xref: /linux/arch/s390/kernel/time.c (revision 273b281fa22c293963ee3e6eec418f5dda2dbc83)
1 /*
2  *  arch/s390/kernel/time.c
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/cpu.h>
27 #include <linux/stop_machine.h>
28 #include <linux/time.h>
29 #include <linux/sysdev.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/smp.h>
33 #include <linux/types.h>
34 #include <linux/profile.h>
35 #include <linux/timex.h>
36 #include <linux/notifier.h>
37 #include <linux/clocksource.h>
38 #include <linux/clockchips.h>
39 #include <asm/uaccess.h>
40 #include <asm/delay.h>
41 #include <asm/s390_ext.h>
42 #include <asm/div64.h>
43 #include <asm/vdso.h>
44 #include <asm/irq.h>
45 #include <asm/irq_regs.h>
46 #include <asm/timer.h>
47 #include <asm/etr.h>
48 #include <asm/cio.h>
49 
50 /* change this if you have some constant time drift */
51 #define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
52 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
53 
54 /*
55  * Create a small time difference between the timer interrupts
56  * on the different cpus to avoid lock contention.
57  */
58 #define CPU_DEVIATION       (smp_processor_id() << 12)
59 
60 #define TICK_SIZE tick
61 
62 u64 sched_clock_base_cc = -1;	/* Force to data section. */
63 EXPORT_SYMBOL_GPL(sched_clock_base_cc);
64 
65 static DEFINE_PER_CPU(struct clock_event_device, comparators);
66 
67 /*
68  * Scheduler clock - returns current time in nanosec units.
69  */
70 unsigned long long notrace sched_clock(void)
71 {
72 	return (get_clock_monotonic() * 125) >> 9;
73 }
74 
75 /*
76  * Monotonic_clock - returns # of nanoseconds passed since time_init()
77  */
78 unsigned long long monotonic_clock(void)
79 {
80 	return sched_clock();
81 }
82 EXPORT_SYMBOL(monotonic_clock);
83 
84 void tod_to_timeval(__u64 todval, struct timespec *xtime)
85 {
86 	unsigned long long sec;
87 
88 	sec = todval >> 12;
89 	do_div(sec, 1000000);
90 	xtime->tv_sec = sec;
91 	todval -= (sec * 1000000) << 12;
92 	xtime->tv_nsec = ((todval * 1000) >> 12);
93 }
94 EXPORT_SYMBOL(tod_to_timeval);
95 
96 void clock_comparator_work(void)
97 {
98 	struct clock_event_device *cd;
99 
100 	S390_lowcore.clock_comparator = -1ULL;
101 	set_clock_comparator(S390_lowcore.clock_comparator);
102 	cd = &__get_cpu_var(comparators);
103 	cd->event_handler(cd);
104 }
105 
106 /*
107  * Fixup the clock comparator.
108  */
109 static void fixup_clock_comparator(unsigned long long delta)
110 {
111 	/* If nobody is waiting there's nothing to fix. */
112 	if (S390_lowcore.clock_comparator == -1ULL)
113 		return;
114 	S390_lowcore.clock_comparator += delta;
115 	set_clock_comparator(S390_lowcore.clock_comparator);
116 }
117 
118 static int s390_next_event(unsigned long delta,
119 			   struct clock_event_device *evt)
120 {
121 	S390_lowcore.clock_comparator = get_clock() + delta;
122 	set_clock_comparator(S390_lowcore.clock_comparator);
123 	return 0;
124 }
125 
126 static void s390_set_mode(enum clock_event_mode mode,
127 			  struct clock_event_device *evt)
128 {
129 }
130 
131 /*
132  * Set up lowcore and control register of the current cpu to
133  * enable TOD clock and clock comparator interrupts.
134  */
135 void init_cpu_timer(void)
136 {
137 	struct clock_event_device *cd;
138 	int cpu;
139 
140 	S390_lowcore.clock_comparator = -1ULL;
141 	set_clock_comparator(S390_lowcore.clock_comparator);
142 
143 	cpu = smp_processor_id();
144 	cd = &per_cpu(comparators, cpu);
145 	cd->name		= "comparator";
146 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
147 	cd->mult		= 16777;
148 	cd->shift		= 12;
149 	cd->min_delta_ns	= 1;
150 	cd->max_delta_ns	= LONG_MAX;
151 	cd->rating		= 400;
152 	cd->cpumask		= cpumask_of(cpu);
153 	cd->set_next_event	= s390_next_event;
154 	cd->set_mode		= s390_set_mode;
155 
156 	clockevents_register_device(cd);
157 
158 	/* Enable clock comparator timer interrupt. */
159 	__ctl_set_bit(0,11);
160 
161 	/* Always allow the timing alert external interrupt. */
162 	__ctl_set_bit(0, 4);
163 }
164 
165 static void clock_comparator_interrupt(__u16 code)
166 {
167 	if (S390_lowcore.clock_comparator == -1ULL)
168 		set_clock_comparator(S390_lowcore.clock_comparator);
169 }
170 
171 static void etr_timing_alert(struct etr_irq_parm *);
172 static void stp_timing_alert(struct stp_irq_parm *);
173 
174 static void timing_alert_interrupt(__u16 code)
175 {
176 	if (S390_lowcore.ext_params & 0x00c40000)
177 		etr_timing_alert((struct etr_irq_parm *)
178 				 &S390_lowcore.ext_params);
179 	if (S390_lowcore.ext_params & 0x00038000)
180 		stp_timing_alert((struct stp_irq_parm *)
181 				 &S390_lowcore.ext_params);
182 }
183 
184 static void etr_reset(void);
185 static void stp_reset(void);
186 
187 void read_persistent_clock(struct timespec *ts)
188 {
189 	tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, ts);
190 }
191 
192 void read_boot_clock(struct timespec *ts)
193 {
194 	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
195 }
196 
197 static cycle_t read_tod_clock(struct clocksource *cs)
198 {
199 	return get_clock();
200 }
201 
202 static struct clocksource clocksource_tod = {
203 	.name		= "tod",
204 	.rating		= 400,
205 	.read		= read_tod_clock,
206 	.mask		= -1ULL,
207 	.mult		= 1000,
208 	.shift		= 12,
209 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
210 };
211 
212 struct clocksource * __init clocksource_default_clock(void)
213 {
214 	return &clocksource_tod;
215 }
216 
217 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock,
218 		     u32 mult)
219 {
220 	if (clock != &clocksource_tod)
221 		return;
222 
223 	/* Make userspace gettimeofday spin until we're done. */
224 	++vdso_data->tb_update_count;
225 	smp_wmb();
226 	vdso_data->xtime_tod_stamp = clock->cycle_last;
227 	vdso_data->xtime_clock_sec = xtime.tv_sec;
228 	vdso_data->xtime_clock_nsec = xtime.tv_nsec;
229 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
230 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
231 	smp_wmb();
232 	++vdso_data->tb_update_count;
233 }
234 
235 extern struct timezone sys_tz;
236 
237 void update_vsyscall_tz(void)
238 {
239 	/* Make userspace gettimeofday spin until we're done. */
240 	++vdso_data->tb_update_count;
241 	smp_wmb();
242 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
243 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
244 	smp_wmb();
245 	++vdso_data->tb_update_count;
246 }
247 
248 /*
249  * Initialize the TOD clock and the CPU timer of
250  * the boot cpu.
