 227 * Initialize the TOD clock and the CPU timer of 228 * the boot cpu. 229 */ 230 void __init time_init(void) 231 { 232 sched_clock_base_cc = reset_tod_clock(); 233 234 /* set xtime */ 235 tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, &xtime); 236 set_normalized_timespec(&wall_to_monotonic, 237 -xtime.tv_sec, -xtime.tv_nsec); 238 239 /* request the clock comparator external interrupt */ 240 if (register_early_external_interrupt(0x1004, 241 clock_comparator_interrupt, 242 &ext_int_info_cc) != 0) 243 panic("Couldn't request external interrupt 0x1004"); 244 245 if (clocksource_register(&clocksource_tod) != 0) 246 panic("Could not register TOD clock source"); 247 248 /* request the timing alert external interrupt */ 249 if (register_early_external_interrupt(0x1406, 250 timing_alert_interrupt, 251 &ext_int_etr_cc) != 0) 252 panic("Couldn't request external interrupt 0x1406"); 253 254 /* Enable TOD clock interrupts on the boot cpu. */ 255 init_cpu_timer(); 256 257 #ifdef CONFIG_VIRT_TIMER 258 vtime_init(); 259 #endif 260 } 261 262 /* 263 * The time is "clock". old is what we think the time is. 264 * Adjust the value by a multiple of jiffies and add the delta to ntp. 265 * "delay" is an approximation how long the synchronization took. If 266 * the time correction is positive, then "delay" is subtracted from 267 * the time difference and only the remaining part is passed to ntp. 268 */ 269 static unsigned long long adjust_time(unsigned long long old, 270 unsigned long long clock, 271 unsigned long long delay) 272 { 273 unsigned long long delta, ticks; 274 struct timex adjust; 275 276 if (clock > old) { 277 /* It is later than we thought. */ 278 delta = ticks = clock - old; 279 delta = ticks = (delta < delay) ? 0 : delta - delay; 280 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY); 281 adjust.offset = ticks * (1000000 / HZ); 282 } else { 283 /* It is earlier than we thought. */ 284 delta = ticks = old - clock; 285 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY); 286 delta = -delta; 287 adjust.offset = -ticks * (1000000 / HZ); 288 } 289 sched_clock_base_cc += delta; 290 if (adjust.offset != 0) { 291 printk(KERN_NOTICE "etr: time adjusted by %li micro-seconds\n", 292 adjust.offset); 293 adjust.modes = ADJ_OFFSET_SINGLESHOT; 294 do_adjtimex(&adjust); 295 } 296 return delta; 297 } 298 299 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 300 static unsigned long clock_sync_flags; 301 302 #define CLOCK_SYNC_HAS_ETR 0 303 #define CLOCK_SYNC_HAS_STP 1 304 #define CLOCK_SYNC_ETR 2 305 #define CLOCK_SYNC_STP 3 306 307 /* 308 * The synchronous get_clock function. It will write the current clock 309 * value to the clock pointer and return 0 if the clock is in sync with 310 * the external time source. If the clock mode is local it will return 311 * -ENOSYS and -EAGAIN if the clock is not in sync with the external 312 * reference. 313 */ 314 int get_sync_clock(unsigned long long *clock) 315 { 316 atomic_t *sw_ptr; 317 unsigned int sw0, sw1; 318 319 sw_ptr = &get_cpu_var(clock_sync_word); 320 sw0 = atomic_read(sw_ptr); 321 *clock = get_clock(); 322 sw1 = atomic_read(sw_ptr); 323 put_cpu_var(clock_sync_sync); 324 if (sw0 == sw1 && (sw0 & 0x80000000U)) 325 /* Success: time is in sync. */ 326 return 0; 327 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) && 328 !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 329 return -ENOSYS; 330 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) && 331 !test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 332 return -EACCES; 333 return -EAGAIN; 334 } 335 EXPORT_SYMBOL(get_sync_clock); 336 337 /* 338 * Make get_sync_clock return -EAGAIN. 339 */ 340 static void disable_sync_clock(void *dummy) 341 { 342 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word); 343 /* 344 * Clear the in-sync bit 2^31. All get_sync_clock calls will 345 * fail until the sync bit is turned back on. In addition 346 * increase the "sequence" counter to avoid the race of an 347 * etr event and the complete recovery against get_sync_clock. 348 */ 349 atomic_clear_mask(0x80000000, sw_ptr); 350 atomic_inc(sw_ptr); 351 } 352 353 /* 354 * Make get_sync_clock return 0 again. 355 * Needs to be called from a context disabled for preemption. 356 */ 357 static void enable_sync_clock(void) 358 { 359 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word); 360 atomic_set_mask(0x80000000, sw_ptr); 361 } 362 363 /* 364 * External Time Reference (ETR) code. 365 */ 366 static int etr_port0_online; 367 static int etr_port1_online; 368 static int etr_steai_available; 369 370 static int __init early_parse_etr(char *p) 371 { 372 if (strncmp(p, "off", 3) == 0) 373 etr_port0_online = etr_port1_online = 0; 374 else if (strncmp(p, "port0", 5) == 0) 375 etr_port0_online = 1; 376 else if (strncmp(p, "port1", 5) == 0) 377 etr_port1_online = 1; 378 else if (strncmp(p, "on", 2) == 0) 379 etr_port0_online = etr_port1_online = 1; 380 return 0; 381 } 382 early_param("etr", early_parse_etr); 383 384 enum etr_event { 385 ETR_EVENT_PORT0_CHANGE, 386 ETR_EVENT_PORT1_CHANGE, 387 ETR_EVENT_PORT_ALERT, 388 ETR_EVENT_SYNC_CHECK, 389 ETR_EVENT_SWITCH_LOCAL, 390 ETR_EVENT_UPDATE, 391 }; 392 393 /* 394 * Valid bit combinations of the eacr register are (x = don't care): 395 * e0 e1 dp p0 p1 ea es sl 396 * 0 0 x 0 0 0 0 0 initial, disabled state 397 * 0 0 x 0 1 1 0 0 port 1 online 398 * 0 0 x 1 0 1 0 0 port 0 online 399 * 0 0 x 1 1 1 0 0 both ports online 400 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode 401 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode 402 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync 403 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync 404 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable 405 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync 406 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync 407 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode 408 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode 409 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync 410 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync 411 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable 412 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync 413 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync 414 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync 415 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync 416 */ 417 static struct etr_eacr etr_eacr; 418 static u64 etr_tolec; /* time of last eacr update */ 419 static struct etr_aib etr_port0; 420 static int etr_port0_uptodate; 421 static struct etr_aib etr_port1; 422 static int etr_port1_uptodate; 423 static unsigned long etr_events; 424 static struct timer_list etr_timer; 425 426 static void etr_timeout(unsigned long dummy); 427 static void etr_work_fn(struct work_struct *work); 428 static DECLARE_WORK(etr_work, etr_work_fn); 429 430 /* 431 * Reset ETR attachment. 432 */ 433 static void etr_reset(void) 434 { 435 etr_eacr = (struct etr_eacr) { 436 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0, 437 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0, 438 .es = 0, .sl = 0 }; 439 if (etr_setr(&etr_eacr) == 0) { 440 etr_tolec = get_clock(); 441 set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags); 442 } else if (etr_port0_online || etr_port1_online) { 443 printk(KERN_WARNING "Running on non ETR capable " 444 "machine, only local mode available.\n"); 445 etr_port0_online = etr_port1_online = 0; 446 } 447 } 448 449 static int __init etr_init(void) 450 { 451 struct etr_aib aib; 452 453 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags)) 454 return 0; 455 /* Check if this machine has the steai instruction. */ 456 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0) 457 etr_steai_available = 1; 458 setup_timer(&etr_timer, etr_timeout, 0UL); 459 if (etr_port0_online) { 460 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 461 schedule_work(&etr_work); 462 } 463 if (etr_port1_online) { 464 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 465 schedule_work(&etr_work); 466 } 467 return 0; 468 } 469 470 arch_initcall(etr_init); 471 472 /* 473 * Two sorts of ETR machine checks. The architecture reads: 474 * "When a machine-check niterruption occurs and if a switch-to-local or 475 * ETR-sync-check interrupt request is pending but disabled, this pending 476 * disabled interruption request is indicated and is cleared". 477 * Which means that we can get etr_switch_to_local events from the machine 478 * check handler although the interruption condition is disabled. Lovely.. 479 */ 480 481 /* 482 * Switch to local machine check. This is called when the last usable 483 * ETR port goes inactive. After switch to local the clock is not in sync. 484 */ 485 void etr_switch_to_local(void) 486 { 487 if (!etr_eacr.sl) 488 return; 489 if (test_bit(CLOCK_SYNC_ETR, &clock_sync_flags)) 490 disable_sync_clock(NULL); 491 set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events); 492 schedule_work(&etr_work); 493 } 494 495 /* 496 * ETR sync check machine check. This is called when the ETR OTE and the 497 * local clock OTE are farther apart than the ETR sync check tolerance. 498 * After a ETR sync check the clock is not in sync. The machine check 499 * is broadcasted to all cpus at the same time. 500 */ 501 void etr_sync_check(void) 502 { 503 if (!etr_eacr.es) 504 return; 505 if (test_bit(CLOCK_SYNC_ETR, &clock_sync_flags)) 506 disable_sync_clock(NULL); 507 set_bit(ETR_EVENT_SYNC_CHECK, &etr_events); 508 schedule_work(&etr_work); 509 } 510 511 /* 512 * ETR timing alert. There are two causes: 513 * 1) port state change, check the usability of the port 514 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the 515 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3) 516 * or ETR-data word 4 (edf4) has changed. 517 */ 518 static void etr_timing_alert(struct etr_irq_parm *intparm) 519 { 520 if (intparm->pc0) 521 /* ETR port 0 state change. */ 522 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 523 if (intparm->pc1) 524 /* ETR port 1 state change. */ 525 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 526 if (intparm->eai) 527 /* 528 * ETR port alert on either port 0, 1 or both. 529 * Both ports are not up-to-date now. 530 */ 531 set_bit(ETR_EVENT_PORT_ALERT, &etr_events); 532 schedule_work(&etr_work); 533 } 534 535 static void etr_timeout(unsigned long dummy) 536 { 537 set_bit(ETR_EVENT_UPDATE, &etr_events); 538 schedule_work(&etr_work); 539 } 540 541 /* 542 * Check if the etr mode is pss. 543 */ 544 static inline int etr_mode_is_pps(struct etr_eacr eacr) 545 { 546 return eacr.es && !eacr.sl; 547 } 548 549 /* 550 * Check if the etr mode is etr. 551 */ 552 static inline int etr_mode_is_etr(struct etr_eacr eacr) 553 { 554 return eacr.es && eacr.sl; 555 } 556 557 /* 558 * Check if the port can be used for TOD synchronization. 