xref: /linux/arch/s390/kernel/time.c (revision 5499b45190237ca90dd2ac86395cf464fe1f4cc7)
1 /*
2  *  arch/s390/kernel/time.c
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/cpu.h>
27 #include <linux/stop_machine.h>
28 #include <linux/time.h>
29 #include <linux/sysdev.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/smp.h>
33 #include <linux/types.h>
34 #include <linux/profile.h>
35 #include <linux/timex.h>
36 #include <linux/notifier.h>
37 #include <linux/clocksource.h>
38 #include <linux/clockchips.h>
39 #include <asm/uaccess.h>
40 #include <asm/delay.h>
41 #include <asm/s390_ext.h>
42 #include <asm/div64.h>
43 #include <asm/vdso.h>
44 #include <asm/irq.h>
45 #include <asm/irq_regs.h>
46 #include <asm/timer.h>
47 #include <asm/etr.h>
48 #include <asm/cio.h>
49 
50 /* change this if you have some constant time drift */
51 #define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
52 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
53 
54 u64 sched_clock_base_cc = -1;	/* Force to data section. */
55 EXPORT_SYMBOL_GPL(sched_clock_base_cc);
56 
57 static DEFINE_PER_CPU(struct clock_event_device, comparators);
58 
59 /*
60  * Scheduler clock - returns current time in nanosec units.
61  */
62 unsigned long long notrace sched_clock(void)
63 {
64 	return (get_clock_monotonic() * 125) >> 9;
65 }
66 
67 /*
68  * Monotonic_clock - returns # of nanoseconds passed since time_init()
69  */
70 unsigned long long monotonic_clock(void)
71 {
72 	return sched_clock();
73 }
74 EXPORT_SYMBOL(monotonic_clock);
75 
76 void tod_to_timeval(__u64 todval, struct timespec *xtime)
77 {
78 	unsigned long long sec;
79 
80 	sec = todval >> 12;
81 	do_div(sec, 1000000);
82 	xtime->tv_sec = sec;
83 	todval -= (sec * 1000000) << 12;
84 	xtime->tv_nsec = ((todval * 1000) >> 12);
85 }
86 EXPORT_SYMBOL(tod_to_timeval);
87 
88 void clock_comparator_work(void)
89 {
90 	struct clock_event_device *cd;
91 
92 	S390_lowcore.clock_comparator = -1ULL;
93 	set_clock_comparator(S390_lowcore.clock_comparator);
94 	cd = &__get_cpu_var(comparators);
95 	cd->event_handler(cd);
96 }
97 
98 /*
99  * Fixup the clock comparator.
100  */
101 static void fixup_clock_comparator(unsigned long long delta)
102 {
103 	/* If nobody is waiting there's nothing to fix. */
104 	if (S390_lowcore.clock_comparator == -1ULL)
105 		return;
106 	S390_lowcore.clock_comparator += delta;
107 	set_clock_comparator(S390_lowcore.clock_comparator);
108 }
109 
110 static int s390_next_event(unsigned long delta,
111 			   struct clock_event_device *evt)
112 {
113 	S390_lowcore.clock_comparator = get_clock() + delta;
114 	set_clock_comparator(S390_lowcore.clock_comparator);
115 	return 0;
116 }
117 
118 static void s390_set_mode(enum clock_event_mode mode,
119 			  struct clock_event_device *evt)
120 {
121 }
122 
123 /*
124  * Set up lowcore and control register of the current cpu to
125  * enable TOD clock and clock comparator interrupts.
126  */
127 void init_cpu_timer(void)
128 {
129 	struct clock_event_device *cd;
130 	int cpu;
131 
132 	S390_lowcore.clock_comparator = -1ULL;
133 	set_clock_comparator(S390_lowcore.clock_comparator);
134 
135 	cpu = smp_processor_id();
136 	cd = &per_cpu(comparators, cpu);
137 	cd->name		= "comparator";
138 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
139 	cd->mult		= 16777;
140 	cd->shift		= 12;
141 	cd->min_delta_ns	= 1;
142 	cd->max_delta_ns	= LONG_MAX;
143 	cd->rating		= 400;
144 	cd->cpumask		= cpumask_of(cpu);
145 	cd->set_next_event	= s390_next_event;
146 	cd->set_mode		= s390_set_mode;
147 
148 	clockevents_register_device(cd);
149 
150 	/* Enable clock comparator timer interrupt. */
151 	__ctl_set_bit(0,11);
152 
153 	/* Always allow the timing alert external interrupt. */
154 	__ctl_set_bit(0, 4);
155 }
156 
157 static void clock_comparator_interrupt(__u16 code)
158 {
159 	if (S390_lowcore.clock_comparator == -1ULL)
160 		set_clock_comparator(S390_lowcore.clock_comparator);
161 }
162 
163 static void etr_timing_alert(struct etr_irq_parm *);
164 static void stp_timing_alert(struct stp_irq_parm *);
165 
166 static void timing_alert_interrupt(__u16 code)
167 {
168 	if (S390_lowcore.ext_params & 0x00c40000)
169 		etr_timing_alert((struct etr_irq_parm *)
170 				 &S390_lowcore.ext_params);
171 	if (S390_lowcore.ext_params & 0x00038000)
172 		stp_timing_alert((struct stp_irq_parm *)
173 				 &S390_lowcore.ext_params);
174 }
175 
176 static void etr_reset(void);
177 static void stp_reset(void);
178 
179 void read_persistent_clock(struct timespec *ts)
180 {
181 	tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, ts);
182 }
183 
184 void read_boot_clock(struct timespec *ts)
185 {
186 	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
187 }
188 
189 static cycle_t read_tod_clock(struct clocksource *cs)
190 {
191 	return get_clock();
192 }
193 
194 static struct clocksource clocksource_tod = {
195 	.name		= "tod",
196 	.rating		= 400,
197 	.read		= read_tod_clock,
198 	.mask		= -1ULL,
199 	.mult		= 1000,
200 	.shift		= 12,
201 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
202 };
203 
204 struct clocksource * __init clocksource_default_clock(void)
205 {
206 	return &clocksource_tod;
207 }
208 
209 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock,
210 		     u32 mult)
211 {
212 	if (clock != &clocksource_tod)
213 		return;
214 
215 	/* Make userspace gettimeofday spin until we're done. */
216 	++vdso_data->tb_update_count;
217 	smp_wmb();
218 	vdso_data->xtime_tod_stamp = clock->cycle_last;
219 	vdso_data->xtime_clock_sec = xtime.tv_sec;
220 	vdso_data->xtime_clock_nsec = xtime.tv_nsec;
221 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
222 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
223 	smp_wmb();
224 	++vdso_data->tb_update_count;
225 }
226 
227 extern struct timezone sys_tz;
228 
229 void update_vsyscall_tz(void)
230 {
231 	/* Make userspace gettimeofday spin until we're done. */
232 	++vdso_data->tb_update_count;
233 	smp_wmb();
234 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
235 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
236 	smp_wmb();
237 	++vdso_data->tb_update_count;
238 }
239 
240 /*
241  * Initialize the TOD clock and the CPU timer of
242  * the boot cpu.