251  */
252 void __init time_init(void)
253 {
254 	/* Reset time synchronization interfaces. */
255 	etr_reset();
256 	stp_reset();
257 
258 	/* request the clock comparator external interrupt */
259 	if (register_external_interrupt(0x1004, clock_comparator_interrupt))
260                 panic("Couldn't request external interrupt 0x1004");
261 
262 	/* request the timing alert external interrupt */
263 	if (register_external_interrupt(0x1406, timing_alert_interrupt))
264 		panic("Couldn't request external interrupt 0x1406");
265 
266 	if (clocksource_register(&clocksource_tod) != 0)
267 		panic("Could not register TOD clock source");
268 
269 	/* Enable TOD clock interrupts on the boot cpu. */
270 	init_cpu_timer();
271 
272 	/* Enable cpu timer interrupts on the boot cpu. */
273 	vtime_init();
274 }
275 
276 /*
277  * The time is "clock". old is what we think the time is.
278  * Adjust the value by a multiple of jiffies and add the delta to ntp.
279  * "delay" is an approximation how long the synchronization took. If
280  * the time correction is positive, then "delay" is subtracted from
281  * the time difference and only the remaining part is passed to ntp.
282  */
283 static unsigned long long adjust_time(unsigned long long old,
284 				      unsigned long long clock,
285 				      unsigned long long delay)
286 {
287 	unsigned long long delta, ticks;
288 	struct timex adjust;
289 
290 	if (clock > old) {
291 		/* It is later than we thought. */
292 		delta = ticks = clock - old;
293 		delta = ticks = (delta < delay) ? 0 : delta - delay;
294 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
295 		adjust.offset = ticks * (1000000 / HZ);
296 	} else {
297 		/* It is earlier than we thought. */
298 		delta = ticks = old - clock;
299 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
300 		delta = -delta;
301 		adjust.offset = -ticks * (1000000 / HZ);
302 	}
303 	sched_clock_base_cc += delta;
304 	if (adjust.offset != 0) {
305 		pr_notice("The ETR interface has adjusted the clock "
306 			  "by %li microseconds\n", adjust.offset);
307 		adjust.modes = ADJ_OFFSET_SINGLESHOT;
308 		do_adjtimex(&adjust);
309 	}
310 	return delta;
311 }
312 
313 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
314 static DEFINE_MUTEX(clock_sync_mutex);
315 static unsigned long clock_sync_flags;
316 
317 #define CLOCK_SYNC_HAS_ETR	0
318 #define CLOCK_SYNC_HAS_STP	1
319 #define CLOCK_SYNC_ETR		2
320 #define CLOCK_SYNC_STP		3
321 
322 /*
323  * The synchronous get_clock function. It will write the current clock
324  * value to the clock pointer and return 0 if the clock is in sync with
325  * the external time source. If the clock mode is local it will return
326  * -ENOSYS and -EAGAIN if the clock is not in sync with the external
327  * reference.
328  */
329 int get_sync_clock(unsigned long long *clock)
330 {
331 	atomic_t *sw_ptr;
332 	unsigned int sw0, sw1;
333 
334 	sw_ptr = &get_cpu_var(clock_sync_word);
335 	sw0 = atomic_read(sw_ptr);
336 	*clock = get_clock();
337 	sw1 = atomic_read(sw_ptr);
338 	put_cpu_var(clock_sync_word);
339 	if (sw0 == sw1 && (sw0 & 0x80000000U))
340 		/* Success: time is in sync. */
341 		return 0;
342 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
343 	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
344 		return -ENOSYS;
345 	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
346 	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
347 		return -EACCES;
348 	return -EAGAIN;
349 }
350 EXPORT_SYMBOL(get_sync_clock);
351 
352 /*
353  * Make get_sync_clock return -EAGAIN.
354  */
355 static void disable_sync_clock(void *dummy)
356 {
357 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
358 	/*
359 	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
360 	 * fail until the sync bit is turned back on. In addition
361 	 * increase the "sequence" counter to avoid the race of an
362 	 * etr event and the complete recovery against get_sync_clock.
363 	 */
364 	atomic_clear_mask(0x80000000, sw_ptr);
365 	atomic_inc(sw_ptr);
366 }
367 
368 /*
369  * Make get_sync_clock return 0 again.
370  * Needs to be called from a context disabled for preemption.
371  */
372 static void enable_sync_clock(void)
373 {
374 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
375 	atomic_set_mask(0x80000000, sw_ptr);
376 }
377 
378 /*
379  * Function to check if the clock is in sync.
380  */
381 static inline int check_sync_clock(void)
382 {
383 	atomic_t *sw_ptr;
384 	int rc;
385 
386 	sw_ptr = &get_cpu_var(clock_sync_word);
387 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
388 	put_cpu_var(clock_sync_word);
389 	return rc;
390 }
391 
392 /* Single threaded workqueue used for etr and stp sync events */
393 static struct workqueue_struct *time_sync_wq;
394 
395 static void __init time_init_wq(void)
396 {
397 	if (time_sync_wq)
398 		return;
399 	time_sync_wq = create_singlethread_workqueue("timesync");
400 	stop_machine_create();
401 }
402 
403 /*
404  * External Time Reference (ETR) code.
405  */
406 static int etr_port0_online;
407 static int etr_port1_online;
408 static int etr_steai_available;
409 
410 static int __init early_parse_etr(char *p)
411 {
412 	if (strncmp(p, "off", 3) == 0)
413 		etr_port0_online = etr_port1_online = 0;
414 	else if (strncmp(p, "port0", 5) == 0)
415 		etr_port0_online = 1;
416 	else if (strncmp(p, "port1", 5) == 0)
417 		etr_port1_online = 1;
418 	else if (strncmp(p, "on", 2) == 0)
419 		etr_port0_online = etr_port1_online = 1;
420 	return 0;
421 }
422 early_param("etr", early_parse_etr);
423 
424 enum etr_event {
425 	ETR_EVENT_PORT0_CHANGE,
426 	ETR_EVENT_PORT1_CHANGE,
427 	ETR_EVENT_PORT_ALERT,
428 	ETR_EVENT_SYNC_CHECK,
429 	ETR_EVENT_SWITCH_LOCAL,
430 	ETR_EVENT_UPDATE,
431 };
432 
433 /*
434  * Valid bit combinations of the eacr register are (x = don't care):
435  * e0 e1 dp p0 p1 ea es sl
436  *  0  0  x  0	0  0  0  0  initial, disabled state
437  *  0  0  x  0	1  1  0  0  port 1 online
438  *  0  0  x  1	0  1  0  0  port 0 online
439  *  0  0  x  1	1  1  0  0  both ports online
440  *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
441  *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
442  *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
443  *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
444  *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
445  *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
446  *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
447  *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
448  *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
449  *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
450  *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
451  *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
452  *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
453  *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
454  *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
455  *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
456  */
457 static struct etr_eacr etr_eacr;
458 static u64 etr_tolec;			/* time of last eacr update */
459 static struct etr_aib etr_port0;
460 static int etr_port0_uptodate;
461 static struct etr_aib etr_port1;
462 static int etr_port1_uptodate;
463 static unsigned long etr_events;
464 static struct timer_list etr_timer;
465 
466 static void etr_timeout(unsigned long dummy);
467 static void etr_work_fn(struct work_struct *work);
468 static DEFINE_MUTEX(etr_work_mutex);
469 static DECLARE_WORK(etr_work, etr_work_fn);
470 
471 /*
472  * Reset ETR attachment.