559 * For PPS mode the port has to receive OTEs. For ETR mode 560 * the port has to receive OTEs, the ETR stepping bit has to 561 * be zero and the validity bits for data frame 1, 2, and 3 562 * have to be 1. 563 */ 564 static int etr_port_valid(struct etr_aib *aib, int port) 565 { 566 unsigned int psc; 567 568 /* Check that this port is receiving OTEs. */ 569 if (aib->tsp == 0) 570 return 0; 571 572 psc = port ? aib->esw.psc1 : aib->esw.psc0; 573 if (psc == etr_lpsc_pps_mode) 574 return 1; 575 if (psc == etr_lpsc_operational_step) 576 return !aib->esw.y && aib->slsw.v1 && 577 aib->slsw.v2 && aib->slsw.v3; 578 return 0; 579 } 580 581 /* 582 * Check if two ports are on the same network. 583 */ 584 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2) 585 { 586 // FIXME: any other fields we have to compare? 587 return aib1->edf1.net_id == aib2->edf1.net_id; 588 } 589 590 /* 591 * Wrapper for etr_stei that converts physical port states 592 * to logical port states to be consistent with the output 593 * of stetr (see etr_psc vs. etr_lpsc). 594 */ 595 static void etr_steai_cv(struct etr_aib *aib, unsigned int func) 596 { 597 BUG_ON(etr_steai(aib, func) != 0); 598 /* Convert port state to logical port state. */ 599 if (aib->esw.psc0 == 1) 600 aib->esw.psc0 = 2; 601 else if (aib->esw.psc0 == 0 && aib->esw.p == 0) 602 aib->esw.psc0 = 1; 603 if (aib->esw.psc1 == 1) 604 aib->esw.psc1 = 2; 605 else if (aib->esw.psc1 == 0 && aib->esw.p == 1) 606 aib->esw.psc1 = 1; 607 } 608 609 /* 610 * Check if the aib a2 is still connected to the same attachment as 611 * aib a1, the etv values differ by one and a2 is valid. 612 */ 613 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p) 614 { 615 int state_a1, state_a2; 616 617 /* Paranoia check: e0/e1 should better be the same. */ 618 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 || 619 a1->esw.eacr.e1 != a2->esw.eacr.e1) 620 return 0; 621 622 /* Still connected to the same etr ? */ 623 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0; 624 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0; 625 if (state_a1 == etr_lpsc_operational_step) { 626 if (state_a2 != etr_lpsc_operational_step || 627 a1->edf1.net_id != a2->edf1.net_id || 628 a1->edf1.etr_id != a2->edf1.etr_id || 629 a1->edf1.etr_pn != a2->edf1.etr_pn) 630 return 0; 631 } else if (state_a2 != etr_lpsc_pps_mode) 632 return 0; 633 634 /* The ETV value of a2 needs to be ETV of a1 + 1. */ 635 if (a1->edf2.etv + 1 != a2->edf2.etv) 636 return 0; 637 638 if (!etr_port_valid(a2, p)) 639 return 0; 640 641 return 1; 642 } 643 644 struct clock_sync_data { 645 int in_sync; 646 unsigned long long fixup_cc; 647 }; 648 649 static void clock_sync_cpu_start(void *dummy) 650 { 651 struct clock_sync_data *sync = dummy; 652 653 enable_sync_clock(); 654 /* 655 * This looks like a busy wait loop but it isn't. etr_sync_cpus 656 * is called on all other cpus while the TOD clocks is stopped. 657 * __udelay will stop the cpu on an enabled wait psw until the 658 * TOD is running again. 659 */ 660 while (sync->in_sync == 0) { 661 __udelay(1); 662 /* 663 * A different cpu changes *in_sync. Therefore use 664 * barrier() to force memory access. 665 */ 666 barrier(); 667 } 668 if (sync->in_sync != 1) 669 /* Didn't work. Clear per-cpu in sync bit again. */ 670 disable_sync_clock(NULL); 671 /* 672 * This round of TOD syncing is done. Set the clock comparator 673 * to the next tick and let the processor continue. 674 */ 675 fixup_clock_comparator(sync->fixup_cc); 676 } 677 678 static void clock_sync_cpu_end(void *dummy) 679 { 680 } 681 682 /* 683 * Sync the TOD clock using the port refered to by aibp. This port 684 * has to be enabled and the other port has to be disabled. The 685 * last eacr update has to be more than 1.6 seconds in the past. 686 */ 687 static int etr_sync_clock(struct etr_aib *aib, int port) 688 { 689 struct etr_aib *sync_port; 690 struct clock_sync_data etr_sync; 691 unsigned long long clock, old_clock, delay, delta; 692 int follows; 693 int rc; 694 695 /* Check if the current aib is adjacent to the sync port aib. */ 696 sync_port = (port == 0) ? &etr_port0 : &etr_port1; 697 follows = etr_aib_follows(sync_port, aib, port); 698 memcpy(sync_port, aib, sizeof(*aib)); 699 if (!follows) 700 return -EAGAIN; 701 702 /* 703 * Catch all other cpus and make them wait until we have 704 * successfully synced the clock. smp_call_function will 705 * return after all other cpus are in etr_sync_cpu_start. 