243  */
244 void __init time_init(void)
245 {
246 	/* Reset time synchronization interfaces. */
247 	etr_reset();
248 	stp_reset();
249 
250 	/* request the clock comparator external interrupt */
251 	if (register_external_interrupt(0x1004, clock_comparator_interrupt))
252                 panic("Couldn't request external interrupt 0x1004");
253 
254 	/* request the timing alert external interrupt */
255 	if (register_external_interrupt(0x1406, timing_alert_interrupt))
256 		panic("Couldn't request external interrupt 0x1406");
257 
258 	if (clocksource_register(&clocksource_tod) != 0)
259 		panic("Could not register TOD clock source");
260 
261 	/* Enable TOD clock interrupts on the boot cpu. */
262 	init_cpu_timer();
263 
264 	/* Enable cpu timer interrupts on the boot cpu. */
265 	vtime_init();
266 }
267 
268 /*
269  * The time is "clock". old is what we think the time is.
270  * Adjust the value by a multiple of jiffies and add the delta to ntp.
271  * "delay" is an approximation how long the synchronization took. If
272  * the time correction is positive, then "delay" is subtracted from
273  * the time difference and only the remaining part is passed to ntp.
274  */
275 static unsigned long long adjust_time(unsigned long long old,
276 				      unsigned long long clock,
277 				      unsigned long long delay)
278 {
279 	unsigned long long delta, ticks;
280 	struct timex adjust;
281 
282 	if (clock > old) {
283 		/* It is later than we thought. */
284 		delta = ticks = clock - old;
285 		delta = ticks = (delta < delay) ? 0 : delta - delay;
286 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
287 		adjust.offset = ticks * (1000000 / HZ);
288 	} else {
289 		/* It is earlier than we thought. */
290 		delta = ticks = old - clock;
291 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
292 		delta = -delta;
293 		adjust.offset = -ticks * (1000000 / HZ);
294 	}
295 	sched_clock_base_cc += delta;
296 	if (adjust.offset != 0) {
297 		pr_notice("The ETR interface has adjusted the clock "
298 			  "by %li microseconds\n", adjust.offset);
299 		adjust.modes = ADJ_OFFSET_SINGLESHOT;
300 		do_adjtimex(&adjust);
301 	}
302 	return delta;
303 }
304 
305 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
306 static DEFINE_MUTEX(clock_sync_mutex);
307 static unsigned long clock_sync_flags;
308 
309 #define CLOCK_SYNC_HAS_ETR	0
310 #define CLOCK_SYNC_HAS_STP	1
311 #define CLOCK_SYNC_ETR		2
312 #define CLOCK_SYNC_STP		3
313 
314 /*
315  * The synchronous get_clock function. It will write the current clock
316  * value to the clock pointer and return 0 if the clock is in sync with
317  * the external time source. If the clock mode is local it will return
318  * -ENOSYS and -EAGAIN if the clock is not in sync with the external
319  * reference.
320  */
321 int get_sync_clock(unsigned long long *clock)
322 {
323 	atomic_t *sw_ptr;
324 	unsigned int sw0, sw1;
325 
326 	sw_ptr = &get_cpu_var(clock_sync_word);
327 	sw0 = atomic_read(sw_ptr);
328 	*clock = get_clock();
329 	sw1 = atomic_read(sw_ptr);
330 	put_cpu_var(clock_sync_word);
331 	if (sw0 == sw1 && (sw0 & 0x80000000U))
332 		/* Success: time is in sync. */
333 		return 0;
334 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
335 	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
336 		return -ENOSYS;
337 	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
338 	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
339 		return -EACCES;
340 	return -EAGAIN;
341 }
342 EXPORT_SYMBOL(get_sync_clock);
343 
344 /*
345  * Make get_sync_clock return -EAGAIN.
346  */
347 static void disable_sync_clock(void *dummy)
348 {
349 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
350 	/*
351 	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
352 	 * fail until the sync bit is turned back on. In addition
353 	 * increase the "sequence" counter to avoid the race of an
354 	 * etr event and the complete recovery against get_sync_clock.
355 	 */
356 	atomic_clear_mask(0x80000000, sw_ptr);
357 	atomic_inc(sw_ptr);
358 }
359 
360 /*
361  * Make get_sync_clock return 0 again.
362  * Needs to be called from a context disabled for preemption.
363  */
364 static void enable_sync_clock(void)
365 {
366 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
367 	atomic_set_mask(0x80000000, sw_ptr);
368 }
369 
370 /*
371  * Function to check if the clock is in sync.
372  */
373 static inline int check_sync_clock(void)
374 {
375 	atomic_t *sw_ptr;
376 	int rc;
377 
378 	sw_ptr = &get_cpu_var(clock_sync_word);
379 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
380 	put_cpu_var(clock_sync_word);
381 	return rc;
382 }
383 
384 /* Single threaded workqueue used for etr and stp sync events */
385 static struct workqueue_struct *time_sync_wq;
386 
387 static void __init time_init_wq(void)
388 {
389 	if (time_sync_wq)
390 		return;
391 	time_sync_wq = create_singlethread_workqueue("timesync");
392 	stop_machine_create();
393 }
394 
395 /*
396  * External Time Reference (ETR) code.
397  */
398 static int etr_port0_online;
399 static int etr_port1_online;
400 static int etr_steai_available;
401 
402 static int __init early_parse_etr(char *p)
403 {
404 	if (strncmp(p, "off", 3) == 0)
405 		etr_port0_online = etr_port1_online = 0;
406 	else if (strncmp(p, "port0", 5) == 0)
407 		etr_port0_online = 1;
408 	else if (strncmp(p, "port1", 5) == 0)
409 		etr_port1_online = 1;
410 	else if (strncmp(p, "on", 2) == 0)
411 		etr_port0_online = etr_port1_online = 1;
412 	return 0;
413 }
414 early_param("etr", early_parse_etr);
415 
416 enum etr_event {
417 	ETR_EVENT_PORT0_CHANGE,
418 	ETR_EVENT_PORT1_CHANGE,
419 	ETR_EVENT_PORT_ALERT,
420 	ETR_EVENT_SYNC_CHECK,
421 	ETR_EVENT_SWITCH_LOCAL,
422 	ETR_EVENT_UPDATE,
423 };
424 
425 /*
426  * Valid bit combinations of the eacr register are (x = don't care):
427  * e0 e1 dp p0 p1 ea es sl
428  *  0  0  x  0	0  0  0  0  initial, disabled state
429  *  0  0  x  0	1  1  0  0  port 1 online
430  *  0  0  x  1	0  1  0  0  port 0 online
431  *  0  0  x  1	1  1  0  0  both ports online
432  *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
433  *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
434  *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
435  *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
436  *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
437  *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
438  *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
439  *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
440  *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
441  *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
442  *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
443  *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
444  *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
445  *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
446  *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
447  *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
448  */
449 static struct etr_eacr etr_eacr;
450 static u64 etr_tolec;			/* time of last eacr update */
451 static struct etr_aib etr_port0;
452 static int etr_port0_uptodate;
453 static struct etr_aib etr_port1;
454 static int etr_port1_uptodate;
455 static unsigned long etr_events;
456 static struct timer_list etr_timer;
457 
458 static void etr_timeout(unsigned long dummy);
459 static void etr_work_fn(struct work_struct *work);
460 static DEFINE_MUTEX(etr_work_mutex);
461 static DECLARE_WORK(etr_work, etr_work_fn);
462 
463 /*
464  * Reset ETR attachment.
