1 /* 2 * arch/s390/kernel/time.c 3 * Time of day based timer functions. 4 * 5 * S390 version 6 * Copyright IBM Corp. 1999, 2008 7 * Author(s): Hartmut Penner (hp@de.ibm.com), 8 * Martin Schwidefsky (schwidefsky@de.ibm.com), 9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 10 * 11 * Derived from "arch/i386/kernel/time.c" 12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 13 */ 14 15 #define KMSG_COMPONENT "time" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/kernel_stat.h> 19 #include <linux/errno.h> 20 #include <linux/module.h> 21 #include <linux/sched.h> 22 #include <linux/kernel.h> 23 #include <linux/param.h> 24 #include <linux/string.h> 25 #include <linux/mm.h> 26 #include <linux/interrupt.h> 27 #include <linux/cpu.h> 28 #include <linux/stop_machine.h> 29 #include <linux/time.h> 30 #include <linux/device.h> 31 #include <linux/delay.h> 32 #include <linux/init.h> 33 #include <linux/smp.h> 34 #include <linux/types.h> 35 #include <linux/profile.h> 36 #include <linux/timex.h> 37 #include <linux/notifier.h> 38 #include <linux/clocksource.h> 39 #include <linux/clockchips.h> 40 #include <linux/gfp.h> 41 #include <linux/kprobes.h> 42 #include <asm/uaccess.h> 43 #include <asm/delay.h> 44 #include <asm/div64.h> 45 #include <asm/vdso.h> 46 #include <asm/irq.h> 47 #include <asm/irq_regs.h> 48 #include <asm/timer.h> 49 #include <asm/etr.h> 50 #include <asm/cio.h> 51 #include "entry.h" 52 53 /* change this if you have some constant time drift */ 54 #define USECS_PER_JIFFY ((unsigned long) 1000000/HZ) 55 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12) 56 57 u64 sched_clock_base_cc = -1; /* Force to data section. */ 58 EXPORT_SYMBOL_GPL(sched_clock_base_cc); 59 60 static DEFINE_PER_CPU(struct clock_event_device, comparators); 61 62 /* 63 * Scheduler clock - returns current time in nanosec units. 64 */ 65 unsigned long long notrace __kprobes sched_clock(void) 66 { 67 return (get_clock_monotonic() * 125) >> 9; 68 } 69 70 /* 71 * Monotonic_clock - returns # of nanoseconds passed since time_init() 72 */ 73 unsigned long long monotonic_clock(void) 74 { 75 return sched_clock(); 76 } 77 EXPORT_SYMBOL(monotonic_clock); 78 79 void tod_to_timeval(__u64 todval, struct timespec *xt) 80 { 81 unsigned long long sec; 82 83 sec = todval >> 12; 84 do_div(sec, 1000000); 85 xt->tv_sec = sec; 86 todval -= (sec * 1000000) << 12; 87 xt->tv_nsec = ((todval * 1000) >> 12); 88 } 89 EXPORT_SYMBOL(tod_to_timeval); 90 91 void clock_comparator_work(void) 92 { 93 struct clock_event_device *cd; 94 95 S390_lowcore.clock_comparator = -1ULL; 96 set_clock_comparator(S390_lowcore.clock_comparator); 97 cd = &__get_cpu_var(comparators); 98 cd->event_handler(cd); 99 } 100 101 /* 102 * Fixup the clock comparator. 103 */ 104 static void fixup_clock_comparator(unsigned long long delta) 105 { 106 /* If nobody is waiting there's nothing to fix. */ 107 if (S390_lowcore.clock_comparator == -1ULL) 108 return; 109 S390_lowcore.clock_comparator += delta; 110 set_clock_comparator(S390_lowcore.clock_comparator); 111 } 112 113 static int s390_next_ktime(ktime_t expires, 114 struct clock_event_device *evt) 115 { 116 struct timespec ts; 117 u64 nsecs; 118 119 ts.tv_sec = ts.tv_nsec = 0; 120 monotonic_to_bootbased(&ts); 121 nsecs = ktime_to_ns(ktime_add(timespec_to_ktime(ts), expires)); 122 do_div(nsecs, 125); 123 S390_lowcore.clock_comparator = sched_clock_base_cc + (nsecs << 9); 124 set_clock_comparator(S390_lowcore.clock_comparator); 125 return 0; 126 } 127 128 static void s390_set_mode(enum clock_event_mode mode, 129 struct clock_event_device *evt) 130 { 131 } 132 133 /* 134 * Set up lowcore and control register of the current cpu to 135 * enable TOD clock and clock comparator interrupts. 