xref: /linux/arch/s390/kernel/time.c (revision 72aaf09fda49f5919d98d65d35e5179f3acb0497)
1 /*
2  *  arch/s390/kernel/time.c
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #include <linux/errno.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/kernel.h>
19 #include <linux/param.h>
20 #include <linux/string.h>
21 #include <linux/mm.h>
22 #include <linux/interrupt.h>
23 #include <linux/time.h>
24 #include <linux/sysdev.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/smp.h>
28 #include <linux/types.h>
29 #include <linux/profile.h>
30 #include <linux/timex.h>
31 #include <linux/notifier.h>
32 #include <linux/clocksource.h>
33 #include <linux/clockchips.h>
34 #include <linux/bootmem.h>
35 #include <asm/uaccess.h>
36 #include <asm/delay.h>
37 #include <asm/s390_ext.h>
38 #include <asm/div64.h>
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/timer.h>
42 #include <asm/etr.h>
43 #include <asm/cio.h>
44 
45 /* change this if you have some constant time drift */
46 #define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
47 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
48 
49 /* The value of the TOD clock for 1.1.1970. */
50 #define TOD_UNIX_EPOCH 0x7d91048bca000000ULL
51 
52 /*
53  * Create a small time difference between the timer interrupts
54  * on the different cpus to avoid lock contention.
55  */
56 #define CPU_DEVIATION       (smp_processor_id() << 12)
57 
58 #define TICK_SIZE tick
59 
60 static ext_int_info_t ext_int_info_cc;
61 static ext_int_info_t ext_int_etr_cc;
62 static u64 sched_clock_base_cc;
63 
64 static DEFINE_PER_CPU(struct clock_event_device, comparators);
65 
66 /*
67  * Scheduler clock - returns current time in nanosec units.
68  */
69 unsigned long long sched_clock(void)
70 {
71 	return ((get_clock_xt() - sched_clock_base_cc) * 125) >> 9;
72 }
73 
74 /*
75  * Monotonic_clock - returns # of nanoseconds passed since time_init()
76  */
77 unsigned long long monotonic_clock(void)
78 {
79 	return sched_clock();
80 }
81 EXPORT_SYMBOL(monotonic_clock);
82 
83 void tod_to_timeval(__u64 todval, struct timespec *xtime)
84 {
85 	unsigned long long sec;
86 
87 	sec = todval >> 12;
88 	do_div(sec, 1000000);
89 	xtime->tv_sec = sec;
90 	todval -= (sec * 1000000) << 12;
91 	xtime->tv_nsec = ((todval * 1000) >> 12);
92 }
93 
94 #ifdef CONFIG_PROFILING
95 #define s390_do_profile()	profile_tick(CPU_PROFILING)
96 #else
97 #define s390_do_profile()	do { ; } while(0)
98 #endif /* CONFIG_PROFILING */
99 
100 void clock_comparator_work(void)
101 {
102 	struct clock_event_device *cd;
103 
104 	S390_lowcore.clock_comparator = -1ULL;
105 	set_clock_comparator(S390_lowcore.clock_comparator);
106 	cd = &__get_cpu_var(comparators);
107 	cd->event_handler(cd);
108 	s390_do_profile();
109 }
110 
111 /*
112  * Fixup the clock comparator.
113  */
114 static void fixup_clock_comparator(unsigned long long delta)
115 {
116 	/* If nobody is waiting there's nothing to fix. */
117 	if (S390_lowcore.clock_comparator == -1ULL)
118 		return;
119 	S390_lowcore.clock_comparator += delta;
120 	set_clock_comparator(S390_lowcore.clock_comparator);
121 }
122 
123 static int s390_next_event(unsigned long delta,
124 			   struct clock_event_device *evt)
125 {
126 	S390_lowcore.clock_comparator = get_clock() + delta;
127 	set_clock_comparator(S390_lowcore.clock_comparator);
128 	return 0;
129 }
130 
131 static void s390_set_mode(enum clock_event_mode mode,
132 			  struct clock_event_device *evt)
133 {
134 }
135 
136 /*
137  * Set up lowcore and control register of the current cpu to
138  * enable TOD clock and clock comparator interrupts.
139  */
140 void init_cpu_timer(void)
141 {
142 	struct clock_event_device *cd;
143 	int cpu;
144 
145 	S390_lowcore.clock_comparator = -1ULL;
146 	set_clock_comparator(S390_lowcore.clock_comparator);
147 
148 	cpu = smp_processor_id();
149 	cd = &per_cpu(comparators, cpu);
150 	cd->name		= "comparator";
151 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
152 	cd->mult		= 16777;
153 	cd->shift		= 12;
154 	cd->min_delta_ns	= 1;
155 	cd->max_delta_ns	= LONG_MAX;
156 	cd->rating		= 400;
157 	cd->cpumask		= cpumask_of_cpu(cpu);
158 	cd->set_next_event	= s390_next_event;
159 	cd->set_mode		= s390_set_mode;
160 
161 	clockevents_register_device(cd);
162 
163 	/* Enable clock comparator timer interrupt. */
164 	__ctl_set_bit(0,11);
165 
166 	/* Always allow the timing alert external interrupt. */
167 	__ctl_set_bit(0, 4);
168 }
169 
170 static void clock_comparator_interrupt(__u16 code)
171 {
172 	if (S390_lowcore.clock_comparator == -1ULL)
173 		set_clock_comparator(S390_lowcore.clock_comparator);
174 }
175 
176 static void etr_timing_alert(struct etr_irq_parm *);
177 static void stp_timing_alert(struct stp_irq_parm *);
178 
179 static void timing_alert_interrupt(__u16 code)
180 {
181 	if (S390_lowcore.ext_params & 0x00c40000)
182 		etr_timing_alert((struct etr_irq_parm *)
183 				 &S390_lowcore.ext_params);
184 	if (S390_lowcore.ext_params & 0x00038000)
185 		stp_timing_alert((struct stp_irq_parm *)
186 				 &S390_lowcore.ext_params);
187 }
188 
189 static void etr_reset(void);
190 static void stp_reset(void);
191 
192 /*
193  * Get the TOD clock running.
194  */
195 static u64 __init reset_tod_clock(void)
196 {
197 	u64 time;
198 
199 	etr_reset();
200 	stp_reset();
201 	if (store_clock(&time) == 0)
202 		return time;
203 	/* TOD clock not running. Set the clock to Unix Epoch. */
204 	if (set_clock(TOD_UNIX_EPOCH) != 0 || store_clock(&time) != 0)
205 		panic("TOD clock not operational.");
206 
207 	return TOD_UNIX_EPOCH;
208 }
209 
210 static cycle_t read_tod_clock(void)
211 {
212 	return get_clock();
213 }
214 
215 static struct clocksource clocksource_tod = {
216 	.name		= "tod",
217 	.rating		= 400,
218 	.read		= read_tod_clock,
219 	.mask		= -1ULL,
220 	.mult		= 1000,
221 	.shift		= 12,
222 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
223 };
224 
225 
226 /*
227  * Initialize the TOD clock and the CPU timer of
228  * the boot cpu.