706 */ 707 memset(&etr_sync, 0, sizeof(etr_sync)); 708 preempt_disable(); 709 smp_call_function(clock_sync_cpu_start, &etr_sync, 0); 710 local_irq_disable(); 711 enable_sync_clock(); 712 713 /* Set clock to next OTE. */ 714 __ctl_set_bit(14, 21); 715 __ctl_set_bit(0, 29); 716 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32; 717 old_clock = get_clock(); 718 if (set_clock(clock) == 0) { 719 __udelay(1); /* Wait for the clock to start. */ 720 __ctl_clear_bit(0, 29); 721 __ctl_clear_bit(14, 21); 722 etr_stetr(aib); 723 /* Adjust Linux timing variables. */ 724 delay = (unsigned long long) 725 (aib->edf2.etv - sync_port->edf2.etv) << 32; 726 delta = adjust_time(old_clock, clock, delay); 727 etr_sync.fixup_cc = delta; 728 fixup_clock_comparator(delta); 729 /* Verify that the clock is properly set. */ 730 if (!etr_aib_follows(sync_port, aib, port)) { 731 /* Didn't work. */ 732 disable_sync_clock(NULL); 733 etr_sync.in_sync = -EAGAIN; 734 rc = -EAGAIN; 735 } else { 736 etr_sync.in_sync = 1; 737 rc = 0; 738 } 739 } else { 740 /* Could not set the clock ?!? */ 741 __ctl_clear_bit(0, 29); 742 __ctl_clear_bit(14, 21); 743 disable_sync_clock(NULL); 744 etr_sync.in_sync = -EAGAIN; 745 rc = -EAGAIN; 746 } 747 local_irq_enable(); 748 smp_call_function(clock_sync_cpu_end, NULL, 0); 749 preempt_enable(); 750 return rc; 751 } 752 753 /* 754 * Handle the immediate effects of the different events. 755 * The port change event is used for online/offline changes. 756 */ 757 static struct etr_eacr etr_handle_events(struct etr_eacr eacr) 758 { 759 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) 760 eacr.es = 0; 761 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) 762 eacr.es = eacr.sl = 0; 763 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events)) 764 etr_port0_uptodate = etr_port1_uptodate = 0; 765 766 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) { 767 if (eacr.e0) 768 /* 769 * Port change of an enabled port. We have to 770 * assume that this can have caused an stepping 771 * port switch. 772 */ 773 etr_tolec = get_clock(); 774 eacr.p0 = etr_port0_online; 775 if (!eacr.p0) 776 eacr.e0 = 0; 777 etr_port0_uptodate = 0; 778 } 779 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) { 780 if (eacr.e1) 781 /* 782 * Port change of an enabled port. We have to 783 * assume that this can have caused an stepping 784 * port switch. 785 */ 786 etr_tolec = get_clock(); 787 eacr.p1 = etr_port1_online; 788 if (!eacr.p1) 789 eacr.e1 = 0; 790 etr_port1_uptodate = 0; 791 } 792 clear_bit(ETR_EVENT_UPDATE, &etr_events); 793 return eacr; 794 } 795 796 /* 797 * Set up a timer that expires after the etr_tolec + 1.6 seconds if 798 * one of the ports needs an update. 799 */ 800 static void etr_set_tolec_timeout(unsigned long long now) 801 { 802 unsigned long micros; 803 804 if ((!etr_eacr.p0 || etr_port0_uptodate) && 805 (!etr_eacr.p1 || etr_port1_uptodate)) 806 return; 807 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0; 808 micros = (micros > 1600000) ? 0 : 1600000 - micros; 809 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1); 810 } 811 812 /* 813 * Set up a time that expires after 1/2 second. 814 */ 815 static void etr_set_sync_timeout(void) 816 { 817 mod_timer(&etr_timer, jiffies + HZ/2); 818 } 819 820 /* 821 * Update the aib information for one or both ports. 822 */ 823 static struct etr_eacr etr_handle_update(struct etr_aib *aib, 824 struct etr_eacr eacr) 825 { 826 /* With both ports disabled the aib information is useless. */ 827 if (!eacr.e0 && !eacr.e1) 828 return eacr; 829 830 /* Update port0 or port1 with aib stored in etr_work_fn. */ 831 if (aib->esw.q == 0) { 832 /* Information for port 0 stored. */ 833 if (eacr.p0 && !etr_port0_uptodate) { 834 etr_port0 = *aib; 835 if (etr_port0_online) 836 etr_port0_uptodate = 1; 837 } 838 } else { 839 /* Information for port 1 stored. */ 840 if (eacr.p1 && !etr_port1_uptodate) { 841 etr_port1 = *aib; 842 if (etr_port0_online) 843 etr_port1_uptodate = 1; 844 } 845 } 846 847 /* 848 * Do not try to get the alternate port aib if the clock 849 * is not in sync yet. 850 */ 851 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags) && !eacr.es) 852 return eacr; 853 854 /* 855 * If steai is available we can get the information about 856 * the other port immediately. If only stetr is available the 857 * data-port bit toggle has to be used. 858 */ 859 if (etr_steai_available) { 860 if (eacr.p0 && !etr_port0_uptodate) { 861 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0); 862 etr_port0_uptodate = 1; 863 } 864 if (eacr.p1 && !etr_port1_uptodate) { 865 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1); 866 etr_port1_uptodate = 1; 867 } 868 } else { 869 /* 870 * One port was updated above, if the other 871 * port is not uptodate toggle dp bit. 872 */ 873 if ((eacr.p0 && !etr_port0_uptodate) || 874 (eacr.p1 && !etr_port1_uptodate)) 875 eacr.dp ^= 1; 876 else 877 eacr.dp = 0; 878 } 879 return eacr; 880 } 881 882 /* 883 * Write new etr control register if it differs from the current one. 884 * Return 1 if etr_tolec has been updated as well. 885 */ 886 static void etr_update_eacr(struct etr_eacr eacr) 887 { 888 int dp_changed; 889 890 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0) 891 /* No change, return. */ 892 return; 893 /* 894 * The disable of an active port of the change of the data port 895 * bit can/will cause a change in the data port. 896 */ 897 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 || 898 (etr_eacr.dp ^ eacr.dp) != 0; 899 etr_eacr = eacr; 900 etr_setr(&etr_eacr); 901 if (dp_changed) 902 etr_tolec = get_clock(); 903 } 904 905 /* 906 * ETR tasklet. In this function you'll find the main logic. In 907 * particular this is the only function that calls etr_update_eacr(), 908 * it "controls" the etr control register. 