465  */
466 static void etr_reset(void)
467 {
468 	etr_eacr =  (struct etr_eacr) {
469 		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
470 		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
471 		.es = 0, .sl = 0 };
472 	if (etr_setr(&etr_eacr) == 0) {
473 		etr_tolec = get_clock();
474 		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
475 		if (etr_port0_online && etr_port1_online)
476 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
477 	} else if (etr_port0_online || etr_port1_online) {
478 		pr_warning("The real or virtual hardware system does "
479 			   "not provide an ETR interface\n");
480 		etr_port0_online = etr_port1_online = 0;
481 	}
482 }
483 
484 static int __init etr_init(void)
485 {
486 	struct etr_aib aib;
487 
488 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
489 		return 0;
490 	time_init_wq();
491 	/* Check if this machine has the steai instruction. */
492 	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
493 		etr_steai_available = 1;
494 	setup_timer(&etr_timer, etr_timeout, 0UL);
495 	if (etr_port0_online) {
496 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
497 		queue_work(time_sync_wq, &etr_work);
498 	}
499 	if (etr_port1_online) {
500 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
501 		queue_work(time_sync_wq, &etr_work);
502 	}
503 	return 0;
504 }
505 
506 arch_initcall(etr_init);
507 
508 /*
509  * Two sorts of ETR machine checks. The architecture reads:
510  * "When a machine-check niterruption occurs and if a switch-to-local or
511  *  ETR-sync-check interrupt request is pending but disabled, this pending
512  *  disabled interruption request is indicated and is cleared".
513  * Which means that we can get etr_switch_to_local events from the machine
514  * check handler although the interruption condition is disabled. Lovely..
515  */
516 
517 /*
518  * Switch to local machine check. This is called when the last usable
519  * ETR port goes inactive. After switch to local the clock is not in sync.
520  */
521 void etr_switch_to_local(void)
522 {
523 	if (!etr_eacr.sl)
524 		return;
525 	disable_sync_clock(NULL);
526 	set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events);
527 	queue_work(time_sync_wq, &etr_work);
528 }
529 
530 /*
531  * ETR sync check machine check. This is called when the ETR OTE and the
532  * local clock OTE are farther apart than the ETR sync check tolerance.
533  * After a ETR sync check the clock is not in sync. The machine check
534  * is broadcasted to all cpus at the same time.
535  */
536 void etr_sync_check(void)
537 {
538 	if (!etr_eacr.es)
539 		return;
540 	disable_sync_clock(NULL);
541 	set_bit(ETR_EVENT_SYNC_CHECK, &etr_events);
542 	queue_work(time_sync_wq, &etr_work);
543 }
544 
545 /*
546  * ETR timing alert. There are two causes:
547  * 1) port state change, check the usability of the port
548  * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
549  *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
550  *    or ETR-data word 4 (edf4) has changed.
551  */
552 static void etr_timing_alert(struct etr_irq_parm *intparm)
553 {
554 	if (intparm->pc0)
555 		/* ETR port 0 state change. */
556 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
557 	if (intparm->pc1)
558 		/* ETR port 1 state change. */
559 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
560 	if (intparm->eai)
561 		/*
562 		 * ETR port alert on either port 0, 1 or both.
563 		 * Both ports are not up-to-date now.
564 		 */
565 		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
566 	queue_work(time_sync_wq, &etr_work);
567 }
568 
569 static void etr_timeout(unsigned long dummy)
570 {
571 	set_bit(ETR_EVENT_UPDATE, &etr_events);
572 	queue_work(time_sync_wq, &etr_work);
573 }
574 
575 /*
576  * Check if the etr mode is pss.
577  */
578 static inline int etr_mode_is_pps(struct etr_eacr eacr)
579 {
580 	return eacr.es && !eacr.sl;
581 }
582 
583 /*
584  * Check if the etr mode is etr.
585  */
586 static inline int etr_mode_is_etr(struct etr_eacr eacr)
587 {
588 	return eacr.es && eacr.sl;
589 }
590 
591 /*
592  * Check if the port can be used for TOD synchronization.
593  * For PPS mode the port has to receive OTEs. For ETR mode
594  * the port has to receive OTEs, the ETR stepping bit has to
595  * be zero and the validity bits for data frame 1, 2, and 3
596  * have to be 1.
597  */
598 static int etr_port_valid(struct etr_aib *aib, int port)
599 {
600 	unsigned int psc;
601 
602 	/* Check that this port is receiving OTEs. */
603 	if (aib->tsp == 0)
604 		return 0;
605 
606 	psc = port ? aib->esw.psc1 : aib->esw.psc0;
607 	if (psc == etr_lpsc_pps_mode)
608 		return 1;
609 	if (psc == etr_lpsc_operational_step)
610 		return !aib->esw.y && aib->slsw.v1 &&
611 			aib->slsw.v2 && aib->slsw.v3;
612 	return 0;
613 }
614 
615 /*
616  * Check if two ports are on the same network.
617  */
618 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
619 {
620 	// FIXME: any other fields we have to compare?
621 	return aib1->edf1.net_id == aib2->edf1.net_id;
622 }
623 
624 /*
625  * Wrapper for etr_stei that converts physical port states
626  * to logical port states to be consistent with the output
627  * of stetr (see etr_psc vs. etr_lpsc).
628  */
629 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
630 {
631 	BUG_ON(etr_steai(aib, func) != 0);
632 	/* Convert port state to logical port state. */
633 	if (aib->esw.psc0 == 1)
634 		aib->esw.psc0 = 2;
635 	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
636 		aib->esw.psc0 = 1;
637 	if (aib->esw.psc1 == 1)
638 		aib->esw.psc1 = 2;
639 	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
640 		aib->esw.psc1 = 1;
641 }
642 
643 /*
644  * Check if the aib a2 is still connected to the same attachment as
645  * aib a1, the etv values differ by one and a2 is valid.
646  */
647 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
648 {
649 	int state_a1, state_a2;
650 
651 	/* Paranoia check: e0/e1 should better be the same. */
652 	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
653 	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
654 		return 0;
655 
656 	/* Still connected to the same etr ? */
657 	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
658 	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
659 	if (state_a1 == etr_lpsc_operational_step) {
660 		if (state_a2 != etr_lpsc_operational_step ||
661 		    a1->edf1.net_id != a2->edf1.net_id ||
662 		    a1->edf1.etr_id != a2->edf1.etr_id ||
663 		    a1->edf1.etr_pn != a2->edf1.etr_pn)
664 			return 0;
665 	} else if (state_a2 != etr_lpsc_pps_mode)
666 		return 0;
667 
668 	/* The ETV value of a2 needs to be ETV of a1 + 1. */
669 	if (a1->edf2.etv + 1 != a2->edf2.etv)
670 		return 0;
671 
672 	if (!etr_port_valid(a2, p))
673 		return 0;
674 
675 	return 1;
676 }
677 
678 struct clock_sync_data {
679 	atomic_t cpus;
680 	int in_sync;
681 	unsigned long long fixup_cc;
682 	int etr_port;
683 	struct etr_aib *etr_aib;
684 };
685 
686 static void clock_sync_cpu(struct clock_sync_data *sync)
687 {
688 	atomic_dec(&sync->cpus);
689 	enable_sync_clock();
690 	/*
691 	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
692 	 * is called on all other cpus while the TOD clocks is stopped.