473  */
474 static void etr_reset(void)
475 {
476 	etr_eacr =  (struct etr_eacr) {
477 		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
478 		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
479 		.es = 0, .sl = 0 };
480 	if (etr_setr(&etr_eacr) == 0) {
481 		etr_tolec = get_clock();
482 		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
483 		if (etr_port0_online && etr_port1_online)
484 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
485 	} else if (etr_port0_online || etr_port1_online) {
486 		pr_warning("The real or virtual hardware system does "
487 			   "not provide an ETR interface\n");
488 		etr_port0_online = etr_port1_online = 0;
489 	}
490 }
491 
492 static int __init etr_init(void)
493 {
494 	struct etr_aib aib;
495 
496 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
497 		return 0;
498 	time_init_wq();
499 	/* Check if this machine has the steai instruction. */
500 	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
501 		etr_steai_available = 1;
502 	setup_timer(&etr_timer, etr_timeout, 0UL);
503 	if (etr_port0_online) {
504 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
505 		queue_work(time_sync_wq, &etr_work);
506 	}
507 	if (etr_port1_online) {
508 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
509 		queue_work(time_sync_wq, &etr_work);
510 	}
511 	return 0;
512 }
513 
514 arch_initcall(etr_init);
515 
516 /*
517  * Two sorts of ETR machine checks. The architecture reads:
518  * "When a machine-check niterruption occurs and if a switch-to-local or
519  *  ETR-sync-check interrupt request is pending but disabled, this pending
520  *  disabled interruption request is indicated and is cleared".
521  * Which means that we can get etr_switch_to_local events from the machine
522  * check handler although the interruption condition is disabled. Lovely..
523  */
524 
525 /*
526  * Switch to local machine check. This is called when the last usable
527  * ETR port goes inactive. After switch to local the clock is not in sync.
528  */
529 void etr_switch_to_local(void)
530 {
531 	if (!etr_eacr.sl)
532 		return;
533 	disable_sync_clock(NULL);
534 	set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events);
535 	queue_work(time_sync_wq, &etr_work);
536 }
537 
538 /*
539  * ETR sync check machine check. This is called when the ETR OTE and the
540  * local clock OTE are farther apart than the ETR sync check tolerance.
541  * After a ETR sync check the clock is not in sync. The machine check
542  * is broadcasted to all cpus at the same time.
543  */
544 void etr_sync_check(void)
545 {
546 	if (!etr_eacr.es)
547 		return;
548 	disable_sync_clock(NULL);
549 	set_bit(ETR_EVENT_SYNC_CHECK, &etr_events);
550 	queue_work(time_sync_wq, &etr_work);
551 }
552 
553 /*
554  * ETR timing alert. There are two causes:
555  * 1) port state change, check the usability of the port
556  * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
557  *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
558  *    or ETR-data word 4 (edf4) has changed.
559  */
560 static void etr_timing_alert(struct etr_irq_parm *intparm)
561 {
562 	if (intparm->pc0)
563 		/* ETR port 0 state change. */
564 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
565 	if (intparm->pc1)
566 		/* ETR port 1 state change. */
567 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
568 	if (intparm->eai)
569 		/*
570 		 * ETR port alert on either port 0, 1 or both.
571 		 * Both ports are not up-to-date now.
572 		 */
573 		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
574 	queue_work(time_sync_wq, &etr_work);
575 }
576 
577 static void etr_timeout(unsigned long dummy)
578 {
579 	set_bit(ETR_EVENT_UPDATE, &etr_events);
580 	queue_work(time_sync_wq, &etr_work);
581 }
582 
583 /*
584  * Check if the etr mode is pss.
585  */
586 static inline int etr_mode_is_pps(struct etr_eacr eacr)
587 {
588 	return eacr.es && !eacr.sl;
589 }
590 
591 /*
592  * Check if the etr mode is etr.
593  */
594 static inline int etr_mode_is_etr(struct etr_eacr eacr)
595 {
596 	return eacr.es && eacr.sl;
597 }
598 
599 /*
600  * Check if the port can be used for TOD synchronization.
601  * For PPS mode the port has to receive OTEs. For ETR mode
602  * the port has to receive OTEs, the ETR stepping bit has to
603  * be zero and the validity bits for data frame 1, 2, and 3
604  * have to be 1.
605  */
606 static int etr_port_valid(struct etr_aib *aib, int port)
607 {
608 	unsigned int psc;
609 
610 	/* Check that this port is receiving OTEs. */
611 	if (aib->tsp == 0)
612 		return 0;
613 
614 	psc = port ? aib->esw.psc1 : aib->esw.psc0;
615 	if (psc == etr_lpsc_pps_mode)
616 		return 1;
617 	if (psc == etr_lpsc_operational_step)
618 		return !aib->esw.y && aib->slsw.v1 &&
619 			aib->slsw.v2 && aib->slsw.v3;
620 	return 0;
621 }
622 
623 /*
624  * Check if two ports are on the same network.
625  */
626 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
627 {
628 	// FIXME: any other fields we have to compare?
629 	return aib1->edf1.net_id == aib2->edf1.net_id;
630 }
631 
632 /*
633  * Wrapper for etr_stei that converts physical port states
634  * to logical port states to be consistent with the output
635  * of stetr (see etr_psc vs. etr_lpsc).
636  */
637 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
638 {
639 	BUG_ON(etr_steai(aib, func) != 0);
640 	/* Convert port state to logical port state. */
641 	if (aib->esw.psc0 == 1)
642 		aib->esw.psc0 = 2;
643 	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
644 		aib->esw.psc0 = 1;
645 	if (aib->esw.psc1 == 1)
646 		aib->esw.psc1 = 2;
647 	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
648 		aib->esw.psc1 = 1;
649 }
650 
651 /*
652  * Check if the aib a2 is still connected to the same attachment as
653  * aib a1, the etv values differ by one and a2 is valid.
654  */
655 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
656 {
657 	int state_a1, state_a2;
658 
659 	/* Paranoia check: e0/e1 should better be the same. */
660 	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
661 	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
662 		return 0;
663 
664 	/* Still connected to the same etr ? */
665 	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
666 	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
667 	if (state_a1 == etr_lpsc_operational_step) {
668 		if (state_a2 != etr_lpsc_operational_step ||
669 		    a1->edf1.net_id != a2->edf1.net_id ||
670 		    a1->edf1.etr_id != a2->edf1.etr_id ||
671 		    a1->edf1.etr_pn != a2->edf1.etr_pn)
672 			return 0;
673 	} else if (state_a2 != etr_lpsc_pps_mode)
674 		return 0;
675 
676 	/* The ETV value of a2 needs to be ETV of a1 + 1. */
677 	if (a1->edf2.etv + 1 != a2->edf2.etv)
678 		return 0;
679 
680 	if (!etr_port_valid(a2, p))
681 		return 0;
682 
683 	return 1;
684 }
685 
686 struct clock_sync_data {
687 	atomic_t cpus;
688 	int in_sync;
689 	unsigned long long fixup_cc;
690 	int etr_port;
691 	struct etr_aib *etr_aib;
692 };
693 
694 static void clock_sync_cpu(struct clock_sync_data *sync)
695 {
696 	atomic_dec(&sync->cpus);
697 	enable_sync_clock();
698 	/*
699 	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
700 	 * is called on all other cpus while the TOD clocks is stopped.