909 */ 910 static void etr_work_fn(struct work_struct *work) 911 { 912 unsigned long long now; 913 struct etr_eacr eacr; 914 struct etr_aib aib; 915 int sync_port; 916 917 /* Create working copy of etr_eacr. */ 918 eacr = etr_eacr; 919 920 /* Check for the different events and their immediate effects. */ 921 eacr = etr_handle_events(eacr); 922 923 /* Check if ETR is supposed to be active. */ 924 eacr.ea = eacr.p0 || eacr.p1; 925 if (!eacr.ea) { 926 /* Both ports offline. Reset everything. */ 927 eacr.dp = eacr.es = eacr.sl = 0; 928 on_each_cpu(disable_sync_clock, NULL, 1); 929 del_timer_sync(&etr_timer); 930 etr_update_eacr(eacr); 931 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 932 return; 933 } 934 935 /* Store aib to get the current ETR status word. */ 936 BUG_ON(etr_stetr(&aib) != 0); 937 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */ 938 now = get_clock(); 939 940 /* 941 * Update the port information if the last stepping port change 942 * or data port change is older than 1.6 seconds. 943 */ 944 if (now >= etr_tolec + (1600000 << 12)) 945 eacr = etr_handle_update(&aib, eacr); 946 947 /* 948 * Select ports to enable. The prefered synchronization mode is PPS. 949 * If a port can be enabled depends on a number of things: 950 * 1) The port needs to be online and uptodate. A port is not 951 * disabled just because it is not uptodate, but it is only 952 * enabled if it is uptodate. 953 * 2) The port needs to have the same mode (pps / etr). 954 * 3) The port needs to be usable -> etr_port_valid() == 1 955 * 4) To enable the second port the clock needs to be in sync. 956 * 5) If both ports are useable and are ETR ports, the network id 957 * has to be the same. 958 * The eacr.sl bit is used to indicate etr mode vs. pps mode. 959 */ 960 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) { 961 eacr.sl = 0; 962 eacr.e0 = 1; 963 if (!etr_mode_is_pps(etr_eacr)) 964 eacr.es = 0; 965 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode) 966 eacr.e1 = 0; 967 // FIXME: uptodate checks ? 968 else if (etr_port0_uptodate && etr_port1_uptodate) 969 eacr.e1 = 1; 970 sync_port = (etr_port0_uptodate && 971 etr_port_valid(&etr_port0, 0)) ? 0 : -1; 972 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) { 973 eacr.sl = 0; 974 eacr.e0 = 0; 975 eacr.e1 = 1; 976 if (!etr_mode_is_pps(etr_eacr)) 977 eacr.es = 0; 978 sync_port = (etr_port1_uptodate && 979 etr_port_valid(&etr_port1, 1)) ? 1 : -1; 980 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) { 981 eacr.sl = 1; 982 eacr.e0 = 1; 983 if (!etr_mode_is_etr(etr_eacr)) 984 eacr.es = 0; 985 if (!eacr.es || !eacr.p1 || 986 aib.esw.psc1 != etr_lpsc_operational_alt) 987 eacr.e1 = 0; 988 else if (etr_port0_uptodate && etr_port1_uptodate && 989 etr_compare_network(&etr_port0, &etr_port1)) 990 eacr.e1 = 1; 991 sync_port = (etr_port0_uptodate && 992 etr_port_valid(&etr_port0, 0)) ? 0 : -1; 993 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) { 994 eacr.sl = 1; 995 eacr.e0 = 0; 996 eacr.e1 = 1; 997 if (!etr_mode_is_etr(etr_eacr)) 998 eacr.es = 0; 999 sync_port = (etr_port1_uptodate && 1000 etr_port_valid(&etr_port1, 1)) ? 1 : -1; 1001 } else { 1002 /* Both ports not usable. */ 1003 eacr.es = eacr.sl = 0; 1004 sync_port = -1; 1005 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1006 } 1007 1008 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags)) 1009 eacr.es = 0; 1010 1011 /* 1012 * If the clock is in sync just update the eacr and return. 1013 * If there is no valid sync port wait for a port update. 1014 */ 1015 if (test_bit(CLOCK_SYNC_STP, &clock_sync_flags) || 1016 eacr.es || sync_port < 0) { 1017 etr_update_eacr(eacr); 1018 etr_set_tolec_timeout(now); 1019 return; 1020 } 1021 1022 /* 1023 * Prepare control register for clock syncing 1024 * (reset data port bit, set sync check control. 1025 */ 1026 eacr.dp = 0; 1027 eacr.es = 1; 1028 1029 /* 1030 * Update eacr and try to synchronize the clock. If the update 1031 * of eacr caused a stepping port switch (or if we have to 1032 * assume that a stepping port switch has occured) or the 1033 * clock syncing failed, reset the sync check control bit 1034 * and set up a timer to try again after 0.5 seconds 1035 */ 1036 etr_update_eacr(eacr); 1037 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1038 if (now < etr_tolec + (1600000 << 12) || 1039 etr_sync_clock(&aib, sync_port) != 0) { 1040 /* Sync failed. Try again in 1/2 second. */ 1041 eacr.es = 0; 1042 etr_update_eacr(eacr); 1043 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1044 etr_set_sync_timeout(); 1045 } else 1046 etr_set_tolec_timeout(now); 1047 } 1048 1049 /* 1050 * Sysfs interface functions 1051 */ 1052 static struct sysdev_class etr_sysclass = { 1053 .name = "etr", 1054 }; 1055 1056 static struct sys_device etr_port0_dev = { 1057 .id = 0, 1058 .cls = &etr_sysclass, 1059 }; 1060 1061 static struct sys_device etr_port1_dev = { 1062 .id = 1, 1063 .cls = &etr_sysclass, 1064 }; 1065 1066 /* 1067 * ETR class attributes 1068 */ 1069 static ssize_t etr_stepping_port_show(struct sysdev_class *class, char *buf) 1070 { 1071 return sprintf(buf, "%i\n", etr_port0.esw.p); 1072 } 1073 1074 static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL); 1075 1076 static ssize_t etr_stepping_mode_show(struct sysdev_class *class, char *buf) 1077 { 1078 char *mode_str; 1079 1080 if (etr_mode_is_pps(etr_eacr)) 1081 mode_str = "pps"; 1082 else if (etr_mode_is_etr(etr_eacr)) 1083 mode_str = "etr"; 1084 else 1085 mode_str = "local"; 1086 return sprintf(buf, "%s\n", mode_str); 1087 } 1088 1089 