693 	 * __udelay will stop the cpu on an enabled wait psw until the
694 	 * TOD is running again.
695 	 */
696 	while (sync->in_sync == 0) {
697 		__udelay(1);
698 		/*
699 		 * A different cpu changes *in_sync. Therefore use
700 		 * barrier() to force memory access.
701 		 */
702 		barrier();
703 	}
704 	if (sync->in_sync != 1)
705 		/* Didn't work. Clear per-cpu in sync bit again. */
706 		disable_sync_clock(NULL);
707 	/*
708 	 * This round of TOD syncing is done. Set the clock comparator
709 	 * to the next tick and let the processor continue.
710 	 */
711 	fixup_clock_comparator(sync->fixup_cc);
712 }
713 
714 /*
715  * Sync the TOD clock using the port refered to by aibp. This port
716  * has to be enabled and the other port has to be disabled. The
717  * last eacr update has to be more than 1.6 seconds in the past.
718  */
719 static int etr_sync_clock(void *data)
720 {
721 	static int first;
722 	unsigned long long clock, old_clock, delay, delta;
723 	struct clock_sync_data *etr_sync;
724 	struct etr_aib *sync_port, *aib;
725 	int port;
726 	int rc;
727 
728 	etr_sync = data;
729 
730 	if (xchg(&first, 1) == 1) {
731 		/* Slave */
732 		clock_sync_cpu(etr_sync);
733 		return 0;
734 	}
735 
736 	/* Wait until all other cpus entered the sync function. */
737 	while (atomic_read(&etr_sync->cpus) != 0)
738 		cpu_relax();
739 
740 	port = etr_sync->etr_port;
741 	aib = etr_sync->etr_aib;
742 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
743 	enable_sync_clock();
744 
745 	/* Set clock to next OTE. */
746 	__ctl_set_bit(14, 21);
747 	__ctl_set_bit(0, 29);
748 	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
749 	old_clock = get_clock();
750 	if (set_clock(clock) == 0) {
751 		__udelay(1);	/* Wait for the clock to start. */
752 		__ctl_clear_bit(0, 29);
753 		__ctl_clear_bit(14, 21);
754 		etr_stetr(aib);
755 		/* Adjust Linux timing variables. */
756 		delay = (unsigned long long)
757 			(aib->edf2.etv - sync_port->edf2.etv) << 32;
758 		delta = adjust_time(old_clock, clock, delay);
759 		etr_sync->fixup_cc = delta;
760 		fixup_clock_comparator(delta);
761 		/* Verify that the clock is properly set. */
762 		if (!etr_aib_follows(sync_port, aib, port)) {
763 			/* Didn't work. */
764 			disable_sync_clock(NULL);
765 			etr_sync->in_sync = -EAGAIN;
766 			rc = -EAGAIN;
767 		} else {
768 			etr_sync->in_sync = 1;
769 			rc = 0;
770 		}
771 	} else {
772 		/* Could not set the clock ?!? */
773 		__ctl_clear_bit(0, 29);
774 		__ctl_clear_bit(14, 21);
775 		disable_sync_clock(NULL);
776 		etr_sync->in_sync = -EAGAIN;
777 		rc = -EAGAIN;
778 	}
779 	xchg(&first, 0);
780 	return rc;
781 }
782 
783 static int etr_sync_clock_stop(struct etr_aib *aib, int port)
784 {
785 	struct clock_sync_data etr_sync;
786 	struct etr_aib *sync_port;
787 	int follows;
788 	int rc;
789 
790 	/* Check if the current aib is adjacent to the sync port aib. */
791 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
792 	follows = etr_aib_follows(sync_port, aib, port);
793 	memcpy(sync_port, aib, sizeof(*aib));
794 	if (!follows)
795 		return -EAGAIN;
796 	memset(&etr_sync, 0, sizeof(etr_sync));
797 	etr_sync.etr_aib = aib;
798 	etr_sync.etr_port = port;
799 	get_online_cpus();
800 	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
801 	rc = stop_machine(etr_sync_clock, &etr_sync, &cpu_online_map);
802 	put_online_cpus();
803 	return rc;
804 }
805 
806 /*
807  * Handle the immediate effects of the different events.
808  * The port change event is used for online/offline changes.
809  */
810 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
811 {
812 	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
813 		eacr.es = 0;
814 	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
815 		eacr.es = eacr.sl = 0;
816 	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
817 		etr_port0_uptodate = etr_port1_uptodate = 0;
818 
819 	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
820 		if (eacr.e0)
821 			/*
822 			 * Port change of an enabled port. We have to
823 			 * assume that this can have caused an stepping
824 			 * port switch.
825 			 */
826 			etr_tolec = get_clock();
827 		eacr.p0 = etr_port0_online;
828 		if (!eacr.p0)
829 			eacr.e0 = 0;
830 		etr_port0_uptodate = 0;
831 	}
832 	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
833 		if (eacr.e1)
834 			/*
835 			 * Port change of an enabled port. We have to
836 			 * assume that this can have caused an stepping
837 			 * port switch.
838 			 */
839 			etr_tolec = get_clock();
840 		eacr.p1 = etr_port1_online;
841 		if (!eacr.p1)
842 			eacr.e1 = 0;
843 		etr_port1_uptodate = 0;
844 	}
845 	clear_bit(ETR_EVENT_UPDATE, &etr_events);
846 	return eacr;
847 }
848 
849 /*
850  * Set up a timer that expires after the etr_tolec + 1.6 seconds if
851  * one of the ports needs an update.
852  */
853 static void etr_set_tolec_timeout(unsigned long long now)
854 {
855 	unsigned long micros;
856 
857 	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
858 	    (!etr_eacr.p1 || etr_port1_uptodate))
859 		return;
860 	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
861 	micros = (micros > 1600000) ? 0 : 1600000 - micros;
862 	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
863 }
864 
865 /*
866  * Set up a time that expires after 1/2 second.
867  */
868 static void etr_set_sync_timeout(void)
869 {
870 	mod_timer(&etr_timer, jiffies + HZ/2);
871 }
872 
873 /*
874  * Update the aib information for one or both ports.
875  */
876 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
877 					 struct etr_eacr eacr)
878 {
879 	/* With both ports disabled the aib information is useless. */
880 	if (!eacr.e0 && !eacr.e1)
881 		return eacr;
882 
883 	/* Update port0 or port1 with aib stored in etr_work_fn. */
884 	if (aib->esw.q == 0) {
885 		/* Information for port 0 stored. */
886 		if (eacr.p0 && !etr_port0_uptodate) {
887 			etr_port0 = *aib;
888 			if (etr_port0_online)
889 				etr_port0_uptodate = 1;
890 		}
891 	} else {
892 		/* Information for port 1 stored. */
893 		if (eacr.p1 && !etr_port1_uptodate) {
894 			etr_port1 = *aib;
895 			if (etr_port0_online)
896 				etr_port1_uptodate = 1;
897 		}
898 	}
899 
900 	/*
901 	 * Do not try to get the alternate port aib if the clock
902 	 * is not in sync yet.