701 	 * __udelay will stop the cpu on an enabled wait psw until the
702 	 * TOD is running again.
703 	 */
704 	while (sync->in_sync == 0) {
705 		__udelay(1);
706 		/*
707 		 * A different cpu changes *in_sync. Therefore use
708 		 * barrier() to force memory access.
709 		 */
710 		barrier();
711 	}
712 	if (sync->in_sync != 1)
713 		/* Didn't work. Clear per-cpu in sync bit again. */
714 		disable_sync_clock(NULL);
715 	/*
716 	 * This round of TOD syncing is done. Set the clock comparator
717 	 * to the next tick and let the processor continue.
718 	 */
719 	fixup_clock_comparator(sync->fixup_cc);
720 }
721 
722 /*
723  * Sync the TOD clock using the port refered to by aibp. This port
724  * has to be enabled and the other port has to be disabled. The
725  * last eacr update has to be more than 1.6 seconds in the past.
726  */
727 static int etr_sync_clock(void *data)
728 {
729 	static int first;
730 	unsigned long long clock, old_clock, delay, delta;
731 	struct clock_sync_data *etr_sync;
732 	struct etr_aib *sync_port, *aib;
733 	int port;
734 	int rc;
735 
736 	etr_sync = data;
737 
738 	if (xchg(&first, 1) == 1) {
739 		/* Slave */
740 		clock_sync_cpu(etr_sync);
741 		return 0;
742 	}
743 
744 	/* Wait until all other cpus entered the sync function. */
745 	while (atomic_read(&etr_sync->cpus) != 0)
746 		cpu_relax();
747 
748 	port = etr_sync->etr_port;
749 	aib = etr_sync->etr_aib;
750 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
751 	enable_sync_clock();
752 
753 	/* Set clock to next OTE. */
754 	__ctl_set_bit(14, 21);
755 	__ctl_set_bit(0, 29);
756 	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
757 	old_clock = get_clock();
758 	if (set_clock(clock) == 0) {
759 		__udelay(1);	/* Wait for the clock to start. */
760 		__ctl_clear_bit(0, 29);
761 		__ctl_clear_bit(14, 21);
762 		etr_stetr(aib);
763 		/* Adjust Linux timing variables. */
764 		delay = (unsigned long long)
765 			(aib->edf2.etv - sync_port->edf2.etv) << 32;
766 		delta = adjust_time(old_clock, clock, delay);
767 		etr_sync->fixup_cc = delta;
768 		fixup_clock_comparator(delta);
769 		/* Verify that the clock is properly set. */
770 		if (!etr_aib_follows(sync_port, aib, port)) {
771 			/* Didn't work. */
772 			disable_sync_clock(NULL);
773 			etr_sync->in_sync = -EAGAIN;
774 			rc = -EAGAIN;
775 		} else {
776 			etr_sync->in_sync = 1;
777 			rc = 0;
778 		}
779 	} else {
780 		/* Could not set the clock ?!? */
781 		__ctl_clear_bit(0, 29);
782 		__ctl_clear_bit(14, 21);
783 		disable_sync_clock(NULL);
784 		etr_sync->in_sync = -EAGAIN;
785 		rc = -EAGAIN;
786 	}
787 	xchg(&first, 0);
788 	return rc;
789 }
790 
791 static int etr_sync_clock_stop(struct etr_aib *aib, int port)
792 {
793 	struct clock_sync_data etr_sync;
794 	struct etr_aib *sync_port;
795 	int follows;
796 	int rc;
797 
798 	/* Check if the current aib is adjacent to the sync port aib. */
799 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
800 	follows = etr_aib_follows(sync_port, aib, port);
801 	memcpy(sync_port, aib, sizeof(*aib));
802 	if (!follows)
803 		return -EAGAIN;
804 	memset(&etr_sync, 0, sizeof(etr_sync));
805 	etr_sync.etr_aib = aib;
806 	etr_sync.etr_port = port;
807 	get_online_cpus();
808 	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
809 	rc = stop_machine(etr_sync_clock, &etr_sync, &cpu_online_map);
810 	put_online_cpus();
811 	return rc;
812 }
813 
814 /*
815  * Handle the immediate effects of the different events.
816  * The port change event is used for online/offline changes.
817  */
818 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
819 {
820 	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
821 		eacr.es = 0;
822 	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
823 		eacr.es = eacr.sl = 0;
824 	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
825 		etr_port0_uptodate = etr_port1_uptodate = 0;
826 
827 	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
828 		if (eacr.e0)
829 			/*
830 			 * Port change of an enabled port. We have to
831 			 * assume that this can have caused an stepping
832 			 * port switch.
833 			 */
834 			etr_tolec = get_clock();
835 		eacr.p0 = etr_port0_online;
836 		if (!eacr.p0)
837 			eacr.e0 = 0;
838 		etr_port0_uptodate = 0;
839 	}
840 	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
841 		if (eacr.e1)
842 			/*
843 			 * Port change of an enabled port. We have to
844 			 * assume that this can have caused an stepping
845 			 * port switch.
846 			 */
847 			etr_tolec = get_clock();
848 		eacr.p1 = etr_port1_online;
849 		if (!eacr.p1)
850 			eacr.e1 = 0;
851 		etr_port1_uptodate = 0;
852 	}
853 	clear_bit(ETR_EVENT_UPDATE, &etr_events);
854 	return eacr;
855 }
856 
857 /*
858  * Set up a timer that expires after the etr_tolec + 1.6 seconds if
859  * one of the ports needs an update.
860  */
861 static void etr_set_tolec_timeout(unsigned long long now)
862 {
863 	unsigned long micros;
864 
865 	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
866 	    (!etr_eacr.p1 || etr_port1_uptodate))
867 		return;
868 	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
869 	micros = (micros > 1600000) ? 0 : 1600000 - micros;
870 	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
871 }
872 
873 /*
874  * Set up a time that expires after 1/2 second.
875  */
876 static void etr_set_sync_timeout(void)
877 {
878 	mod_timer(&etr_timer, jiffies + HZ/2);
879 }
880 
881 /*
882  * Update the aib information for one or both ports.