static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL); 1090 1091 /* 1092 * ETR port attributes 1093 */ 1094 static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev) 1095 { 1096 if (dev == &etr_port0_dev) 1097 return etr_port0_online ? &etr_port0 : NULL; 1098 else 1099 return etr_port1_online ? &etr_port1 : NULL; 1100 } 1101 1102 static ssize_t etr_online_show(struct sys_device *dev, 1103 struct sysdev_attribute *attr, 1104 char *buf) 1105 { 1106 unsigned int online; 1107 1108 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online; 1109 return sprintf(buf, "%i\n", online); 1110 } 1111 1112 static ssize_t etr_online_store(struct sys_device *dev, 1113 struct sysdev_attribute *attr, 1114 const char *buf, size_t count) 1115 { 1116 unsigned int value; 1117 1118 value = simple_strtoul(buf, NULL, 0); 1119 if (value != 0 && value != 1) 1120 return -EINVAL; 1121 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags)) 1122 return -EOPNOTSUPP; 1123 if (dev == &etr_port0_dev) { 1124 if (etr_port0_online == value) 1125 return count; /* Nothing to do. */ 1126 etr_port0_online = value; 1127 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 1128 schedule_work(&etr_work); 1129 } else { 1130 if (etr_port1_online == value) 1131 return count; /* Nothing to do. */ 1132 etr_port1_online = value; 1133 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 1134 schedule_work(&etr_work); 1135 } 1136 return count; 1137 } 1138 1139 static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store); 1140 1141 static ssize_t etr_stepping_control_show(struct sys_device *dev, 1142 struct sysdev_attribute *attr, 1143 char *buf) 1144 { 1145 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ? 1146 etr_eacr.e0 : etr_eacr.e1); 1147 } 1148 1149 static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL); 1150 1151 static ssize_t etr_mode_code_show(struct sys_device *dev, 1152 struct sysdev_attribute *attr, char *buf) 1153 { 1154 if (!etr_port0_online && !etr_port1_online) 1155 /* Status word is not uptodate if both ports are offline. */ 1156 return -ENODATA; 1157 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ? 1158 etr_port0.esw.psc0 : etr_port0.esw.psc1); 1159 } 1160 1161 static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL); 1162 1163 static ssize_t etr_untuned_show(struct sys_device *dev, 1164 struct sysdev_attribute *attr, char *buf) 1165 { 1166 struct etr_aib *aib = etr_aib_from_dev(dev); 1167 1168 if (!aib || !aib->slsw.v1) 1169 return -ENODATA; 1170 return sprintf(buf, "%i\n", aib->edf1.u); 1171 } 1172 1173 static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL); 1174 1175 static ssize_t etr_network_id_show(struct sys_device *dev, 1176 struct sysdev_attribute *attr, char *buf) 1177 { 1178 struct etr_aib *aib = etr_aib_from_dev(dev); 1179 1180 if (!aib || !aib->slsw.v1) 1181 return -ENODATA; 1182 return sprintf(buf, "%i\n", aib->edf1.net_id); 1183 } 1184 1185 static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL); 1186 1187 static ssize_t etr_id_show(struct sys_device *dev, 1188 struct sysdev_attribute *attr, char *buf) 1189 { 1190 struct etr_aib *aib = etr_aib_from_dev(dev); 1191 1192 if (!aib || !aib->slsw.v1) 1193 return -ENODATA; 1194 return sprintf(buf, "%i\n", aib->edf1.etr_id); 1195 } 1196 1197 static SYSDEV_ATTR(id, 0400, etr_id_show, NULL); 1198 1199 static ssize_t etr_port_number_show(struct sys_device *dev, 1200 struct sysdev_attribute *attr, char *buf) 1201 { 1202 struct etr_aib *aib = etr_aib_from_dev(dev); 1203 1204 if (!aib || !aib->slsw.v1) 1205 return -ENODATA; 1206 return sprintf(buf, "%i\n", aib->edf1.etr_pn); 1207 } 1208 1209 static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL); 1210 1211 static ssize_t etr_coupled_show(struct sys_device *dev, 1212 struct sysdev_attribute *attr, char *buf) 1213 { 1214 struct etr_aib *aib = etr_aib_from_dev(dev); 1215 1216 if (!aib || !aib->slsw.v3) 1217 return -ENODATA; 1218 return sprintf(buf, "%i\n", aib->edf3.c); 1219 } 1220 1221 static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL); 1222 1223 static ssize_t etr_local_time_show(struct sys_device *dev, 1224 struct sysdev_attribute *attr, char *buf) 1225 { 1226 struct etr_aib *aib = etr_aib_from_dev(dev); 1227 1228 if (!aib || !aib->slsw.v3) 1229 return -ENODATA; 1230 return sprintf(buf, "%i\n", aib->edf3.blto); 1231 } 1232 1233 static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL); 1234 1235 static ssize_t etr_utc_offset_show(struct sys_device *dev, 1236 struct sysdev_attribute *attr, char *buf) 1237 { 1238 struct etr_aib *aib = etr_aib_from_dev(dev); 1239 1240 if (!aib || !aib->slsw.v3) 1241 return -ENODATA; 1242 return sprintf(buf, "%i\n", aib->edf3.buo); 1243 } 1244 1245 static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL); 1246 1247 static struct sysdev_attribute *etr_port_attributes[] = { 1248 &attr_online, 1249 &attr_stepping_control, 1250 &attr_state_code, 1251 &attr_untuned, 1252 &attr_network, 1253 &attr_id, 1254 &attr_port, 1255 &attr_coupled, 1256 &attr_local_time, 1257 &attr_utc_offset, 1258 NULL 1259 }; 1260 1261 static int __init etr_register_port(struct sys_device *dev) 1262 { 1263 struct sysdev_attribute **attr; 1264 int rc; 1265 1266 rc = sysdev_register(dev); 1267 if (rc) 1268 goto out; 1269 for (attr = etr_port_attributes; *attr; attr++) { 1270 rc = sysdev_create_file(dev, *attr); 