903 	 */
904 	if (!check_sync_clock())
905 		return eacr;
906 
907 	/*
908 	 * If steai is available we can get the information about
909 	 * the other port immediately. If only stetr is available the
910 	 * data-port bit toggle has to be used.
911 	 */
912 	if (etr_steai_available) {
913 		if (eacr.p0 && !etr_port0_uptodate) {
914 			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
915 			etr_port0_uptodate = 1;
916 		}
917 		if (eacr.p1 && !etr_port1_uptodate) {
918 			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
919 			etr_port1_uptodate = 1;
920 		}
921 	} else {
922 		/*
923 		 * One port was updated above, if the other
924 		 * port is not uptodate toggle dp bit.
925 		 */
926 		if ((eacr.p0 && !etr_port0_uptodate) ||
927 		    (eacr.p1 && !etr_port1_uptodate))
928 			eacr.dp ^= 1;
929 		else
930 			eacr.dp = 0;
931 	}
932 	return eacr;
933 }
934 
935 /*
936  * Write new etr control register if it differs from the current one.
937  * Return 1 if etr_tolec has been updated as well.
938  */
939 static void etr_update_eacr(struct etr_eacr eacr)
940 {
941 	int dp_changed;
942 
943 	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
944 		/* No change, return. */
945 		return;
946 	/*
947 	 * The disable of an active port of the change of the data port
948 	 * bit can/will cause a change in the data port.
949 	 */
950 	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
951 		(etr_eacr.dp ^ eacr.dp) != 0;
952 	etr_eacr = eacr;
953 	etr_setr(&etr_eacr);
954 	if (dp_changed)
955 		etr_tolec = get_clock();
956 }
957 
958 /*
959  * ETR work. In this function you'll find the main logic. In
960  * particular this is the only function that calls etr_update_eacr(),
961  * it "controls" the etr control register.
962  */
963 static void etr_work_fn(struct work_struct *work)
964 {
965 	unsigned long long now;
966 	struct etr_eacr eacr;
967 	struct etr_aib aib;
968 	int sync_port;
969 
970 	/* prevent multiple execution. */
971 	mutex_lock(&etr_work_mutex);
972 
973 	/* Create working copy of etr_eacr. */
974 	eacr = etr_eacr;
975 
976 	/* Check for the different events and their immediate effects. */
977 	eacr = etr_handle_events(eacr);
978 
979 	/* Check if ETR is supposed to be active. */
980 	eacr.ea = eacr.p0 || eacr.p1;
981 	if (!eacr.ea) {
982 		/* Both ports offline. Reset everything. */
983 		eacr.dp = eacr.es = eacr.sl = 0;
984 		on_each_cpu(disable_sync_clock, NULL, 1);
985 		del_timer_sync(&etr_timer);
986 		etr_update_eacr(eacr);
987 		goto out_unlock;
988 	}
989 
990 	/* Store aib to get the current ETR status word. */
991 	BUG_ON(etr_stetr(&aib) != 0);
992 	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
993 	now = get_clock();
994 
995 	/*
996 	 * Update the port information if the last stepping port change
997 	 * or data port change is older than 1.6 seconds.
998 	 */
999 	if (now >= etr_tolec + (1600000 << 12))
1000 		eacr = etr_handle_update(&aib, eacr);
1001 
1002 	/*
1003 	 * Select ports to enable. The prefered synchronization mode is PPS.
1004 	 * If a port can be enabled depends on a number of things:
1005 	 * 1) The port needs to be online and uptodate. A port is not
1006 	 *    disabled just because it is not uptodate, but it is only
1007 	 *    enabled if it is uptodate.
1008 	 * 2) The port needs to have the same mode (pps / etr).
1009 	 * 3) The port needs to be usable -> etr_port_valid() == 1
1010 	 * 4) To enable the second port the clock needs to be in sync.
1011 	 * 5) If both ports are useable and are ETR ports, the network id
1012 	 *    has to be the same.
1013 	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1014 	 */
1015 	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1016 		eacr.sl = 0;
1017 		eacr.e0 = 1;
1018 		if (!etr_mode_is_pps(etr_eacr))
1019 			eacr.es = 0;
1020 		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1021 			eacr.e1 = 0;
1022 		// FIXME: uptodate checks ?
1023 		else if (etr_port0_uptodate && etr_port1_uptodate)
1024 			eacr.e1 = 1;
1025 		sync_port = (etr_port0_uptodate &&
1026 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1027 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1028 		eacr.sl = 0;
1029 		eacr.e0 = 0;
1030 		eacr.e1 = 1;
1031 		if (!etr_mode_is_pps(etr_eacr))
1032 			eacr.es = 0;
1033 		sync_port = (etr_port1_uptodate &&
1034 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1035 	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1036 		eacr.sl = 1;
1037 		eacr.e0 = 1;
1038 		if (!etr_mode_is_etr(etr_eacr))
1039 			eacr.es = 0;
1040 		if (!eacr.es || !eacr.p1 ||
1041 		    aib.esw.psc1 != etr_lpsc_operational_alt)
1042 			eacr.e1 = 0;
1043 		else if (etr_port0_uptodate && etr_port1_uptodate &&
1044 			 etr_compare_network(&etr_port0, &etr_port1))
1045 			eacr.e1 = 1;
1046 		sync_port = (etr_port0_uptodate &&
1047 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1048 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1049 		eacr.sl = 1;
1050 		eacr.e0 = 0;
1051 		eacr.e1 = 1;
1052 		if (!etr_mode_is_etr(etr_eacr))
1053 			eacr.es = 0;
1054 		sync_port = (etr_port1_uptodate &&
1055 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1056 	} else {
1057 		/* Both ports not usable. */
1058 		eacr.es = eacr.sl = 0;
1059 		sync_port = -1;
1060 	}
1061 
1062 	/*
1063 	 * If the clock is in sync just update the eacr and return.
1064 	 * If there is no valid sync port wait for a port update.
1065 	 */
1066 	if (check_sync_clock() || sync_port < 0) {
1067 		etr_update_eacr(eacr);
1068 		etr_set_tolec_timeout(now);
1069 		goto out_unlock;
1070 	}
1071 
1072 	/*
1073 	 * Prepare control register for clock syncing
1074 	 * (reset data port bit, set sync check control.