229  */
230 void __init time_init(void)
231 {
232 	sched_clock_base_cc = reset_tod_clock();
233 
234 	/* set xtime */
235 	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, &xtime);
236         set_normalized_timespec(&wall_to_monotonic,
237                                 -xtime.tv_sec, -xtime.tv_nsec);
238 
239 	/* request the clock comparator external interrupt */
240 	if (register_early_external_interrupt(0x1004,
241 					      clock_comparator_interrupt,
242 					      &ext_int_info_cc) != 0)
243                 panic("Couldn't request external interrupt 0x1004");
244 
245 	if (clocksource_register(&clocksource_tod) != 0)
246 		panic("Could not register TOD clock source");
247 
248 	/* request the timing alert external interrupt */
249 	if (register_early_external_interrupt(0x1406,
250 					      timing_alert_interrupt,
251 					      &ext_int_etr_cc) != 0)
252 		panic("Couldn't request external interrupt 0x1406");
253 
254 	/* Enable TOD clock interrupts on the boot cpu. */
255 	init_cpu_timer();
256 
257 #ifdef CONFIG_VIRT_TIMER
258 	vtime_init();
259 #endif
260 }
261 
262 /*
263  * The time is "clock". old is what we think the time is.
264  * Adjust the value by a multiple of jiffies and add the delta to ntp.
265  * "delay" is an approximation how long the synchronization took. If
266  * the time correction is positive, then "delay" is subtracted from
267  * the time difference and only the remaining part is passed to ntp.
268  */
269 static unsigned long long adjust_time(unsigned long long old,
270 				      unsigned long long clock,
271 				      unsigned long long delay)
272 {
273 	unsigned long long delta, ticks;
274 	struct timex adjust;
275 
276 	if (clock > old) {
277 		/* It is later than we thought. */
278 		delta = ticks = clock - old;
279 		delta = ticks = (delta < delay) ? 0 : delta - delay;
280 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
281 		adjust.offset = ticks * (1000000 / HZ);
282 	} else {
283 		/* It is earlier than we thought. */
284 		delta = ticks = old - clock;
285 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
286 		delta = -delta;
287 		adjust.offset = -ticks * (1000000 / HZ);
288 	}
289 	sched_clock_base_cc += delta;
290 	if (adjust.offset != 0) {
291 		printk(KERN_NOTICE "etr: time adjusted by %li micro-seconds\n",
292 		       adjust.offset);
293 		adjust.modes = ADJ_OFFSET_SINGLESHOT;
294 		do_adjtimex(&adjust);
295 	}
296 	return delta;
297 }
298 
299 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
300 static unsigned long clock_sync_flags;
301 
302 #define CLOCK_SYNC_HAS_ETR	0
303 #define CLOCK_SYNC_HAS_STP	1
304 #define CLOCK_SYNC_ETR		2
305 #define CLOCK_SYNC_STP		3
306 
307 /*
308  * The synchronous get_clock function. It will write the current clock
309  * value to the clock pointer and return 0 if the clock is in sync with
310  * the external time source. If the clock mode is local it will return
311  * -ENOSYS and -EAGAIN if the clock is not in sync with the external
312  * reference.
313  */
314 int get_sync_clock(unsigned long long *clock)
315 {
316 	atomic_t *sw_ptr;
317 	unsigned int sw0, sw1;
318 
319 	sw_ptr = &get_cpu_var(clock_sync_word);
320 	sw0 = atomic_read(sw_ptr);
321 	*clock = get_clock();
322 	sw1 = atomic_read(sw_ptr);
323 	put_cpu_var(clock_sync_sync);
324 	if (sw0 == sw1 && (sw0 & 0x80000000U))
325 		/* Success: time is in sync. */
326 		return 0;
327 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
328 	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
329 		return -ENOSYS;
330 	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
331 	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
332 		return -EACCES;
333 	return -EAGAIN;
334 }
335 EXPORT_SYMBOL(get_sync_clock);
336 
337 /*
338  * Make get_sync_clock return -EAGAIN.
339  */
340 static void disable_sync_clock(void *dummy)
341 {
342 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
343 	/*
344 	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
345 	 * fail until the sync bit is turned back on. In addition
346 	 * increase the "sequence" counter to avoid the race of an
347 	 * etr event and the complete recovery against get_sync_clock.
348 	 */
349 	atomic_clear_mask(0x80000000, sw_ptr);
350 	atomic_inc(sw_ptr);
351 }
352 
353 /*
354  * Make get_sync_clock return 0 again.
355  * Needs to be called from a context disabled for preemption.
356  */
357 static void enable_sync_clock(void)
358 {
359 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
360 	atomic_set_mask(0x80000000, sw_ptr);
361 }
362 
363 /*
364  * External Time Reference (ETR) code.
365  */
366 static int etr_port0_online;
367 static int etr_port1_online;
368 static int etr_steai_available;
369 
370 static int __init early_parse_etr(char *p)
371 {
372 	if (strncmp(p, "off", 3) == 0)
373 		etr_port0_online = etr_port1_online = 0;
374 	else if (strncmp(p, "port0", 5) == 0)
375 		etr_port0_online = 1;
376 	else if (strncmp(p, "port1", 5) == 0)
377 		etr_port1_online = 1;
378 	else if (strncmp(p, "on", 2) == 0)
379 		etr_port0_online = etr_port1_online = 1;
380 	return 0;
381 }
382 early_param("etr", early_parse_etr);
383 
384 enum etr_event {
385 	ETR_EVENT_PORT0_CHANGE,
386 	ETR_EVENT_PORT1_CHANGE,
387 	ETR_EVENT_PORT_ALERT,
388 	ETR_EVENT_SYNC_CHECK,
389 	ETR_EVENT_SWITCH_LOCAL,
390 	ETR_EVENT_UPDATE,
391 };
392 
393 /*
394  * Valid bit combinations of the eacr register are (x = don't care):
395  * e0 e1 dp p0 p1 ea es sl
396  *  0  0  x  0	0  0  0  0  initial, disabled state
397  *  0  0  x  0	1  1  0  0  port 1 online
398  *  0  0  x  1	0  1  0  0  port 0 online
399  *  0  0  x  1	1  1  0  0  both ports online
400  *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
401  *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
402  *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
403  *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
404  *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
405  *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
406  *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
407  *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
408  *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
409  *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
410  *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
411  *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
412  *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
413  *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
414  *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
415  *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
416  */
417 static struct etr_eacr etr_eacr;
418 static u64 etr_tolec;			/* time of last eacr update */
419 static struct etr_aib etr_port0;
420 static int etr_port0_uptodate;
421 static struct etr_aib etr_port1;
422 static int etr_port1_uptodate;
423 static unsigned long etr_events;
424 static struct timer_list etr_timer;
425 
426 static void etr_timeout(unsigned long dummy);
427 static void etr_work_fn(struct work_struct *work);
428 static DECLARE_WORK(etr_work, etr_work_fn);
429 
430 /*
431  * Reset ETR attachment.