1271 if (rc) 1272 goto out_unreg; 1273 } 1274 return 0; 1275 out_unreg: 1276 for (; attr >= etr_port_attributes; attr--) 1277 sysdev_remove_file(dev, *attr); 1278 sysdev_unregister(dev); 1279 out: 1280 return rc; 1281 } 1282 1283 static void __init etr_unregister_port(struct sys_device *dev) 1284 { 1285 struct sysdev_attribute **attr; 1286 1287 for (attr = etr_port_attributes; *attr; attr++) 1288 sysdev_remove_file(dev, *attr); 1289 sysdev_unregister(dev); 1290 } 1291 1292 static int __init etr_init_sysfs(void) 1293 { 1294 int rc; 1295 1296 rc = sysdev_class_register(&etr_sysclass); 1297 if (rc) 1298 goto out; 1299 rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port); 1300 if (rc) 1301 goto out_unreg_class; 1302 rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode); 1303 if (rc) 1304 goto out_remove_stepping_port; 1305 rc = etr_register_port(&etr_port0_dev); 1306 if (rc) 1307 goto out_remove_stepping_mode; 1308 rc = etr_register_port(&etr_port1_dev); 1309 if (rc) 1310 goto out_remove_port0; 1311 return 0; 1312 1313 out_remove_port0: 1314 etr_unregister_port(&etr_port0_dev); 1315 out_remove_stepping_mode: 1316 sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode); 1317 out_remove_stepping_port: 1318 sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port); 1319 out_unreg_class: 1320 sysdev_class_unregister(&etr_sysclass); 1321 out: 1322 return rc; 1323 } 1324 1325 device_initcall(etr_init_sysfs); 1326 1327 /* 1328 * Server Time Protocol (STP) code. 1329 */ 1330 static int stp_online; 1331 static struct stp_sstpi stp_info; 1332 static void *stp_page; 1333 1334 static void stp_work_fn(struct work_struct *work); 1335 static DECLARE_WORK(stp_work, stp_work_fn); 1336 1337 static int __init early_parse_stp(char *p) 1338 { 1339 if (strncmp(p, "off", 3) == 0) 1340 stp_online = 0; 1341 else if (strncmp(p, "on", 2) == 0) 1342 stp_online = 1; 1343 return 0; 1344 } 1345 early_param("stp", early_parse_stp); 1346 1347 /* 1348 * Reset STP attachment. 1349 */ 1350 static void __init stp_reset(void) 1351 { 1352 int rc; 1353 1354 stp_page = alloc_bootmem_pages(PAGE_SIZE); 1355 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000); 1356 if (rc == 0) 1357 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 1358 else if (stp_online) { 1359 printk(KERN_WARNING "Running on non STP capable machine.\n"); 1360 free_bootmem((unsigned long) stp_page, PAGE_SIZE); 1361 stp_page = NULL; 1362 stp_online = 0; 1363 } 1364 } 1365 1366 static int __init stp_init(void) 1367 { 1368 if (test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags) && stp_online) 1369 schedule_work(&stp_work); 1370 return 0; 1371 } 1372 1373 arch_initcall(stp_init); 1374 1375 /* 1376 * STP timing alert. There are three causes: 1377 * 1) timing status change 1378 * 2) link availability change 1379 * 3) time control parameter change 1380 * In all three cases we are only interested in the clock source state. 1381 * If a STP clock source is now available use it. 1382 */ 1383 static void stp_timing_alert(struct stp_irq_parm *intparm) 1384 { 1385 if (intparm->tsc || intparm->lac || intparm->tcpc) 1386 schedule_work(&stp_work); 1387 } 1388 1389 /* 1390 * STP sync check machine check. This is called when the timing state 1391 * changes from the synchronized state to the unsynchronized state. 1392 * After a STP sync check the clock is not in sync. The machine check 1393 * is broadcasted to all cpus at the same time. 1394 */ 1395 void stp_sync_check(void) 1396 { 1397 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 1398 return; 1399 disable_sync_clock(NULL); 1400 schedule_work(&stp_work); 1401 } 1402 1403 /* 1404 * STP island condition machine check. This is called when an attached 1405 * server attempts to communicate over an STP link and the servers 1406 * have matching CTN ids and have a valid stratum-1 configuration 1407 * but the configurations do not match. 1408 */ 1409 void stp_island_check(void) 1410 { 1411 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 1412 return; 1413 disable_sync_clock(NULL); 1414 schedule_work(&stp_work); 1415 } 1416 1417 /* 1418 * STP tasklet. Check for the STP state and take over the clock 1419 * synchronization if the STP clock source is usable. 1420 */ 1421 static void stp_work_fn(struct work_struct *work) 1422 { 1423 struct clock_sync_data stp_sync; 1424 unsigned long long old_clock, delta; 1425 int rc; 1426 1427 if (!stp_online) { 1428 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000); 1429 return; 1430 } 1431 1432 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0); 1433 if (rc) 1434 return; 1435 1436 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 1437 if (rc || stp_info.c == 0) 1438 return; 1439 1440 /* 1441 * Catch all other cpus and make them wait until we have 1442 * successfully synced the clock. smp_call_function will 1443 * return after all other cpus are in clock_sync_cpu_start. 