883  */
884 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
885 					 struct etr_eacr eacr)
886 {
887 	/* With both ports disabled the aib information is useless. */
888 	if (!eacr.e0 && !eacr.e1)
889 		return eacr;
890 
891 	/* Update port0 or port1 with aib stored in etr_work_fn. */
892 	if (aib->esw.q == 0) {
893 		/* Information for port 0 stored. */
894 		if (eacr.p0 && !etr_port0_uptodate) {
895 			etr_port0 = *aib;
896 			if (etr_port0_online)
897 				etr_port0_uptodate = 1;
898 		}
899 	} else {
900 		/* Information for port 1 stored. */
901 		if (eacr.p1 && !etr_port1_uptodate) {
902 			etr_port1 = *aib;
903 			if (etr_port0_online)
904 				etr_port1_uptodate = 1;
905 		}
906 	}
907 
908 	/*
909 	 * Do not try to get the alternate port aib if the clock
910 	 * is not in sync yet.
911 	 */
912 	if (!check_sync_clock())
913 		return eacr;
914 
915 	/*
916 	 * If steai is available we can get the information about
917 	 * the other port immediately. If only stetr is available the
918 	 * data-port bit toggle has to be used.
919 	 */
920 	if (etr_steai_available) {
921 		if (eacr.p0 && !etr_port0_uptodate) {
922 			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
923 			etr_port0_uptodate = 1;
924 		}
925 		if (eacr.p1 && !etr_port1_uptodate) {
926 			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
927 			etr_port1_uptodate = 1;
928 		}
929 	} else {
930 		/*
931 		 * One port was updated above, if the other
932 		 * port is not uptodate toggle dp bit.
933 		 */
934 		if ((eacr.p0 && !etr_port0_uptodate) ||
935 		    (eacr.p1 && !etr_port1_uptodate))
936 			eacr.dp ^= 1;
937 		else
938 			eacr.dp = 0;
939 	}
940 	return eacr;
941 }
942 
943 /*
944  * Write new etr control register if it differs from the current one.
945  * Return 1 if etr_tolec has been updated as well.
946  */
947 static void etr_update_eacr(struct etr_eacr eacr)
948 {
949 	int dp_changed;
950 
951 	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
952 		/* No change, return. */
953 		return;
954 	/*
955 	 * The disable of an active port of the change of the data port
956 	 * bit can/will cause a change in the data port.
957 	 */
958 	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
959 		(etr_eacr.dp ^ eacr.dp) != 0;
960 	etr_eacr = eacr;
961 	etr_setr(&etr_eacr);
962 	if (dp_changed)
963 		etr_tolec = get_clock();
964 }
965 
966 /*
967  * ETR work. In this function you'll find the main logic. In
968  * particular this is the only function that calls etr_update_eacr(),
969  * it "controls" the etr control register.
970  */
971 static void etr_work_fn(struct work_struct *work)
972 {
973 	unsigned long long now;
974 	struct etr_eacr eacr;
975 	struct etr_aib aib;
976 	int sync_port;
977 
978 	/* prevent multiple execution. */
979 	mutex_lock(&etr_work_mutex);
980 
981 	/* Create working copy of etr_eacr. */
982 	eacr = etr_eacr;
983 
984 	/* Check for the different events and their immediate effects. */
985 	eacr = etr_handle_events(eacr);
986 
987 	/* Check if ETR is supposed to be active. */
988 	eacr.ea = eacr.p0 || eacr.p1;
989 	if (!eacr.ea) {
990 		/* Both ports offline. Reset everything. */
991 		eacr.dp = eacr.es = eacr.sl = 0;
992 		on_each_cpu(disable_sync_clock, NULL, 1);
993 		del_timer_sync(&etr_timer);
994 		etr_update_eacr(eacr);
995 		goto out_unlock;
996 	}
997 
998 	/* Store aib to get the current ETR status word. */
999 	BUG_ON(etr_stetr(&aib) != 0);
1000 	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
1001 	now = get_clock();
1002 
1003 	/*
1004 	 * Update the port information if the last stepping port change
1005 	 * or data port change is older than 1.6 seconds.
1006 	 */
1007 	if (now >= etr_tolec + (1600000 << 12))
1008 		eacr = etr_handle_update(&aib, eacr);
1009 
1010 	/*
1011 	 * Select ports to enable. The prefered synchronization mode is PPS.
1012 	 * If a port can be enabled depends on a number of things:
1013 	 * 1) The port needs to be online and uptodate. A port is not
1014 	 *    disabled just because it is not uptodate, but it is only
1015 	 *    enabled if it is uptodate.
1016 	 * 2) The port needs to have the same mode (pps / etr).
1017 	 * 3) The port needs to be usable -> etr_port_valid() == 1
1018 	 * 4) To enable the second port the clock needs to be in sync.
1019 	 * 5) If both ports are useable and are ETR ports, the network id
1020 	 *    has to be the same.
1021 	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1022 	 */
1023 	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1024 		eacr.sl = 0;
1025 		eacr.e0 = 1;
1026 		if (!etr_mode_is_pps(etr_eacr))
1027 			eacr.es = 0;
1028 		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1029 			eacr.e1 = 0;
1030 		// FIXME: uptodate checks ?
1031 		else if (etr_port0_uptodate && etr_port1_uptodate)
1032 			eacr.e1 = 1;
1033 		sync_port = (etr_port0_uptodate &&
1034 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1035 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1036 		eacr.sl = 0;
1037 		eacr.e0 = 0;
1038 		eacr.e1 = 1;
1039 		if (!etr_mode_is_pps(etr_eacr))
1040 			eacr.es = 0;
1041 		sync_port = (etr_port1_uptodate &&
1042 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1043 	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1044 		eacr.sl = 1;
1045 		eacr.e0 = 1;
1046 		if (!etr_mode_is_etr(etr_eacr))
1047 			eacr.es = 0;
1048 		if (!eacr.es || !eacr.p1 ||
1049 		    aib.esw.psc1 != etr_lpsc_operational_alt)
1050 			eacr.e1 = 0;
1051 		else if (etr_port0_uptodate && etr_port1_uptodate &&
1052 			 etr_compare_network(&etr_port0, &etr_port1))
1053 			eacr.e1 = 1;
1054 		sync_port = (etr_port0_uptodate &&
1055 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1056 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1057 		eacr.sl = 1;
1058 		eacr.e0 = 0;
1059 		eacr.e1 = 1;
1060 		if (!etr_mode_is_etr(etr_eacr))
1061 			eacr.es = 0;
1062 		sync_port = (etr_port1_uptodate &&
1063 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1064 	} else {
1065 		/* Both ports not usable. */
1066 		eacr.es = eacr.sl = 0;
1067 		sync_port = -1;
1068 	}
1069 
1070 	/*
1071 	 * If the clock is in sync just update the eacr and return.
1072 	 * If there is no valid sync port wait for a port update.
1073 	 */
1074 	if (check_sync_clock() || sync_port < 0) {
1075 		etr_update_eacr(eacr);
1076 		etr_set_tolec_timeout(now);
1077 		goto out_unlock;
1078 	}
1079 
1080 	/*
1081 	 * Prepare control register for clock syncing
1082 	 * (reset data port bit, set sync check control.