432  */
433 static void etr_reset(void)
434 {
435 	etr_eacr =  (struct etr_eacr) {
436 		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
437 		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
438 		.es = 0, .sl = 0 };
439 	if (etr_setr(&etr_eacr) == 0) {
440 		etr_tolec = get_clock();
441 		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
442 	} else if (etr_port0_online || etr_port1_online) {
443 		printk(KERN_WARNING "Running on non ETR capable "
444 		       "machine, only local mode available.\n");
445 		etr_port0_online = etr_port1_online = 0;
446 	}
447 }
448 
449 static int __init etr_init(void)
450 {
451 	struct etr_aib aib;
452 
453 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
454 		return 0;
455 	/* Check if this machine has the steai instruction. */
456 	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
457 		etr_steai_available = 1;
458 	setup_timer(&etr_timer, etr_timeout, 0UL);
459 	if (etr_port0_online) {
460 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
461 		schedule_work(&etr_work);
462 	}
463 	if (etr_port1_online) {
464 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
465 		schedule_work(&etr_work);
466 	}
467 	return 0;
468 }
469 
470 arch_initcall(etr_init);
471 
472 /*
473  * Two sorts of ETR machine checks. The architecture reads:
474  * "When a machine-check niterruption occurs and if a switch-to-local or
475  *  ETR-sync-check interrupt request is pending but disabled, this pending
476  *  disabled interruption request is indicated and is cleared".
477  * Which means that we can get etr_switch_to_local events from the machine
478  * check handler although the interruption condition is disabled. Lovely..
479  */
480 
481 /*
482  * Switch to local machine check. This is called when the last usable
483  * ETR port goes inactive. After switch to local the clock is not in sync.
484  */
485 void etr_switch_to_local(void)
486 {
487 	if (!etr_eacr.sl)
488 		return;
489 	if (test_bit(CLOCK_SYNC_ETR, &clock_sync_flags))
490 		disable_sync_clock(NULL);
491 	set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events);
492 	schedule_work(&etr_work);
493 }
494 
495 /*
496  * ETR sync check machine check. This is called when the ETR OTE and the
497  * local clock OTE are farther apart than the ETR sync check tolerance.
498  * After a ETR sync check the clock is not in sync. The machine check
499  * is broadcasted to all cpus at the same time.
500  */
501 void etr_sync_check(void)
502 {
503 	if (!etr_eacr.es)
504 		return;
505 	if (test_bit(CLOCK_SYNC_ETR, &clock_sync_flags))
506 		disable_sync_clock(NULL);
507 	set_bit(ETR_EVENT_SYNC_CHECK, &etr_events);
508 	schedule_work(&etr_work);
509 }
510 
511 /*
512  * ETR timing alert. There are two causes:
513  * 1) port state change, check the usability of the port
514  * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
515  *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
516  *    or ETR-data word 4 (edf4) has changed.
517  */
518 static void etr_timing_alert(struct etr_irq_parm *intparm)
519 {
520 	if (intparm->pc0)
521 		/* ETR port 0 state change. */
522 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
523 	if (intparm->pc1)
524 		/* ETR port 1 state change. */
525 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
526 	if (intparm->eai)
527 		/*
528 		 * ETR port alert on either port 0, 1 or both.
529 		 * Both ports are not up-to-date now.
530 		 */
531 		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
532 	schedule_work(&etr_work);
533 }
534 
535 static void etr_timeout(unsigned long dummy)
536 {
537 	set_bit(ETR_EVENT_UPDATE, &etr_events);
538 	schedule_work(&etr_work);
539 }
540 
541 /*
542  * Check if the etr mode is pss.
543  */
544 static inline int etr_mode_is_pps(struct etr_eacr eacr)
545 {
546 	return eacr.es && !eacr.sl;
547 }
548 
549 /*
550  * Check if the etr mode is etr.
551  */
552 static inline int etr_mode_is_etr(struct etr_eacr eacr)
553 {
554 	return eacr.es && eacr.sl;
555 }
556 
557 /*
558  * Check if the port can be used for TOD synchronization.
559  * For PPS mode the port has to receive OTEs. For ETR mode
560  * the port has to receive OTEs, the ETR stepping bit has to
561  * be zero and the validity bits for data frame 1, 2, and 3
562  * have to be 1.
563  */
564 static int etr_port_valid(struct etr_aib *aib, int port)
565 {
566 	unsigned int psc;
567 
568 	/* Check that this port is receiving OTEs. */
569 	if (aib->tsp == 0)
570 		return 0;
571 
572 	psc = port ? aib->esw.psc1 : aib->esw.psc0;
573 	if (psc == etr_lpsc_pps_mode)
574 		return 1;
575 	if (psc == etr_lpsc_operational_step)
576 		return !aib->esw.y && aib->slsw.v1 &&
577 			aib->slsw.v2 && aib->slsw.v3;
578 	return 0;
579 }
580 
581 /*
582  * Check if two ports are on the same network.
583  */
584 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
585 {
586 	// FIXME: any other fields we have to compare?
587 	return aib1->edf1.net_id == aib2->edf1.net_id;
588 }
589 
590 /*
591  * Wrapper for etr_stei that converts physical port states
592  * to logical port states to be consistent with the output
593  * of stetr (see etr_psc vs. etr_lpsc).
594  */
595 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
596 {
597 	BUG_ON(etr_steai(aib, func) != 0);
598 	/* Convert port state to logical port state. */
599 	if (aib->esw.psc0 == 1)
600 		aib->esw.psc0 = 2;
601 	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
602 		aib->esw.psc0 = 1;
603 	if (aib->esw.psc1 == 1)
604 		aib->esw.psc1 = 2;
605 	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
606 		aib->esw.psc1 = 1;
607 }
608 
609 /*
610  * Check if the aib a2 is still connected to the same attachment as
611  * aib a1, the etv values differ by one and a2 is valid.