1444 */ 1445 memset(&stp_sync, 0, sizeof(stp_sync)); 1446 preempt_disable(); 1447 smp_call_function(clock_sync_cpu_start, &stp_sync, 0); 1448 local_irq_disable(); 1449 enable_sync_clock(); 1450 1451 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 1452 if (test_and_clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags)) 1453 schedule_work(&etr_work); 1454 1455 rc = 0; 1456 if (stp_info.todoff[0] || stp_info.todoff[1] || 1457 stp_info.todoff[2] || stp_info.todoff[3] || 1458 stp_info.tmd != 2) { 1459 old_clock = get_clock(); 1460 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0); 1461 if (rc == 0) { 1462 delta = adjust_time(old_clock, get_clock(), 0); 1463 fixup_clock_comparator(delta); 1464 rc = chsc_sstpi(stp_page, &stp_info, 1465 sizeof(struct stp_sstpi)); 1466 if (rc == 0 && stp_info.tmd != 2) 1467 rc = -EAGAIN; 1468 } 1469 } 1470 if (rc) { 1471 disable_sync_clock(NULL); 1472 stp_sync.in_sync = -EAGAIN; 1473 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 1474 if (etr_port0_online || etr_port1_online) 1475 schedule_work(&etr_work); 1476 } else 1477 stp_sync.in_sync = 1; 1478 1479 local_irq_enable(); 1480 smp_call_function(clock_sync_cpu_end, NULL, 0); 1481 preempt_enable(); 1482 } 1483 1484 /* 1485 * STP class sysfs interface functions 1486 */ 1487 static struct sysdev_class stp_sysclass = { 1488 .name = "stp", 1489 }; 1490 1491 static ssize_t stp_ctn_id_show(struct sysdev_class *class, char *buf) 1492 { 1493 if (!stp_online) 1494 return -ENODATA; 1495 return sprintf(buf, "%016llx\n", 1496 *(unsigned long long *) stp_info.ctnid); 1497 } 1498 1499 static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL); 1500 1501 static ssize_t stp_ctn_type_show(struct sysdev_class *class, char *buf) 1502 { 1503 if (!stp_online) 1504 return -ENODATA; 1505 return sprintf(buf, "%i\n", stp_info.ctn); 1506 } 1507 1508 static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL); 1509 1510 static ssize_t stp_dst_offset_show(struct sysdev_class *class, char *buf) 1511 { 1512 if (!stp_online || !(stp_info.vbits & 0x2000)) 1513 return -ENODATA; 1514 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); 1515 } 1516 1517 static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL); 1518 1519 static ssize_t stp_leap_seconds_show(struct sysdev_class *class, char *buf) 1520 { 1521 if (!stp_online || !(stp_info.vbits & 0x8000)) 1522 return -ENODATA; 1523 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); 1524 } 1525 1526 static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL); 1527 1528 static ssize_t stp_stratum_show(struct sysdev_class *class, char *buf) 1529 { 1530 if (!stp_online) 1531 return -ENODATA; 1532 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); 1533 } 1534 1535 static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL); 1536 1537 static ssize_t stp_time_offset_show(struct sysdev_class *class, char *buf) 1538 { 1539 if (!stp_online || !(stp_info.vbits & 0x0800)) 1540 return -ENODATA; 1541 return sprintf(buf, "%i\n", (int) stp_info.tto); 1542 } 1543 1544 static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL); 1545 1546 static ssize_t stp_time_zone_offset_show(struct sysdev_class *class, char *buf) 1547 { 1548 if (!stp_online || !(stp_info.vbits & 0x4000)) 1549 return -ENODATA; 1550 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); 1551 } 1552 1553 static SYSDEV_CLASS_ATTR(time_zone_offset, 0400, 1554 stp_time_zone_offset_show, NULL); 1555 1556 static ssize_t stp_timing_mode_show(struct sysdev_class *class, char *buf) 1557 { 1558 if (!stp_online) 1559 return -ENODATA; 1560 return sprintf(buf, "%i\n", stp_info.tmd); 1561 } 1562 1563 static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL); 1564 1565 static ssize_t stp_timing_state_show(struct sysdev_class *class, char *buf) 1566 { 1567 if (!stp_online) 1568 return -ENODATA; 1569 return sprintf(buf, "%i\n", stp_info.tst); 1570 } 1571 1572 static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL); 1573 1574 static ssize_t stp_online_show(struct sysdev_class *class, char *buf) 1575 { 1576 return sprintf(buf, "%i\n", stp_online); 1577 } 1578 1579 static ssize_t stp_online_store(struct sysdev_class *class, 1580 const char *buf, size_t count) 1581 { 1582 unsigned int value; 1583 1584 value = simple_strtoul(buf, NULL, 0); 1585 if (value != 0 && value != 1) 1586 return -EINVAL; 1587 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 1588 return -EOPNOTSUPP; 1589 stp_online = value; 1590 schedule_work(&stp_work); 1591 return count; 1592 } 1593 1594 /* 1595 * Can't use SYSDEV_CLASS_ATTR because the attribute should be named 1596 * stp/online but attr_online already exists in this file .. 1597 */ 1598 static struct sysdev_class_attribute attr_stp_online = { 1599 .attr = { .name = "online", .mode = 0600 }, 1600 .show = stp_online_show, 1601 .store = stp_online_store, 1602 }; 1603 1604 static struct sysdev_class_attribute *stp_attributes[] = { 1605 &attr_ctn_id, 1606 &attr_ctn_type, 1607 &attr_dst_offset, 1608 &attr_leap_seconds, 1609 &attr_stp_online, 1610 &attr_stratum, 1611 &attr_time_offset, 1612 &attr_time_zone_offset, 1613 &attr_timing_mode, 1614 &attr_timing_state, 1615 NULL 1616 }; 1617 1618 static int __init stp_init_sysfs(void) 1619 { 1620 struct sysdev_class_attribute **attr; 1621 int rc; 1622 1623 rc = sysdev_class_register(&stp_sysclass); 1624 if (rc) 1625 goto out; 1626 for (attr = stp_attributes; *attr; attr++) { 1627 rc = sysdev_class_create_file(&stp_sysclass, *attr); 1628 if (rc) 1629 goto out_unreg; 1630 } 1631 return 0; 1632 out_unreg: 1633 for (; attr >= stp_attributes; attr--) 1634 sysdev_class_remove_file(&stp_sysclass, *attr); 1635 sysdev_class_unregister(&stp_sysclass); 1636 out: 1637 return rc; 1638 } 1639 1640 device_initcall(stp_init_sysfs); 1641