1083 	 */
1084 	eacr.dp = 0;
1085 	eacr.es = 1;
1086 
1087 	/*
1088 	 * Update eacr and try to synchronize the clock. If the update
1089 	 * of eacr caused a stepping port switch (or if we have to
1090 	 * assume that a stepping port switch has occured) or the
1091 	 * clock syncing failed, reset the sync check control bit
1092 	 * and set up a timer to try again after 0.5 seconds
1093 	 */
1094 	etr_update_eacr(eacr);
1095 	if (now < etr_tolec + (1600000 << 12) ||
1096 	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1097 		/* Sync failed. Try again in 1/2 second. */
1098 		eacr.es = 0;
1099 		etr_update_eacr(eacr);
1100 		etr_set_sync_timeout();
1101 	} else
1102 		etr_set_tolec_timeout(now);
1103 out_unlock:
1104 	mutex_unlock(&etr_work_mutex);
1105 }
1106 
1107 /*
1108  * Sysfs interface functions
1109  */
1110 static struct sysdev_class etr_sysclass = {
1111 	.name	= "etr",
1112 };
1113 
1114 static struct sys_device etr_port0_dev = {
1115 	.id	= 0,
1116 	.cls	= &etr_sysclass,
1117 };
1118 
1119 static struct sys_device etr_port1_dev = {
1120 	.id	= 1,
1121 	.cls	= &etr_sysclass,
1122 };
1123 
1124 /*
1125  * ETR class attributes
1126  */
1127 static ssize_t etr_stepping_port_show(struct sysdev_class *class, char *buf)
1128 {
1129 	return sprintf(buf, "%i\n", etr_port0.esw.p);
1130 }
1131 
1132 static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1133 
1134 static ssize_t etr_stepping_mode_show(struct sysdev_class *class, char *buf)
1135 {
1136 	char *mode_str;
1137 
1138 	if (etr_mode_is_pps(etr_eacr))
1139 		mode_str = "pps";
1140 	else if (etr_mode_is_etr(etr_eacr))
1141 		mode_str = "etr";
1142 	else
1143 		mode_str = "local";
1144 	return sprintf(buf, "%s\n", mode_str);
1145 }
1146 
1147 static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1148 
1149 /*
1150  * ETR port attributes
1151  */
1152 static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev)
1153 {
1154 	if (dev == &etr_port0_dev)
1155 		return etr_port0_online ? &etr_port0 : NULL;
1156 	else
1157 		return etr_port1_online ? &etr_port1 : NULL;
1158 }
1159 
1160 static ssize_t etr_online_show(struct sys_device *dev,
1161 				struct sysdev_attribute *attr,
1162 				char *buf)
1163 {
1164 	unsigned int online;
1165 
1166 	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1167 	return sprintf(buf, "%i\n", online);
1168 }
1169 
1170 static ssize_t etr_online_store(struct sys_device *dev,
1171 				struct sysdev_attribute *attr,
1172 				const char *buf, size_t count)
1173 {
1174 	unsigned int value;
1175 
1176 	value = simple_strtoul(buf, NULL, 0);
1177 	if (value != 0 && value != 1)
1178 		return -EINVAL;
1179 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1180 		return -EOPNOTSUPP;
1181 	mutex_lock(&clock_sync_mutex);
1182 	if (dev == &etr_port0_dev) {
1183 		if (etr_port0_online == value)
1184 			goto out;	/* Nothing to do. */
1185 		etr_port0_online = value;
1186 		if (etr_port0_online && etr_port1_online)
1187 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1188 		else
1189 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1190 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1191 		queue_work(time_sync_wq, &etr_work);
1192 	} else {
1193 		if (etr_port1_online == value)
1194 			goto out;	/* Nothing to do. */
1195 		etr_port1_online = value;
1196 		if (etr_port0_online && etr_port1_online)
1197 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1198 		else
1199 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1200 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1201 		queue_work(time_sync_wq, &etr_work);
1202 	}
1203 out:
1204 	mutex_unlock(&clock_sync_mutex);
1205 	return count;
1206 }
1207 
1208 static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store);
1209 
1210 static ssize_t etr_stepping_control_show(struct sys_device *dev,
1211 					struct sysdev_attribute *attr,
1212 					char *buf)
1213 {
1214 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1215 		       etr_eacr.e0 : etr_eacr.e1);
1216 }
1217 
1218 static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1219 
1220 static ssize_t etr_mode_code_show(struct sys_device *dev,
1221 				struct sysdev_attribute *attr, char *buf)
1222 {
1223 	if (!etr_port0_online && !etr_port1_online)
1224 		/* Status word is not uptodate if both ports are offline. */
1225 		return -ENODATA;
1226 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1227 		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1228 }
1229 
1230 static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1231 
1232 static ssize_t etr_untuned_show(struct sys_device *dev,
1233 				struct sysdev_attribute *attr, char *buf)
1234 {
1235 	struct etr_aib *aib = etr_aib_from_dev(dev);
1236 
1237 	if (!aib || !aib->slsw.v1)
1238 		return -ENODATA;
1239 	return sprintf(buf, "%i\n", aib->edf1.u);
1240 }
1241 
1242 static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL);
1243 
1244 static ssize_t etr_network_id_show(struct sys_device *dev,
1245 				struct sysdev_attribute *attr, char *buf)
1246 {
1247 	struct etr_aib *aib = etr_aib_from_dev(dev);
1248 
1249 	if (!aib || !aib->slsw.v1)
1250 		return -ENODATA;
1251 	return sprintf(buf, "%i\n", aib->edf1.net_id);
1252 }
1253 
1254 static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL);
1255 
1256 static ssize_t etr_id_show(struct sys_device *dev,
1257 			struct sysdev_attribute *attr, char *buf)
1258 {
1259 	struct etr_aib *aib = etr_aib_from_dev(dev);
1260 
1261 	if (!aib || !aib->slsw.v1)
1262 		return -ENODATA;
1263 	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1264 }
1265 
1266 static SYSDEV_ATTR(id, 0400, etr_id_show, NULL);
1267 
1268 static ssize_t etr_port_number_show(struct sys_device *dev,
1269 			struct sysdev_attribute *attr, char *buf)
1270 {
1271 	struct etr_aib *aib = etr_aib_from_dev(dev);
1272 
1273 	if (!aib || !aib->slsw.v1)
1274 		return -ENODATA;
1275 	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1276 }
1277 
1278 static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL);
1279 
1280 static ssize_t etr_coupled_show(struct sys_device *dev,
1281 			struct sysdev_attribute *attr, char *buf)
1282 {
1283 	struct etr_aib *aib = etr_aib_from_dev(dev);
1284 
1285 	if (!aib || !aib->slsw.v3)
1286 		return -ENODATA;
1287 	return sprintf(buf, "%i\n", aib->edf3.c);
1288 }
1289 
1290 static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL);
1291 
1292 static ssize_t etr_local_time_show(struct sys_device *dev,
1293 			struct sysdev_attribute *attr, char *buf)
1294 {
1295 	struct etr_aib *aib = etr_aib_from_dev(dev);
1296 
1297 	if (!aib || !aib->slsw.v3)
1298 		return -ENODATA;
1299 	return sprintf(buf, "%i\n", aib->edf3.blto);
1300 }
1301 
1302 static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL);