612  */
613 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
614 {
615 	int state_a1, state_a2;
616 
617 	/* Paranoia check: e0/e1 should better be the same. */
618 	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
619 	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
620 		return 0;
621 
622 	/* Still connected to the same etr ? */
623 	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
624 	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
625 	if (state_a1 == etr_lpsc_operational_step) {
626 		if (state_a2 != etr_lpsc_operational_step ||
627 		    a1->edf1.net_id != a2->edf1.net_id ||
628 		    a1->edf1.etr_id != a2->edf1.etr_id ||
629 		    a1->edf1.etr_pn != a2->edf1.etr_pn)
630 			return 0;
631 	} else if (state_a2 != etr_lpsc_pps_mode)
632 		return 0;
633 
634 	/* The ETV value of a2 needs to be ETV of a1 + 1. */
635 	if (a1->edf2.etv + 1 != a2->edf2.etv)
636 		return 0;
637 
638 	if (!etr_port_valid(a2, p))
639 		return 0;
640 
641 	return 1;
642 }
643 
644 struct clock_sync_data {
645 	int in_sync;
646 	unsigned long long fixup_cc;
647 };
648 
649 static void clock_sync_cpu_start(void *dummy)
650 {
651 	struct clock_sync_data *sync = dummy;
652 
653 	enable_sync_clock();
654 	/*
655 	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
656 	 * is called on all other cpus while the TOD clocks is stopped.
657 	 * __udelay will stop the cpu on an enabled wait psw until the
658 	 * TOD is running again.
659 	 */
660 	while (sync->in_sync == 0) {
661 		__udelay(1);
662 		/*
663 		 * A different cpu changes *in_sync. Therefore use
664 		 * barrier() to force memory access.
665 		 */
666 		barrier();
667 	}
668 	if (sync->in_sync != 1)
669 		/* Didn't work. Clear per-cpu in sync bit again. */
670 		disable_sync_clock(NULL);
671 	/*
672 	 * This round of TOD syncing is done. Set the clock comparator
673 	 * to the next tick and let the processor continue.
674 	 */
675 	fixup_clock_comparator(sync->fixup_cc);
676 }
677 
678 static void clock_sync_cpu_end(void *dummy)
679 {
680 }
681 
682 /*
683  * Sync the TOD clock using the port refered to by aibp. This port
684  * has to be enabled and the other port has to be disabled. The
685  * last eacr update has to be more than 1.6 seconds in the past.
686  */
687 static int etr_sync_clock(struct etr_aib *aib, int port)
688 {
689 	struct etr_aib *sync_port;
690 	struct clock_sync_data etr_sync;
691 	unsigned long long clock, old_clock, delay, delta;
692 	int follows;
693 	int rc;
694 
695 	/* Check if the current aib is adjacent to the sync port aib. */
696 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
697 	follows = etr_aib_follows(sync_port, aib, port);
698 	memcpy(sync_port, aib, sizeof(*aib));
699 	if (!follows)
700 		return -EAGAIN;
701 
702 	/*
703 	 * Catch all other cpus and make them wait until we have
704 	 * successfully synced the clock. smp_call_function will
705 	 * return after all other cpus are in etr_sync_cpu_start.
706 	 */
707 	memset(&etr_sync, 0, sizeof(etr_sync));
708 	preempt_disable();
709 	smp_call_function(clock_sync_cpu_start, &etr_sync, 0);
710 	local_irq_disable();
711 	enable_sync_clock();
712 
713 	/* Set clock to next OTE. */
714 	__ctl_set_bit(14, 21);
715 	__ctl_set_bit(0, 29);
716 	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
717 	old_clock = get_clock();
718 	if (set_clock(clock) == 0) {
719 		__udelay(1);	/* Wait for the clock to start. */
720 		__ctl_clear_bit(0, 29);
721 		__ctl_clear_bit(14, 21);
722 		etr_stetr(aib);
723 		/* Adjust Linux timing variables. */
724 		delay = (unsigned long long)
725 			(aib->edf2.etv - sync_port->edf2.etv) << 32;
726 		delta = adjust_time(old_clock, clock, delay);
727 		etr_sync.fixup_cc = delta;
728 		fixup_clock_comparator(delta);
729 		/* Verify that the clock is properly set. */
730 		if (!etr_aib_follows(sync_port, aib, port)) {
731 			/* Didn't work. */
732 			disable_sync_clock(NULL);
733 			etr_sync.in_sync = -EAGAIN;
734 			rc = -EAGAIN;
735 		} else {
736 			etr_sync.in_sync = 1;
737 			rc = 0;
738 		}
739 	} else {
740 		/* Could not set the clock ?!? */
741 		__ctl_clear_bit(0, 29);
742 		__ctl_clear_bit(14, 21);
743 		disable_sync_clock(NULL);
744 		etr_sync.in_sync = -EAGAIN;
745 		rc = -EAGAIN;
746 	}
747 	local_irq_enable();
748 	smp_call_function(clock_sync_cpu_end, NULL, 0);
749 	preempt_enable();
750 	return rc;
751 }
752 
753 /*
754  * Handle the immediate effects of the different events.
755  * The port change event is used for online/offline changes.
756  */
757 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
758 {
759 	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
760 		eacr.es = 0;
761 	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
762 		eacr.es = eacr.sl = 0;
763 	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
764 		etr_port0_uptodate = etr_port1_uptodate = 0;
765 
766 	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
767 		if (eacr.e0)
768 			/*
769 			 * Port change of an enabled port. We have to
770 			 * assume that this can have caused an stepping
771 			 * port switch.
772 			 */
773 			etr_tolec = get_clock();
774 		eacr.p0 = etr_port0_online;
775 		if (!eacr.p0)
776 			eacr.e0 = 0;
777 		etr_port0_uptodate = 0;
778 	}
779 	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
780 		if (eacr.e1)
781 			/*
782 			 * Port change of an enabled port. We have to
783 			 * assume that this can have caused an stepping
784 			 * port switch.
785 			 */
786 			etr_tolec = get_clock();
787 		eacr.p1 = etr_port1_online;
788 		if (!eacr.p1)
789 			eacr.e1 = 0;
790 		etr_port1_uptodate = 0;
791 	}
792 	clear_bit(ETR_EVENT_UPDATE, &etr_events);
793 	return eacr;
794 }
795 
796 /*
797  * Set up a timer that expires after the etr_tolec + 1.6 seconds if
798  * one of the ports needs an update.
799  */
800 static void etr_set_tolec_timeout(unsigned long long now)
801 {
802 	unsigned long micros;
803 
804 	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
805 	    (!etr_eacr.p1 || etr_port1_uptodate))
806 		return;
807 	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
808 	micros = (micros > 1600000) ? 0 : 1600000 - micros;
809 	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
810 }
811 
812 /*
813  * Set up a time that expires after 1/2 second.
814  */
815 static void etr_set_sync_timeout(void)
816 {
817 	mod_timer(&etr_timer, jiffies + HZ/2);
818 }
819 
820 /*
821  * Update the aib information for one or both ports.