1075 	 */
1076 	eacr.dp = 0;
1077 	eacr.es = 1;
1078 
1079 	/*
1080 	 * Update eacr and try to synchronize the clock. If the update
1081 	 * of eacr caused a stepping port switch (or if we have to
1082 	 * assume that a stepping port switch has occured) or the
1083 	 * clock syncing failed, reset the sync check control bit
1084 	 * and set up a timer to try again after 0.5 seconds
1085 	 */
1086 	etr_update_eacr(eacr);
1087 	if (now < etr_tolec + (1600000 << 12) ||
1088 	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1089 		/* Sync failed. Try again in 1/2 second. */
1090 		eacr.es = 0;
1091 		etr_update_eacr(eacr);
1092 		etr_set_sync_timeout();
1093 	} else
1094 		etr_set_tolec_timeout(now);
1095 out_unlock:
1096 	mutex_unlock(&etr_work_mutex);
1097 }
1098 
1099 /*
1100  * Sysfs interface functions
1101  */
1102 static struct sysdev_class etr_sysclass = {
1103 	.name	= "etr",
1104 };
1105 
1106 static struct sys_device etr_port0_dev = {
1107 	.id	= 0,
1108 	.cls	= &etr_sysclass,
1109 };
1110 
1111 static struct sys_device etr_port1_dev = {
1112 	.id	= 1,
1113 	.cls	= &etr_sysclass,
1114 };
1115 
1116 /*
1117  * ETR class attributes
1118  */
1119 static ssize_t etr_stepping_port_show(struct sysdev_class *class, char *buf)
1120 {
1121 	return sprintf(buf, "%i\n", etr_port0.esw.p);
1122 }
1123 
1124 static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1125 
1126 static ssize_t etr_stepping_mode_show(struct sysdev_class *class, char *buf)
1127 {
1128 	char *mode_str;
1129 
1130 	if (etr_mode_is_pps(etr_eacr))
1131 		mode_str = "pps";
1132 	else if (etr_mode_is_etr(etr_eacr))
1133 		mode_str = "etr";
1134 	else
1135 		mode_str = "local";
1136 	return sprintf(buf, "%s\n", mode_str);
1137 }
1138 
1139 static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1140 
1141 /*
1142  * ETR port attributes
1143  */
1144 static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev)
1145 {
1146 	if (dev == &etr_port0_dev)
1147 		return etr_port0_online ? &etr_port0 : NULL;
1148 	else
1149 		return etr_port1_online ? &etr_port1 : NULL;
1150 }
1151 
1152 static ssize_t etr_online_show(struct sys_device *dev,
1153 				struct sysdev_attribute *attr,
1154 				char *buf)
1155 {
1156 	unsigned int online;
1157 
1158 	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1159 	return sprintf(buf, "%i\n", online);
1160 }
1161 
1162 static ssize_t etr_online_store(struct sys_device *dev,
1163 				struct sysdev_attribute *attr,
1164 				const char *buf, size_t count)
1165 {
1166 	unsigned int value;
1167 
1168 	value = simple_strtoul(buf, NULL, 0);
1169 	if (value != 0 && value != 1)
1170 		return -EINVAL;
1171 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1172 		return -EOPNOTSUPP;
1173 	mutex_lock(&clock_sync_mutex);
1174 	if (dev == &etr_port0_dev) {
1175 		if (etr_port0_online == value)
1176 			goto out;	/* Nothing to do. */
1177 		etr_port0_online = value;
1178 		if (etr_port0_online && etr_port1_online)
1179 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1180 		else
1181 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1182 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1183 		queue_work(time_sync_wq, &etr_work);
1184 	} else {
1185 		if (etr_port1_online == value)
1186 			goto out;	/* Nothing to do. */
1187 		etr_port1_online = value;
1188 		if (etr_port0_online && etr_port1_online)
1189 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1190 		else
1191 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1192 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1193 		queue_work(time_sync_wq, &etr_work);
1194 	}
1195 out:
1196 	mutex_unlock(&clock_sync_mutex);
1197 	return count;
1198 }
1199 
1200 static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store);
1201 
1202 static ssize_t etr_stepping_control_show(struct sys_device *dev,
1203 					struct sysdev_attribute *attr,
1204 					char *buf)
1205 {
1206 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1207 		       etr_eacr.e0 : etr_eacr.e1);
1208 }
1209 
1210 static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1211 
1212 static ssize_t etr_mode_code_show(struct sys_device *dev,
1213 				struct sysdev_attribute *attr, char *buf)
1214 {
1215 	if (!etr_port0_online && !etr_port1_online)
1216 		/* Status word is not uptodate if both ports are offline. */
1217 		return -ENODATA;
1218 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1219 		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1220 }
1221 
1222 static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1223 
1224 static ssize_t etr_untuned_show(struct sys_device *dev,
1225 				struct sysdev_attribute *attr, char *buf)
1226 {
1227 	struct etr_aib *aib = etr_aib_from_dev(dev);
1228 
1229 	if (!aib || !aib->slsw.v1)
1230 		return -ENODATA;
1231 	return sprintf(buf, "%i\n", aib->edf1.u);
1232 }
1233 
1234 static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL);
1235 
1236 static ssize_t etr_network_id_show(struct sys_device *dev,
1237 				struct sysdev_attribute *attr, char *buf)
1238 {
1239 	struct etr_aib *aib = etr_aib_from_dev(dev);
1240 
1241 	if (!aib || !aib->slsw.v1)
1242 		return -ENODATA;
1243 	return sprintf(buf, "%i\n", aib->edf1.net_id);
1244 }
1245 
1246 static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL);
1247 
1248 static ssize_t etr_id_show(struct sys_device *dev,
1249 			struct sysdev_attribute *attr, char *buf)
1250 {
1251 	struct etr_aib *aib = etr_aib_from_dev(dev);
1252 
1253 	if (!aib || !aib->slsw.v1)
1254 		return -ENODATA;
1255 	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1256 }
1257 
1258 static SYSDEV_ATTR(id, 0400, etr_id_show, NULL);
1259 
1260 static ssize_t etr_port_number_show(struct sys_device *dev,
1261 			struct sysdev_attribute *attr, char *buf)
1262 {
1263 	struct etr_aib *aib = etr_aib_from_dev(dev);
1264 
1265 	if (!aib || !aib->slsw.v1)
1266 		return -ENODATA;
1267 	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1268 }
1269 
1270 static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL);
1271 
1272 static ssize_t etr_coupled_show(struct sys_device *dev,
1273 			struct sysdev_attribute *attr, char *buf)
1274 {
1275 	struct etr_aib *aib = etr_aib_from_dev(dev);
1276 
1277 	if (!aib || !aib->slsw.v3)
1278 		return -ENODATA;
1279 	return sprintf(buf, "%i\n", aib->edf3.c);
1280 }
1281 
1282 static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL);
1283 
1284 static ssize_t etr_local_time_show(struct sys_device *dev,
1285 			struct sysdev_attribute *attr, char *buf)
1286 {
1287 	struct etr_aib *aib = etr_aib_from_dev(dev);
1288 
1289 	if (!aib || !aib->slsw.v3)
1290 		return -ENODATA;
1291 	return sprintf(buf, "%i\n", aib->edf3.blto);
1292 }
1293 
1294 static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL);