1303 
1304 static ssize_t etr_utc_offset_show(struct sys_device *dev,
1305 			struct sysdev_attribute *attr, char *buf)
1306 {
1307 	struct etr_aib *aib = etr_aib_from_dev(dev);
1308 
1309 	if (!aib || !aib->slsw.v3)
1310 		return -ENODATA;
1311 	return sprintf(buf, "%i\n", aib->edf3.buo);
1312 }
1313 
1314 static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1315 
1316 static struct sysdev_attribute *etr_port_attributes[] = {
1317 	&attr_online,
1318 	&attr_stepping_control,
1319 	&attr_state_code,
1320 	&attr_untuned,
1321 	&attr_network,
1322 	&attr_id,
1323 	&attr_port,
1324 	&attr_coupled,
1325 	&attr_local_time,
1326 	&attr_utc_offset,
1327 	NULL
1328 };
1329 
1330 static int __init etr_register_port(struct sys_device *dev)
1331 {
1332 	struct sysdev_attribute **attr;
1333 	int rc;
1334 
1335 	rc = sysdev_register(dev);
1336 	if (rc)
1337 		goto out;
1338 	for (attr = etr_port_attributes; *attr; attr++) {
1339 		rc = sysdev_create_file(dev, *attr);
1340 		if (rc)
1341 			goto out_unreg;
1342 	}
1343 	return 0;
1344 out_unreg:
1345 	for (; attr >= etr_port_attributes; attr--)
1346 		sysdev_remove_file(dev, *attr);
1347 	sysdev_unregister(dev);
1348 out:
1349 	return rc;
1350 }
1351 
1352 static void __init etr_unregister_port(struct sys_device *dev)
1353 {
1354 	struct sysdev_attribute **attr;
1355 
1356 	for (attr = etr_port_attributes; *attr; attr++)
1357 		sysdev_remove_file(dev, *attr);
1358 	sysdev_unregister(dev);
1359 }
1360 
1361 static int __init etr_init_sysfs(void)
1362 {
1363 	int rc;
1364 
1365 	rc = sysdev_class_register(&etr_sysclass);
1366 	if (rc)
1367 		goto out;
1368 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port);
1369 	if (rc)
1370 		goto out_unreg_class;
1371 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode);
1372 	if (rc)
1373 		goto out_remove_stepping_port;
1374 	rc = etr_register_port(&etr_port0_dev);
1375 	if (rc)
1376 		goto out_remove_stepping_mode;
1377 	rc = etr_register_port(&etr_port1_dev);
1378 	if (rc)
1379 		goto out_remove_port0;
1380 	return 0;
1381 
1382 out_remove_port0:
1383 	etr_unregister_port(&etr_port0_dev);
1384 out_remove_stepping_mode:
1385 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode);
1386 out_remove_stepping_port:
1387 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port);
1388 out_unreg_class:
1389 	sysdev_class_unregister(&etr_sysclass);
1390 out:
1391 	return rc;
1392 }
1393 
1394 device_initcall(etr_init_sysfs);
1395 
1396 /*
1397  * Server Time Protocol (STP) code.
1398  */
1399 static int stp_online;
1400 static struct stp_sstpi stp_info;
1401 static void *stp_page;
1402 
1403 static void stp_work_fn(struct work_struct *work);
1404 static DEFINE_MUTEX(stp_work_mutex);
1405 static DECLARE_WORK(stp_work, stp_work_fn);
1406 static struct timer_list stp_timer;
1407 
1408 static int __init early_parse_stp(char *p)
1409 {
1410 	if (strncmp(p, "off", 3) == 0)
1411 		stp_online = 0;
1412 	else if (strncmp(p, "on", 2) == 0)
1413 		stp_online = 1;
1414 	return 0;
1415 }
1416 early_param("stp", early_parse_stp);
1417 
1418 /*
1419  * Reset STP attachment.
1420  */
1421 static void __init stp_reset(void)
1422 {
1423 	int rc;
1424 
1425 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1426 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1427 	if (rc == 0)
1428 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1429 	else if (stp_online) {
1430 		pr_warning("The real or virtual hardware system does "
1431 			   "not provide an STP interface\n");
1432 		free_page((unsigned long) stp_page);
1433 		stp_page = NULL;
1434 		stp_online = 0;
1435 	}
1436 }
1437 
1438 static void stp_timeout(unsigned long dummy)
1439 {
1440 	queue_work(time_sync_wq, &stp_work);
1441 }
1442 
1443 static int __init stp_init(void)
1444 {
1445 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1446 		return 0;
1447 	setup_timer(&stp_timer, stp_timeout, 0UL);
1448 	time_init_wq();
1449 	if (!stp_online)
1450 		return 0;
1451 	queue_work(time_sync_wq, &stp_work);
1452 	return 0;
1453 }
1454 
1455 arch_initcall(stp_init);
1456 
1457 /*
1458  * STP timing alert. There are three causes:
1459  * 1) timing status change
1460  * 2) link availability change
1461  * 3) time control parameter change
1462  * In all three cases we are only interested in the clock source state.
1463  * If a STP clock source is now available use it.
1464  */
1465 static void stp_timing_alert(struct stp_irq_parm *intparm)
1466 {
1467 	if (intparm->tsc || intparm->lac || intparm->tcpc)
1468 		queue_work(time_sync_wq, &stp_work);
1469 }
1470 
1471 /*
1472  * STP sync check machine check. This is called when the timing state
1473  * changes from the synchronized state to the unsynchronized state.
1474  * After a STP sync check the clock is not in sync. The machine check
1475  * is broadcasted to all cpus at the same time.
1476  */
1477 void stp_sync_check(void)
1478 {
1479 	disable_sync_clock(NULL);
1480 	queue_work(time_sync_wq, &stp_work);
1481 }
1482 
1483 /*
1484  * STP island condition machine check. This is called when an attached
1485  * server  attempts to communicate over an STP link and the servers
1486  * have matching CTN ids and have a valid stratum-1 configuration
1487  * but the configurations do not match.
1488  */
1489 void stp_island_check(void)
1490 {
1491 	disable_sync_clock(NULL);
1492 	queue_work(time_sync_wq, &stp_work);
1493 }
1494 
1495 
1496 static int stp_sync_clock(void *data)
1497 {
1498 	static int first;
1499 	unsigned long long old_clock, delta;
1500 	struct clock_sync_data *stp_sync;
1501 	int rc;
1502 
1503 	stp_sync = data;
1504 
1505 	if (xchg(&first, 1) == 1) {
1506 		/* Slave */
1507 		clock_sync_cpu(stp_sync);
1508 		return 0;
1509 	}
1510 
1511 	/* Wait until all other cpus entered the sync function. */
1512 	while (atomic_read(&stp_sync->cpus) != 0)
1513 		cpu_relax();
1514 
1515 	enable_sync_clock();
1516 
1517 	rc = 0;
1518 	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1519 	    stp_info.todoff[2] || stp_info.todoff[3] ||
1520 	    stp_info.tmd != 2) {
1521 		old_clock = get_clock();
1522 		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1523 		if (rc == 0) {
1524 			delta = adjust_time(old_clock, get_clock(), 0);
1525 			fixup_clock_comparator(delta);
1526 			rc = chsc_sstpi(stp_page, &stp_info,
1527 					sizeof(struct stp_sstpi));
1528 			if (rc == 0 && stp_info.tmd != 2)
1529 				rc = -EAGAIN;
1530 		}
1531 	}
1532 	if (rc) {
1533 		disable_sync_clock(NULL);
1534 		stp_sync->in_sync = -EAGAIN;
1535 	} else
1536 		stp_sync->in_sync = 1;
1537 	xchg(&first, 0);
1538 	return 0;
1539 }
1540 
1541 /*
1542  * STP work. Check for the STP state and take over the clock
1543  * synchronization if the STP clock source is usable.