822  */
823 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
824 					 struct etr_eacr eacr)
825 {
826 	/* With both ports disabled the aib information is useless. */
827 	if (!eacr.e0 && !eacr.e1)
828 		return eacr;
829 
830 	/* Update port0 or port1 with aib stored in etr_work_fn. */
831 	if (aib->esw.q == 0) {
832 		/* Information for port 0 stored. */
833 		if (eacr.p0 && !etr_port0_uptodate) {
834 			etr_port0 = *aib;
835 			if (etr_port0_online)
836 				etr_port0_uptodate = 1;
837 		}
838 	} else {
839 		/* Information for port 1 stored. */
840 		if (eacr.p1 && !etr_port1_uptodate) {
841 			etr_port1 = *aib;
842 			if (etr_port0_online)
843 				etr_port1_uptodate = 1;
844 		}
845 	}
846 
847 	/*
848 	 * Do not try to get the alternate port aib if the clock
849 	 * is not in sync yet.
850 	 */
851 	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags) && !eacr.es)
852 		return eacr;
853 
854 	/*
855 	 * If steai is available we can get the information about
856 	 * the other port immediately. If only stetr is available the
857 	 * data-port bit toggle has to be used.
858 	 */
859 	if (etr_steai_available) {
860 		if (eacr.p0 && !etr_port0_uptodate) {
861 			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
862 			etr_port0_uptodate = 1;
863 		}
864 		if (eacr.p1 && !etr_port1_uptodate) {
865 			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
866 			etr_port1_uptodate = 1;
867 		}
868 	} else {
869 		/*
870 		 * One port was updated above, if the other
871 		 * port is not uptodate toggle dp bit.
872 		 */
873 		if ((eacr.p0 && !etr_port0_uptodate) ||
874 		    (eacr.p1 && !etr_port1_uptodate))
875 			eacr.dp ^= 1;
876 		else
877 			eacr.dp = 0;
878 	}
879 	return eacr;
880 }
881 
882 /*
883  * Write new etr control register if it differs from the current one.
884  * Return 1 if etr_tolec has been updated as well.
885  */
886 static void etr_update_eacr(struct etr_eacr eacr)
887 {
888 	int dp_changed;
889 
890 	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
891 		/* No change, return. */
892 		return;
893 	/*
894 	 * The disable of an active port of the change of the data port
895 	 * bit can/will cause a change in the data port.
896 	 */
897 	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
898 		(etr_eacr.dp ^ eacr.dp) != 0;
899 	etr_eacr = eacr;
900 	etr_setr(&etr_eacr);
901 	if (dp_changed)
902 		etr_tolec = get_clock();
903 }
904 
905 /*
906  * ETR tasklet. In this function you'll find the main logic. In
907  * particular this is the only function that calls etr_update_eacr(),
908  * it "controls" the etr control register.
909  */
910 static void etr_work_fn(struct work_struct *work)
911 {
912 	unsigned long long now;
913 	struct etr_eacr eacr;
914 	struct etr_aib aib;
915 	int sync_port;
916 
917 	/* Create working copy of etr_eacr. */
918 	eacr = etr_eacr;
919 
920 	/* Check for the different events and their immediate effects. */
921 	eacr = etr_handle_events(eacr);
922 
923 	/* Check if ETR is supposed to be active. */
924 	eacr.ea = eacr.p0 || eacr.p1;
925 	if (!eacr.ea) {
926 		/* Both ports offline. Reset everything. */
927 		eacr.dp = eacr.es = eacr.sl = 0;
928 		on_each_cpu(disable_sync_clock, NULL, 1);
929 		del_timer_sync(&etr_timer);
930 		etr_update_eacr(eacr);
931 		clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
932 		return;
933 	}
934 
935 	/* Store aib to get the current ETR status word. */
936 	BUG_ON(etr_stetr(&aib) != 0);
937 	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
938 	now = get_clock();
939 
940 	/*
941 	 * Update the port information if the last stepping port change
942 	 * or data port change is older than 1.6 seconds.
943 	 */
944 	if (now >= etr_tolec + (1600000 << 12))
945 		eacr = etr_handle_update(&aib, eacr);
946 
947 	/*
948 	 * Select ports to enable. The prefered synchronization mode is PPS.
949 	 * If a port can be enabled depends on a number of things:
950 	 * 1) The port needs to be online and uptodate. A port is not
951 	 *    disabled just because it is not uptodate, but it is only
952 	 *    enabled if it is uptodate.
953 	 * 2) The port needs to have the same mode (pps / etr).
954 	 * 3) The port needs to be usable -> etr_port_valid() == 1
955 	 * 4) To enable the second port the clock needs to be in sync.
956 	 * 5) If both ports are useable and are ETR ports, the network id
957 	 *    has to be the same.
958 	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
959 	 */
960 	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
961 		eacr.sl = 0;
962 		eacr.e0 = 1;
963 		if (!etr_mode_is_pps(etr_eacr))
964 			eacr.es = 0;
965 		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
966 			eacr.e1 = 0;
967 		// FIXME: uptodate checks ?
968 		else if (etr_port0_uptodate && etr_port1_uptodate)
969 			eacr.e1 = 1;
970 		sync_port = (etr_port0_uptodate &&
971 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
972 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
973 		eacr.sl = 0;
974 		eacr.e0 = 0;
975 		eacr.e1 = 1;
976 		if (!etr_mode_is_pps(etr_eacr))
977 			eacr.es = 0;
978 		sync_port = (etr_port1_uptodate &&
979 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
980 	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
981 		eacr.sl = 1;
982 		eacr.e0 = 1;
983 		if (!etr_mode_is_etr(etr_eacr))
984 			eacr.es = 0;
985 		if (!eacr.es || !eacr.p1 ||
986 		    aib.esw.psc1 != etr_lpsc_operational_alt)
987 			eacr.e1 = 0;
988 		else if (etr_port0_uptodate && etr_port1_uptodate &&
989 			 etr_compare_network(&etr_port0, &etr_port1))
990 			eacr.e1 = 1;
991 		sync_port = (etr_port0_uptodate &&
992 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
993 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
994 		eacr.sl = 1;
995 		eacr.e0 = 0;
996 		eacr.e1 = 1;
997 		if (!etr_mode_is_etr(etr_eacr))
998 			eacr.es = 0;
999 		sync_port = (etr_port1_uptodate &&
1000 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1001 	} else {
1002 		/* Both ports not usable. */
1003 		eacr.es = eacr.sl = 0;
1004 		sync_port = -1;
1005 		clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1006 	}
1007 
1008 	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags))
1009 		eacr.es = 0;
1010 
1011 	/*
1012 	 * If the clock is in sync just update the eacr and return.
1013 	 * If there is no valid sync port wait for a port update.
1014 	 */
1015 	if (test_bit(CLOCK_SYNC_STP, &clock_sync_flags) ||
1016 	    eacr.es || sync_port < 0) {
1017 		etr_update_eacr(eacr);
1018 		etr_set_tolec_timeout(now);
1019 		return;
1020 	}
1021 
1022 	/*
1023 	 * Prepare control register for clock syncing
1024 	 * (reset data port bit, set sync check control.