1295 
1296 static ssize_t etr_utc_offset_show(struct sys_device *dev,
1297 			struct sysdev_attribute *attr, char *buf)
1298 {
1299 	struct etr_aib *aib = etr_aib_from_dev(dev);
1300 
1301 	if (!aib || !aib->slsw.v3)
1302 		return -ENODATA;
1303 	return sprintf(buf, "%i\n", aib->edf3.buo);
1304 }
1305 
1306 static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1307 
1308 static struct sysdev_attribute *etr_port_attributes[] = {
1309 	&attr_online,
1310 	&attr_stepping_control,
1311 	&attr_state_code,
1312 	&attr_untuned,
1313 	&attr_network,
1314 	&attr_id,
1315 	&attr_port,
1316 	&attr_coupled,
1317 	&attr_local_time,
1318 	&attr_utc_offset,
1319 	NULL
1320 };
1321 
1322 static int __init etr_register_port(struct sys_device *dev)
1323 {
1324 	struct sysdev_attribute **attr;
1325 	int rc;
1326 
1327 	rc = sysdev_register(dev);
1328 	if (rc)
1329 		goto out;
1330 	for (attr = etr_port_attributes; *attr; attr++) {
1331 		rc = sysdev_create_file(dev, *attr);
1332 		if (rc)
1333 			goto out_unreg;
1334 	}
1335 	return 0;
1336 out_unreg:
1337 	for (; attr >= etr_port_attributes; attr--)
1338 		sysdev_remove_file(dev, *attr);
1339 	sysdev_unregister(dev);
1340 out:
1341 	return rc;
1342 }
1343 
1344 static void __init etr_unregister_port(struct sys_device *dev)
1345 {
1346 	struct sysdev_attribute **attr;
1347 
1348 	for (attr = etr_port_attributes; *attr; attr++)
1349 		sysdev_remove_file(dev, *attr);
1350 	sysdev_unregister(dev);
1351 }
1352 
1353 static int __init etr_init_sysfs(void)
1354 {
1355 	int rc;
1356 
1357 	rc = sysdev_class_register(&etr_sysclass);
1358 	if (rc)
1359 		goto out;
1360 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port);
1361 	if (rc)
1362 		goto out_unreg_class;
1363 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode);
1364 	if (rc)
1365 		goto out_remove_stepping_port;
1366 	rc = etr_register_port(&etr_port0_dev);
1367 	if (rc)
1368 		goto out_remove_stepping_mode;
1369 	rc = etr_register_port(&etr_port1_dev);
1370 	if (rc)
1371 		goto out_remove_port0;
1372 	return 0;
1373 
1374 out_remove_port0:
1375 	etr_unregister_port(&etr_port0_dev);
1376 out_remove_stepping_mode:
1377 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode);
1378 out_remove_stepping_port:
1379 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port);
1380 out_unreg_class:
1381 	sysdev_class_unregister(&etr_sysclass);
1382 out:
1383 	return rc;
1384 }
1385 
1386 device_initcall(etr_init_sysfs);
1387 
1388 /*
1389  * Server Time Protocol (STP) code.
1390  */
1391 static int stp_online;
1392 static struct stp_sstpi stp_info;
1393 static void *stp_page;
1394 
1395 static void stp_work_fn(struct work_struct *work);
1396 static DEFINE_MUTEX(stp_work_mutex);
1397 static DECLARE_WORK(stp_work, stp_work_fn);
1398 static struct timer_list stp_timer;
1399 
1400 static int __init early_parse_stp(char *p)
1401 {
1402 	if (strncmp(p, "off", 3) == 0)
1403 		stp_online = 0;
1404 	else if (strncmp(p, "on", 2) == 0)
1405 		stp_online = 1;
1406 	return 0;
1407 }
1408 early_param("stp", early_parse_stp);
1409 
1410 /*
1411  * Reset STP attachment.
1412  */
1413 static void __init stp_reset(void)
1414 {
1415 	int rc;
1416 
1417 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1418 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1419 	if (rc == 0)
1420 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1421 	else if (stp_online) {
1422 		pr_warning("The real or virtual hardware system does "
1423 			   "not provide an STP interface\n");
1424 		free_page((unsigned long) stp_page);
1425 		stp_page = NULL;
1426 		stp_online = 0;
1427 	}
1428 }
1429 
1430 static void stp_timeout(unsigned long dummy)
1431 {
1432 	queue_work(time_sync_wq, &stp_work);
1433 }
1434 
1435 static int __init stp_init(void)
1436 {
1437 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1438 		return 0;
1439 	setup_timer(&stp_timer, stp_timeout, 0UL);
1440 	time_init_wq();
1441 	if (!stp_online)
1442 		return 0;
1443 	queue_work(time_sync_wq, &stp_work);
1444 	return 0;
1445 }
1446 
1447 arch_initcall(stp_init);
1448 
1449 /*
1450  * STP timing alert. There are three causes:
1451  * 1) timing status change
1452  * 2) link availability change
1453  * 3) time control parameter change
1454  * In all three cases we are only interested in the clock source state.
1455  * If a STP clock source is now available use it.
1456  */
1457 static void stp_timing_alert(struct stp_irq_parm *intparm)
1458 {
1459 	if (intparm->tsc || intparm->lac || intparm->tcpc)
1460 		queue_work(time_sync_wq, &stp_work);
1461 }
1462 
1463 /*
1464  * STP sync check machine check. This is called when the timing state
1465  * changes from the synchronized state to the unsynchronized state.
1466  * After a STP sync check the clock is not in sync. The machine check
1467  * is broadcasted to all cpus at the same time.
1468  */
1469 void stp_sync_check(void)
1470 {
1471 	disable_sync_clock(NULL);
1472 	queue_work(time_sync_wq, &stp_work);
1473 }
1474 
1475 /*
1476  * STP island condition machine check. This is called when an attached
1477  * server  attempts to communicate over an STP link and the servers
1478  * have matching CTN ids and have a valid stratum-1 configuration
1479  * but the configurations do not match.
1480  */
1481 void stp_island_check(void)
1482 {
1483 	disable_sync_clock(NULL);
1484 	queue_work(time_sync_wq, &stp_work);
1485 }
1486 
1487 
1488 static int stp_sync_clock(void *data)
1489 {
1490 	static int first;
1491 	unsigned long long old_clock, delta;
1492 	struct clock_sync_data *stp_sync;
1493 	int rc;
1494 
1495 	stp_sync = data;
1496 
1497 	if (xchg(&first, 1) == 1) {
1498 		/* Slave */
1499 		clock_sync_cpu(stp_sync);
1500 		return 0;
1501 	}
1502 
1503 	/* Wait until all other cpus entered the sync function. */
1504 	while (atomic_read(&stp_sync->cpus) != 0)
1505 		cpu_relax();
1506 
1507 	enable_sync_clock();
1508 
1509 	rc = 0;
1510 	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1511 	    stp_info.todoff[2] || stp_info.todoff[3] ||
1512 	    stp_info.tmd != 2) {
1513 		old_clock = get_clock();
1514 		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1515 		if (rc == 0) {
1516 			delta = adjust_time(old_clock, get_clock(), 0);
1517 			fixup_clock_comparator(delta);
1518 			rc = chsc_sstpi(stp_page, &stp_info,
1519 					sizeof(struct stp_sstpi));
1520 			if (rc == 0 && stp_info.tmd != 2)
1521 				rc = -EAGAIN;
1522 		}
1523 	}
1524 	if (rc) {
1525 		disable_sync_clock(NULL);
1526 		stp_sync->in_sync = -EAGAIN;
1527 	} else
1528 		stp_sync->in_sync = 1;
1529 	xchg(&first, 0);
1530 	return 0;
1531 }
1532 
1533 /*
1534  * STP work. Check for the STP state and take over the clock
1535  * synchronization if the STP clock source is usable.