1544  */
1545 static void stp_work_fn(struct work_struct *work)
1546 {
1547 	struct clock_sync_data stp_sync;
1548 	int rc;
1549 
1550 	/* prevent multiple execution. */
1551 	mutex_lock(&stp_work_mutex);
1552 
1553 	if (!stp_online) {
1554 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1555 		del_timer_sync(&stp_timer);
1556 		goto out_unlock;
1557 	}
1558 
1559 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1560 	if (rc)
1561 		goto out_unlock;
1562 
1563 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1564 	if (rc || stp_info.c == 0)
1565 		goto out_unlock;
1566 
1567 	/* Skip synchronization if the clock is already in sync. */
1568 	if (check_sync_clock())
1569 		goto out_unlock;
1570 
1571 	memset(&stp_sync, 0, sizeof(stp_sync));
1572 	get_online_cpus();
1573 	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1574 	stop_machine(stp_sync_clock, &stp_sync, &cpu_online_map);
1575 	put_online_cpus();
1576 
1577 	if (!check_sync_clock())
1578 		/*
1579 		 * There is a usable clock but the synchonization failed.
1580 		 * Retry after a second.
1581 		 */
1582 		mod_timer(&stp_timer, jiffies + HZ);
1583 
1584 out_unlock:
1585 	mutex_unlock(&stp_work_mutex);
1586 }
1587 
1588 /*
1589  * STP class sysfs interface functions
1590  */
1591 static struct sysdev_class stp_sysclass = {
1592 	.name	= "stp",
1593 };
1594 
1595 static ssize_t stp_ctn_id_show(struct sysdev_class *class, char *buf)
1596 {
1597 	if (!stp_online)
1598 		return -ENODATA;
1599 	return sprintf(buf, "%016llx\n",
1600 		       *(unsigned long long *) stp_info.ctnid);
1601 }
1602 
1603 static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1604 
1605 static ssize_t stp_ctn_type_show(struct sysdev_class *class, char *buf)
1606 {
1607 	if (!stp_online)
1608 		return -ENODATA;
1609 	return sprintf(buf, "%i\n", stp_info.ctn);
1610 }
1611 
1612 static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1613 
1614 static ssize_t stp_dst_offset_show(struct sysdev_class *class, char *buf)
1615 {
1616 	if (!stp_online || !(stp_info.vbits & 0x2000))
1617 		return -ENODATA;
1618 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1619 }
1620 
1621 static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1622 
1623 static ssize_t stp_leap_seconds_show(struct sysdev_class *class, char *buf)
1624 {
1625 	if (!stp_online || !(stp_info.vbits & 0x8000))
1626 		return -ENODATA;
1627 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1628 }
1629 
1630 static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1631 
1632 static ssize_t stp_stratum_show(struct sysdev_class *class, char *buf)
1633 {
1634 	if (!stp_online)
1635 		return -ENODATA;
1636 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1637 }
1638 
1639 static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL);
1640 
1641 static ssize_t stp_time_offset_show(struct sysdev_class *class, char *buf)
1642 {
1643 	if (!stp_online || !(stp_info.vbits & 0x0800))
1644 		return -ENODATA;
1645 	return sprintf(buf, "%i\n", (int) stp_info.tto);
1646 }
1647 
1648 static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1649 
1650 static ssize_t stp_time_zone_offset_show(struct sysdev_class *class, char *buf)
1651 {
1652 	if (!stp_online || !(stp_info.vbits & 0x4000))
1653 		return -ENODATA;
1654 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1655 }
1656 
1657 static SYSDEV_CLASS_ATTR(time_zone_offset, 0400,
1658 			 stp_time_zone_offset_show, NULL);
1659 
1660 static ssize_t stp_timing_mode_show(struct sysdev_class *class, char *buf)
1661 {
1662 	if (!stp_online)
1663 		return -ENODATA;
1664 	return sprintf(buf, "%i\n", stp_info.tmd);
1665 }
1666 
1667 static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1668 
1669 static ssize_t stp_timing_state_show(struct sysdev_class *class, char *buf)
1670 {
1671 	if (!stp_online)
1672 		return -ENODATA;
1673 	return sprintf(buf, "%i\n", stp_info.tst);
1674 }
1675 
1676 static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1677 
1678 static ssize_t stp_online_show(struct sysdev_class *class, char *buf)
1679 {
1680 	return sprintf(buf, "%i\n", stp_online);
1681 }
1682 
1683 static ssize_t stp_online_store(struct sysdev_class *class,
1684 				const char *buf, size_t count)
1685 {
1686 	unsigned int value;
1687 
1688 	value = simple_strtoul(buf, NULL, 0);
1689 	if (value != 0 && value != 1)
1690 		return -EINVAL;
1691 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1692 		return -EOPNOTSUPP;
1693 	mutex_lock(&clock_sync_mutex);
1694 	stp_online = value;
1695 	if (stp_online)
1696 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1697 	else
1698 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1699 	queue_work(time_sync_wq, &stp_work);
1700 	mutex_unlock(&clock_sync_mutex);
1701 	return count;
1702 }
1703 
1704 /*
1705  * Can't use SYSDEV_CLASS_ATTR because the attribute should be named
1706  * stp/online but attr_online already exists in this file ..
1707  */
1708 static struct sysdev_class_attribute attr_stp_online = {
1709 	.attr = { .name = "online", .mode = 0600 },
1710 	.show	= stp_online_show,
1711 	.store	= stp_online_store,
1712 };
1713 
1714 static struct sysdev_class_attribute *stp_attributes[] = {
1715 	&attr_ctn_id,
1716 	&attr_ctn_type,
1717 	&attr_dst_offset,
1718 	&attr_leap_seconds,
1719 	&attr_stp_online,
1720 	&attr_stratum,
1721 	&attr_time_offset,
1722 	&attr_time_zone_offset,
1723 	&attr_timing_mode,
1724 	&attr_timing_state,
1725 	NULL
1726 };
1727 
1728 static int __init stp_init_sysfs(void)
1729 {
1730 	struct sysdev_class_attribute **attr;
1731 	int rc;
1732 
1733 	rc = sysdev_class_register(&stp_sysclass);
1734 	if (rc)
1735 		goto out;
1736 	for (attr = stp_attributes; *attr; attr++) {
1737 		rc = sysdev_class_create_file(&stp_sysclass, *attr);
1738 		if (rc)
1739 			goto out_unreg;
1740 	}
1741 	return 0;
1742 out_unreg:
1743 	for (; attr >= stp_attributes; attr--)
1744 		sysdev_class_remove_file(&stp_sysclass, *attr);
1745 	sysdev_class_unregister(&stp_sysclass);
1746 out:
1747 	return rc;
1748 }
1749 
1750 device_initcall(stp_init_sysfs);
1751