1025 	 */
1026 	eacr.dp = 0;
1027 	eacr.es = 1;
1028 
1029 	/*
1030 	 * Update eacr and try to synchronize the clock. If the update
1031 	 * of eacr caused a stepping port switch (or if we have to
1032 	 * assume that a stepping port switch has occured) or the
1033 	 * clock syncing failed, reset the sync check control bit
1034 	 * and set up a timer to try again after 0.5 seconds
1035 	 */
1036 	etr_update_eacr(eacr);
1037 	set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1038 	if (now < etr_tolec + (1600000 << 12) ||
1039 	    etr_sync_clock(&aib, sync_port) != 0) {
1040 		/* Sync failed. Try again in 1/2 second. */
1041 		eacr.es = 0;
1042 		etr_update_eacr(eacr);
1043 		clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1044 		etr_set_sync_timeout();
1045 	} else
1046 		etr_set_tolec_timeout(now);
1047 }
1048 
1049 /*
1050  * Sysfs interface functions
1051  */
1052 static struct sysdev_class etr_sysclass = {
1053 	.name	= "etr",
1054 };
1055 
1056 static struct sys_device etr_port0_dev = {
1057 	.id	= 0,
1058 	.cls	= &etr_sysclass,
1059 };
1060 
1061 static struct sys_device etr_port1_dev = {
1062 	.id	= 1,
1063 	.cls	= &etr_sysclass,
1064 };
1065 
1066 /*
1067  * ETR class attributes
1068  */
1069 static ssize_t etr_stepping_port_show(struct sysdev_class *class, char *buf)
1070 {
1071 	return sprintf(buf, "%i\n", etr_port0.esw.p);
1072 }
1073 
1074 static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1075 
1076 static ssize_t etr_stepping_mode_show(struct sysdev_class *class, char *buf)
1077 {
1078 	char *mode_str;
1079 
1080 	if (etr_mode_is_pps(etr_eacr))
1081 		mode_str = "pps";
1082 	else if (etr_mode_is_etr(etr_eacr))
1083 		mode_str = "etr";
1084 	else
1085 		mode_str = "local";
1086 	return sprintf(buf, "%s\n", mode_str);
1087 }
1088 
1089 static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1090 
1091 /*
1092  * ETR port attributes
1093  */
1094 static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev)
1095 {
1096 	if (dev == &etr_port0_dev)
1097 		return etr_port0_online ? &etr_port0 : NULL;
1098 	else
1099 		return etr_port1_online ? &etr_port1 : NULL;
1100 }
1101 
1102 static ssize_t etr_online_show(struct sys_device *dev,
1103 				struct sysdev_attribute *attr,
1104 				char *buf)
1105 {
1106 	unsigned int online;
1107 
1108 	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1109 	return sprintf(buf, "%i\n", online);
1110 }
1111 
1112 static ssize_t etr_online_store(struct sys_device *dev,
1113 				struct sysdev_attribute *attr,
1114 				const char *buf, size_t count)
1115 {
1116 	unsigned int value;
1117 
1118 	value = simple_strtoul(buf, NULL, 0);
1119 	if (value != 0 && value != 1)
1120 		return -EINVAL;
1121 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1122 		return -EOPNOTSUPP;
1123 	if (dev == &etr_port0_dev) {
1124 		if (etr_port0_online == value)
1125 			return count;	/* Nothing to do. */
1126 		etr_port0_online = value;
1127 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1128 		schedule_work(&etr_work);
1129 	} else {
1130 		if (etr_port1_online == value)
1131 			return count;	/* Nothing to do. */
1132 		etr_port1_online = value;
1133 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1134 		schedule_work(&etr_work);
1135 	}
1136 	return count;
1137 }
1138 
1139 static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store);
1140 
1141 static ssize_t etr_stepping_control_show(struct sys_device *dev,
1142 					struct sysdev_attribute *attr,
1143 					char *buf)
1144 {
1145 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1146 		       etr_eacr.e0 : etr_eacr.e1);
1147 }
1148 
1149 static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1150 
1151 static ssize_t etr_mode_code_show(struct sys_device *dev,
1152 				struct sysdev_attribute *attr, char *buf)
1153 {
1154 	if (!etr_port0_online && !etr_port1_online)
1155 		/* Status word is not uptodate if both ports are offline. */
1156 		return -ENODATA;
1157 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1158 		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1159 }
1160 
1161 static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1162 
1163 static ssize_t etr_untuned_show(struct sys_device *dev,
1164 				struct sysdev_attribute *attr, char *buf)
1165 {
1166 	struct etr_aib *aib = etr_aib_from_dev(dev);
1167 
1168 	if (!aib || !aib->slsw.v1)
1169 		return -ENODATA;
1170 	return sprintf(buf, "%i\n", aib->edf1.u);
1171 }
1172 
1173 static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL);
1174 
1175 static ssize_t etr_network_id_show(struct sys_device *dev,
1176 				struct sysdev_attribute *attr, char *buf)
1177 {
1178 	struct etr_aib *aib = etr_aib_from_dev(dev);
1179 
1180 	if (!aib || !aib->slsw.v1)
1181 		return -ENODATA;
1182 	return sprintf(buf, "%i\n", aib->edf1.net_id);
1183 }
1184 
1185 static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL);
1186 
1187 static ssize_t etr_id_show(struct sys_device *dev,
1188 			struct sysdev_attribute *attr, char *buf)
1189 {
1190 	struct etr_aib *aib = etr_aib_from_dev(dev);
1191 
1192 	if (!aib || !aib->slsw.v1)
1193 		return -ENODATA;
1194 	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1195 }
1196 
1197 static SYSDEV_ATTR(id, 0400, etr_id_show, NULL);
1198 
1199 static ssize_t etr_port_number_show(struct sys_device *dev,
1200 			struct sysdev_attribute *attr, char *buf)
1201 {
1202 	struct etr_aib *aib = etr_aib_from_dev(dev);
1203 
1204 	if (!aib || !aib->slsw.v1)
1205 		return -ENODATA;
1206 	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1207 }
1208 
1209 static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL);
1210 
1211 static ssize_t etr_coupled_show(struct sys_device *dev,
1212 			struct sysdev_attribute *attr, char *buf)
1213 {
1214 	struct etr_aib *aib = etr_aib_from_dev(dev);
1215 
1216 	if (!aib || !aib->slsw.v3)
1217 		return -ENODATA;
1218 	return sprintf(buf, "%i\n", aib->edf3.c);
1219 }
1220 
1221 static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL);
1222 
1223 static ssize_t etr_local_time_show(struct sys_device *dev,
1224 			struct sysdev_attribute *attr, char *buf)
1225 {
1226 	struct etr_aib *aib = etr_aib_from_dev(dev);
1227 