1536  */
1537 static void stp_work_fn(struct work_struct *work)
1538 {
1539 	struct clock_sync_data stp_sync;
1540 	int rc;
1541 
1542 	/* prevent multiple execution. */
1543 	mutex_lock(&stp_work_mutex);
1544 
1545 	if (!stp_online) {
1546 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1547 		del_timer_sync(&stp_timer);
1548 		goto out_unlock;
1549 	}
1550 
1551 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1552 	if (rc)
1553 		goto out_unlock;
1554 
1555 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1556 	if (rc || stp_info.c == 0)
1557 		goto out_unlock;
1558 
1559 	/* Skip synchronization if the clock is already in sync. */
1560 	if (check_sync_clock())
1561 		goto out_unlock;
1562 
1563 	memset(&stp_sync, 0, sizeof(stp_sync));
1564 	get_online_cpus();
1565 	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1566 	stop_machine(stp_sync_clock, &stp_sync, &cpu_online_map);
1567 	put_online_cpus();
1568 
1569 	if (!check_sync_clock())
1570 		/*
1571 		 * There is a usable clock but the synchonization failed.
1572 		 * Retry after a second.
1573 		 */
1574 		mod_timer(&stp_timer, jiffies + HZ);
1575 
1576 out_unlock:
1577 	mutex_unlock(&stp_work_mutex);
1578 }
1579 
1580 /*
1581  * STP class sysfs interface functions
1582  */
1583 static struct sysdev_class stp_sysclass = {
1584 	.name	= "stp",
1585 };
1586 
1587 static ssize_t stp_ctn_id_show(struct sysdev_class *class, char *buf)
1588 {
1589 	if (!stp_online)
1590 		return -ENODATA;
1591 	return sprintf(buf, "%016llx\n",
1592 		       *(unsigned long long *) stp_info.ctnid);
1593 }
1594 
1595 static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1596 
1597 static ssize_t stp_ctn_type_show(struct sysdev_class *class, char *buf)
1598 {
1599 	if (!stp_online)
1600 		return -ENODATA;
1601 	return sprintf(buf, "%i\n", stp_info.ctn);
1602 }
1603 
1604 static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1605 
1606 static ssize_t stp_dst_offset_show(struct sysdev_class *class, char *buf)
1607 {
1608 	if (!stp_online || !(stp_info.vbits & 0x2000))
1609 		return -ENODATA;
1610 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1611 }
1612 
1613 static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1614 
1615 static ssize_t stp_leap_seconds_show(struct sysdev_class *class, char *buf)
1616 {
1617 	if (!stp_online || !(stp_info.vbits & 0x8000))
1618 		return -ENODATA;
1619 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1620 }
1621 
1622 static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1623 
1624 static ssize_t stp_stratum_show(struct sysdev_class *class, char *buf)
1625 {
1626 	if (!stp_online)
1627 		return -ENODATA;
1628 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1629 }
1630 
1631 static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL);
1632 
1633 static ssize_t stp_time_offset_show(struct sysdev_class *class, char *buf)
1634 {
1635 	if (!stp_online || !(stp_info.vbits & 0x0800))
1636 		return -ENODATA;
1637 	return sprintf(buf, "%i\n", (int) stp_info.tto);
1638 }
1639 
1640 static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1641 
1642 static ssize_t stp_time_zone_offset_show(struct sysdev_class *class, char *buf)
1643 {
1644 	if (!stp_online || !(stp_info.vbits & 0x4000))
1645 		return -ENODATA;
1646 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1647 }
1648 
1649 static SYSDEV_CLASS_ATTR(time_zone_offset, 0400,
1650 			 stp_time_zone_offset_show, NULL);
1651 
1652 static ssize_t stp_timing_mode_show(struct sysdev_class *class, char *buf)
1653 {
1654 	if (!stp_online)
1655 		return -ENODATA;
1656 	return sprintf(buf, "%i\n", stp_info.tmd);
1657 }
1658 
1659 static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1660 
1661 static ssize_t stp_timing_state_show(struct sysdev_class *class, char *buf)
1662 {
1663 	if (!stp_online)
1664 		return -ENODATA;
1665 	return sprintf(buf, "%i\n", stp_info.tst);
1666 }
1667 
1668 static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1669 
1670 static ssize_t stp_online_show(struct sysdev_class *class, char *buf)
1671 {
1672 	return sprintf(buf, "%i\n", stp_online);
1673 }
1674 
1675 static ssize_t stp_online_store(struct sysdev_class *class,
1676 				const char *buf, size_t count)
1677 {
1678 	unsigned int value;
1679 
1680 	value = simple_strtoul(buf, NULL, 0);
1681 	if (value != 0 && value != 1)
1682 		return -EINVAL;
1683 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1684 		return -EOPNOTSUPP;
1685 	mutex_lock(&clock_sync_mutex);
1686 	stp_online = value;
1687 	if (stp_online)
1688 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1689 	else
1690 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1691 	queue_work(time_sync_wq, &stp_work);
1692 	mutex_unlock(&clock_sync_mutex);
1693 	return count;
1694 }
1695 
1696 /*
1697  * Can't use SYSDEV_CLASS_ATTR because the attribute should be named
1698  * stp/online but attr_online already exists in this file ..
1699  */
1700 static struct sysdev_class_attribute attr_stp_online = {
1701 	.attr = { .name = "online", .mode = 0600 },
1702 	.show	= stp_online_show,
1703 	.store	= stp_online_store,
1704 };
1705 
1706 static struct sysdev_class_attribute *stp_attributes[] = {
1707 	&attr_ctn_id,
1708 	&attr_ctn_type,
1709 	&attr_dst_offset,
1710 	&attr_leap_seconds,
1711 	&attr_stp_online,
1712 	&attr_stratum,
1713 	&attr_time_offset,
1714 	&attr_time_zone_offset,
1715 	&attr_timing_mode,
1716 	&attr_timing_state,
1717 	NULL
1718 };
1719 
1720 static int __init stp_init_sysfs(void)
1721 {
1722 	struct sysdev_class_attribute **attr;
1723 	int rc;
1724 
1725 	rc = sysdev_class_register(&stp_sysclass);
1726 	if (rc)
1727 		goto out;
1728 	for (attr = stp_attributes; *attr; attr++) {
1729 		rc = sysdev_class_create_file(&stp_sysclass, *attr);
1730 		if (rc)
1731 			goto out_unreg;
1732 	}
1733 	return 0;
1734 out_unreg:
1735 	for (; attr >= stp_attributes; attr--)
1736 		sysdev_class_remove_file(&stp_sysclass, *attr);
1737 	sysdev_class_unregister(&stp_sysclass);
1738 out:
1739 	return rc;
1740 }
1741 
1742 device_initcall(stp_init_sysfs);
1743