1228 	if (!aib || !aib->slsw.v3)
1229 		return -ENODATA;
1230 	return sprintf(buf, "%i\n", aib->edf3.blto);
1231 }
1232 
1233 static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL);
1234 
1235 static ssize_t etr_utc_offset_show(struct sys_device *dev,
1236 			struct sysdev_attribute *attr, char *buf)
1237 {
1238 	struct etr_aib *aib = etr_aib_from_dev(dev);
1239 
1240 	if (!aib || !aib->slsw.v3)
1241 		return -ENODATA;
1242 	return sprintf(buf, "%i\n", aib->edf3.buo);
1243 }
1244 
1245 static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1246 
1247 static struct sysdev_attribute *etr_port_attributes[] = {
1248 	&attr_online,
1249 	&attr_stepping_control,
1250 	&attr_state_code,
1251 	&attr_untuned,
1252 	&attr_network,
1253 	&attr_id,
1254 	&attr_port,
1255 	&attr_coupled,
1256 	&attr_local_time,
1257 	&attr_utc_offset,
1258 	NULL
1259 };
1260 
1261 static int __init etr_register_port(struct sys_device *dev)
1262 {
1263 	struct sysdev_attribute **attr;
1264 	int rc;
1265 
1266 	rc = sysdev_register(dev);
1267 	if (rc)
1268 		goto out;
1269 	for (attr = etr_port_attributes; *attr; attr++) {
1270 		rc = sysdev_create_file(dev, *attr);
1271 		if (rc)
1272 			goto out_unreg;
1273 	}
1274 	return 0;
1275 out_unreg:
1276 	for (; attr >= etr_port_attributes; attr--)
1277 		sysdev_remove_file(dev, *attr);
1278 	sysdev_unregister(dev);
1279 out:
1280 	return rc;
1281 }
1282 
1283 static void __init etr_unregister_port(struct sys_device *dev)
1284 {
1285 	struct sysdev_attribute **attr;
1286 
1287 	for (attr = etr_port_attributes; *attr; attr++)
1288 		sysdev_remove_file(dev, *attr);
1289 	sysdev_unregister(dev);
1290 }
1291 
1292 static int __init etr_init_sysfs(void)
1293 {
1294 	int rc;
1295 
1296 	rc = sysdev_class_register(&etr_sysclass);
1297 	if (rc)
1298 		goto out;
1299 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port);
1300 	if (rc)
1301 		goto out_unreg_class;
1302 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode);
1303 	if (rc)
1304 		goto out_remove_stepping_port;
1305 	rc = etr_register_port(&etr_port0_dev);
1306 	if (rc)
1307 		goto out_remove_stepping_mode;
1308 	rc = etr_register_port(&etr_port1_dev);
1309 	if (rc)
1310 		goto out_remove_port0;
1311 	return 0;
1312 
1313 out_remove_port0:
1314 	etr_unregister_port(&etr_port0_dev);
1315 out_remove_stepping_mode:
1316 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode);
1317 out_remove_stepping_port:
1318 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port);
1319 out_unreg_class:
1320 	sysdev_class_unregister(&etr_sysclass);
1321 out:
1322 	return rc;
1323 }
1324 
1325 device_initcall(etr_init_sysfs);
1326 
1327 /*
1328  * Server Time Protocol (STP) code.
1329  */
1330 static int stp_online;
1331 static struct stp_sstpi stp_info;
1332 static void *stp_page;
1333 
1334 static void stp_work_fn(struct work_struct *work);
1335 static DECLARE_WORK(stp_work, stp_work_fn);
1336 
1337 static int __init early_parse_stp(char *p)
1338 {
1339 	if (strncmp(p, "off", 3) == 0)
1340 		stp_online = 0;
1341 	else if (strncmp(p, "on", 2) == 0)
1342 		stp_online = 1;
1343 	return 0;
1344 }
1345 early_param("stp", early_parse_stp);
1346 
1347 /*
1348  * Reset STP attachment.
1349  */
1350 static void __init stp_reset(void)
1351 {
1352 	int rc;
1353 
1354 	stp_page = alloc_bootmem_pages(PAGE_SIZE);
1355 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1356 	if (rc == 0)
1357 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1358 	else if (stp_online) {
1359 		printk(KERN_WARNING "Running on non STP capable machine.\n");
1360 		free_bootmem((unsigned long) stp_page, PAGE_SIZE);
1361 		stp_page = NULL;
1362 		stp_online = 0;
1363 	}
1364 }
1365 
1366 static int __init stp_init(void)
1367 {
1368 	if (test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags) && stp_online)
1369 		schedule_work(&stp_work);
1370 	return 0;
1371 }
1372 
1373 arch_initcall(stp_init);
1374 
1375 /*
1376  * STP timing alert. There are three causes:
1377  * 1) timing status change
1378  * 2) link availability change
1379  * 3) time control parameter change
1380  * In all three cases we are only interested in the clock source state.
1381  * If a STP clock source is now available use it.
1382  */
1383 static void stp_timing_alert(struct stp_irq_parm *intparm)
1384 {
1385 	if (intparm->tsc || intparm->lac || intparm->tcpc)
1386 		schedule_work(&stp_work);
1387 }
1388 
1389 /*
1390  * STP sync check machine check. This is called when the timing state
1391  * changes from the synchronized state to the unsynchronized state.
1392  * After a STP sync check the clock is not in sync. The machine check
1393  * is broadcasted to all cpus at the same time.
1394  */
1395 void stp_sync_check(void)
1396 {
1397 	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
1398 		return;
1399 	disable_sync_clock(NULL);
1400 	schedule_work(&stp_work);
1401 }
1402 
1403 /*
1404  * STP island condition machine check. This is called when an attached
1405  * server  attempts to communicate over an STP link and the servers
1406  * have matching CTN ids and have a valid stratum-1 configuration
1407  * but the configurations do not match.
1408  */
1409 void stp_island_check(void)
1410 {
1411 	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
1412 		return;
1413 	disable_sync_clock(NULL);
1414 	schedule_work(&stp_work);
1415 }
1416 
1417 /*
1418  * STP tasklet. Check for the STP state and take over the clock
1419  * synchronization if the STP clock source is usable.
1420  */
1421 static void stp_work_fn(struct work_struct *work)
1422 {
1423 	struct clock_sync_data stp_sync;
1424 	unsigned long long old_clock, delta;
1425 	int rc;
1426 
1427 	if (!stp_online) {
1428 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1429 		return;
1430 	}
1431 
1432 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1433 	if (rc)
1434 		return;
1435 
1436 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1437 	if (rc || stp_info.c == 0)
1438 		return;
1439 
1440 	/*
1441 	 * Catch all other cpus and make them wait until we have
1442 	 * successfully synced the clock. smp_call_function will
1443 	 * return after all other cpus are in clock_sync_cpu_start.
1444 	 */
1445 	memset(&stp_sync, 0, sizeof(stp_sync));
1446 	preempt_disable();
1447 	smp_call_function(clock_sync_cpu_start, &stp_sync, 0);
1448 	local_irq_disable();
1449 	enable_sync_clock();
1450 
1451 	set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1452 	if (test_and_clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags))
1453 		schedule_work(&etr_work);
1454 
1455 	rc = 0;
1456 	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1457 	    stp_info.todoff[2] || stp_info.todoff[3] ||
1458 	    stp_info.tmd != 2) {
1459 		old_clock = get_clock();
1460 		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1461 		if (rc == 0) {
1462 			delta = adjust_time(old_clock, get_clock(), 0);
1463 			fixup_clock_comparator(delta);
1464 			rc = chsc_sstpi(stp_page, &stp_info,
1465 					sizeof(struct stp_sstpi));
1466 			if (rc == 0 && stp_info.tmd != 2)
1467 				rc = -EAGAIN;
1468 		}
1469 	}
1470 	if (rc) {
1471 		disable_sync_clock(NULL);
1472 		stp_sync.in_sync = -EAGAIN;
1473 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1474 		if (etr_port0_online || etr_port1_online)
1475 			schedule_work(&etr_work);
1476 	} else
1477 		stp_sync.in_sync = 1;
1478 
1479 	local_irq_enable();
1480 	smp_call_function(clock_sync_cpu_end, NULL, 0);
1481 	preempt_enable();
1482 }
1483 
1484 /*
1485  * STP class sysfs interface functions
1486  */
1487 static struct sysdev_class stp_sysclass = {
1488 	.name	= "stp",
1489 };
1490 
1491 static ssize_t stp_ctn_id_show(struct sysdev_class *class, char *buf)
1492 {
1493 	if (!stp_online)
1494 		return -ENODATA;
1495 	return sprintf(buf, "%016llx\n",
1496 		       *(unsigned long long *) stp_info.ctnid);
1497 }
1498 
1499 static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1500 
1501 static ssize_t stp_ctn_type_show(struct sysdev_class *class, char *buf)
1502 {
1503 	if (!stp_online)
1504 		return -ENODATA;
1505 	return sprintf(buf, "%i\n", stp_info.ctn);
1506 }
1507 
1508 static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1509 
1510 static ssize_t stp_dst_offset_show(struct sysdev_class *class, char *buf)
1511 {
1512 	if (!stp_online || !(stp_info.vbits & 0x2000))
1513 		return -ENODATA;
1514 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1515 }
1516 
1517 static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1518 
1519 static ssize_t stp_leap_seconds_show(struct sysdev_class *class, char *buf)
1520 {
1521 	if (!stp_online || !(stp_info.vbits & 0x8000))
1522 		return -ENODATA;
1523 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1524 }
1525 
1526 static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1527 
1528 static ssize_t stp_stratum_show(struct sysdev_class *class, char *buf)
1529 {
1530 	if (!stp_online)
1531 		return -ENODATA;
1532 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1533 }
1534 
1535 static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL);
1536 
1537 static ssize_t stp_time_offset_show(struct sysdev_class *class, char *buf)
1538 {
1539 	if (!stp_online || !(stp_info.vbits & 0x0800))
1540 		return -ENODATA;
1541 	return sprintf(buf, "%i\n", (int) stp_info.tto);
1542 }
1543 
1544 static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1545 
1546 static ssize_t stp_time_zone_offset_show(struct sysdev_class *class, char *buf)
1547 {
1548 	if (!stp_online || !(stp_info.vbits & 0x4000))
1549 		return -ENODATA;
1550 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1551 }
1552 
1553 static SYSDEV_CLASS_ATTR(time_zone_offset, 0400,
1554 			 stp_time_zone_offset_show, NULL);
1555 
1556 static ssize_t stp_timing_mode_show(struct sysdev_class *class, char *buf)
1557 {
1558 	if (!stp_online)
1559 		return -ENODATA;
1560 	return sprintf(buf, "%i\n", stp_info.tmd);
1561 }
1562 
1563 static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1564 
1565 static ssize_t stp_timing_state_show(struct sysdev_class *class, char *buf)
1566 {
1567 	if (!stp_online)
1568 		return -ENODATA;
1569 	return sprintf(buf, "%i\n", stp_info.tst);
1570 }
1571 
1572 static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1573 
1574 static ssize_t stp_online_show(struct sysdev_class *class, char *buf)
1575 {
1576 	return sprintf(buf, "%i\n", stp_online);
1577 }
1578 
1579 static ssize_t stp_online_store(struct sysdev_class *class,
1580 				const char *buf, size_t count)
1581 {
1582 	unsigned int value;
1583 
1584 	value = simple_strtoul(buf, NULL, 0);
1585 	if (value != 0 && value != 1)
1586 		return -EINVAL;
1587 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1588 		return -EOPNOTSUPP;
1589 	stp_online = value;
1590 	schedule_work(&stp_work);
1591 	return count;
1592 }
1593 
1594 /*
1595  * Can't use SYSDEV_CLASS_ATTR because the attribute should be named
1596  * stp/online but attr_online already exists in this file ..
1597  */
1598 static struct sysdev_class_attribute attr_stp_online = {
1599 	.attr = { .name = "online", .mode = 0600 },
1600 	.show	= stp_online_show,
1601 	.store	= stp_online_store,
1602 };
1603 
1604 static struct sysdev_class_attribute *stp_attributes[] = {
1605 	&attr_ctn_id,
1606 	&attr_ctn_type,
1607 	&attr_dst_offset,
1608 	&attr_leap_seconds,
1609 	&attr_stp_online,
1610 	&attr_stratum,
1611 	&attr_time_offset,
1612 	&attr_time_zone_offset,
1613 	&attr_timing_mode,
1614 	&attr_timing_state,
1615 	NULL
1616 };
1617 
1618 static int __init stp_init_sysfs(void)
1619 {
1620 	struct sysdev_class_attribute **attr;
1621 	int rc;
1622 
1623 	rc = sysdev_class_register(&stp_sysclass);
1624 	if (rc)
1625 		goto out;
1626 	for (attr = stp_attributes; *attr; attr++) {
1627 		rc = sysdev_class_create_file(&stp_sysclass, *attr);
1628 		if (rc)
1629 			goto out_unreg;
1630 	}
1631 	return 0;
1632 out_unreg:
1633 	for (; attr >= stp_attributes; attr--)
1634 		sysdev_class_remove_file(&stp_sysclass, *attr);
1635 	sysdev_class_unregister(&stp_sysclass);
1636 out:
1637 	return rc;
1638 }
1639 
1640 device_initcall(stp_init_sysfs);
1641