136 */ 137 void init_cpu_timer(void) 138 { 139 struct clock_event_device *cd; 140 int cpu; 141 142 S390_lowcore.clock_comparator = -1ULL; 143 set_clock_comparator(S390_lowcore.clock_comparator); 144 145 cpu = smp_processor_id(); 146 cd = &per_cpu(comparators, cpu); 147 cd->name = "comparator"; 148 cd->features = CLOCK_EVT_FEAT_ONESHOT | 149 CLOCK_EVT_FEAT_KTIME; 150 cd->mult = 16777; 151 cd->shift = 12; 152 cd->min_delta_ns = 1; 153 cd->max_delta_ns = LONG_MAX; 154 cd->rating = 400; 155 cd->cpumask = cpumask_of(cpu); 156 cd->set_next_ktime = s390_next_ktime; 157 cd->set_mode = s390_set_mode; 158 159 clockevents_register_device(cd); 160 161 /* Enable clock comparator timer interrupt. */ 162 __ctl_set_bit(0,11); 163 164 /* Always allow the timing alert external interrupt. */ 165 __ctl_set_bit(0, 4); 166 } 167 168 static void clock_comparator_interrupt(struct ext_code ext_code, 169 unsigned int param32, 170 unsigned long param64) 171 { 172 kstat_cpu(smp_processor_id()).irqs[EXTINT_CLK]++; 173 if (S390_lowcore.clock_comparator == -1ULL) 174 set_clock_comparator(S390_lowcore.clock_comparator); 175 } 176 177 static void etr_timing_alert(struct etr_irq_parm *); 178 static void stp_timing_alert(struct stp_irq_parm *); 179 180 static void timing_alert_interrupt(struct ext_code ext_code, 181 unsigned int param32, unsigned long param64) 182 { 183 kstat_cpu(smp_processor_id()).irqs[EXTINT_TLA]++; 184 if (param32 & 0x00c40000) 185 etr_timing_alert((struct etr_irq_parm *) ¶m32); 186 if (param32 & 0x00038000) 187 stp_timing_alert((struct stp_irq_parm *) ¶m32); 188 } 189 190 static void etr_reset(void); 191 static void stp_reset(void); 192 193 void read_persistent_clock(struct timespec *ts) 194 { 195 tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, ts); 196 } 197 198 void read_boot_clock(struct timespec *ts) 199 { 200 tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts); 201 } 202 203 static cycle_t read_tod_clock(struct clocksource *cs) 204 { 205 return get_clock(); 206 } 207 208 static struct clocksource clocksource_tod = { 209 .name = "tod", 210 .rating = 400, 211 .read = read_tod_clock, 212 .mask = -1ULL, 213 .mult = 1000, 214 .shift = 12, 215 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 216 }; 217 218 struct clocksource * __init clocksource_default_clock(void) 219 { 220 return &clocksource_tod; 221 } 222 223 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm, 224 struct clocksource *clock, u32 mult) 225 { 226 if (clock != &clocksource_tod) 227 return; 228 229 /* Make userspace gettimeofday spin until we're done. */ 230 ++vdso_data->tb_update_count; 231 smp_wmb(); 232 vdso_data->xtime_tod_stamp = clock->cycle_last; 233 vdso_data->xtime_clock_sec = wall_time->tv_sec; 234 vdso_data->xtime_clock_nsec = wall_time->tv_nsec; 235 vdso_data->wtom_clock_sec = wtm->tv_sec; 236 vdso_data->wtom_clock_nsec = wtm->tv_nsec; 237 vdso_data->ntp_mult = mult; 238 smp_wmb(); 239 ++vdso_data->tb_update_count; 240 } 241 242 extern struct timezone sys_tz; 243 244 void update_vsyscall_tz(void) 245 { 246 /* Make userspace gettimeofday spin until we're done. */ 247 ++vdso_data->tb_update_count; 248 smp_wmb(); 249 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 250 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 251 smp_wmb(); 252 ++vdso_data->tb_update_count; 253 } 254 255 /* 256 * Initialize the TOD clock and the CPU timer of 257 * the boot cpu. 258 */ 259 void __init time_init(void) 260 { 261 /* Reset time synchronization interfaces. */ 262 etr_reset(); 263 stp_reset(); 264 265 /* request the clock comparator external interrupt */ 266 if (register_external_interrupt(0x1004, clock_comparator_interrupt)) 267 panic("Couldn't request external interrupt 0x1004"); 268 269 /* request the timing alert external interrupt */ 270 if (register_external_interrupt(0x1406, timing_alert_interrupt)) 271 panic("Couldn't request external interrupt 0x1406"); 272 273 if (clocksource_register(&clocksource_tod) != 0) 274 panic("Could not register TOD clock source"); 275 276 /* Enable TOD clock interrupts on the boot cpu. */ 277 init_cpu_timer(); 278 279 /* Enable cpu timer interrupts on the boot cpu. */ 280 vtime_init(); 281 } 282 283 /* 284 * The time is "clock". old is what we think the time is. 285 * Adjust the value by a multiple of jiffies and add the delta to ntp. 286 * "delay" is an approximation how long the synchronization took. If 287 * the time correction is positive, then "delay" is subtracted from 288 * the time difference and only the remaining part is passed to ntp. 289 */ 290 static unsigned long long adjust_time(unsigned long long old, 291 unsigned long long clock, 292 unsigned long long delay) 293 { 294 unsigned long long delta, ticks; 295 struct timex adjust; 296 297 if (clock > old) { 298 /* It is later than we thought. */ 299 delta = ticks = clock - old; 300 delta = ticks = (delta < delay) ? 0 : delta - delay; 301 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY); 302 adjust.offset = ticks * (1000000 / HZ); 303 } else { 304 /* It is earlier than we thought. */ 305 delta = ticks = old - clock; 306 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY); 307 delta = -delta; 308 adjust.offset = -ticks * (1000000 / HZ); 309 } 310 sched_clock_base_cc += delta; 311 if (adjust.offset != 0) { 312 pr_notice("The ETR interface has adjusted the clock " 313 "by %li microseconds\n", adjust.offset); 314 adjust.modes = ADJ_OFFSET_SINGLESHOT; 315 do_adjtimex(&adjust); 316 } 317 return delta; 318 } 319 320 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 321 static DEFINE_MUTEX(clock_sync_mutex); 322 static unsigned long clock_sync_flags; 323 324 #define CLOCK_SYNC_HAS_ETR 0 325 #define CLOCK_SYNC_HAS_STP 1 326 #define CLOCK_SYNC_ETR 2 327 #define CLOCK_SYNC_STP 3 328 329 /* 330 * The synchronous get_clock function. It will write the current clock 331 * value to the clock pointer and return 0 if the clock is in sync with 332 * the external time source. If the clock mode is local it will return 333 * -ENOSYS and -EAGAIN if the clock is not in sync with the external 334 * reference. 335 */ 336 int get_sync_clock(unsigned long long *clock) 337 { 338 atomic_t *sw_ptr; 339 unsigned int sw0, sw1; 340 341 sw_ptr = &get_cpu_var(clock_sync_word); 342 sw0 = atomic_read(sw_ptr); 343 *clock = get_clock(); 344 sw1 = atomic_read(sw_ptr); 345 put_cpu_var(clock_sync_word); 346 if (sw0 == sw1 && (sw0 & 0x80000000U)) 347 /* Success: time is in sync. */ 348 return 0; 349 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) && 350 !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 351 return -ENOSYS; 352 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) && 353 !test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 354 return -EACCES; 355 return -EAGAIN; 356 } 357 EXPORT_SYMBOL(get_sync_clock); 358 359 /* 360 * Make get_sync_clock return -EAGAIN. 361 */ 362 static void disable_sync_clock(void *dummy) 363 { 364 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word); 365 /* 366 * Clear the in-sync bit 2^31. All get_sync_clock calls will 367 * fail until the sync bit is turned back on. In addition 368 * increase the "sequence" counter to avoid the race of an 369 * etr event and the complete recovery against get_sync_clock. 370 */ 371 atomic_clear_mask(0x80000000, sw_ptr); 372 atomic_inc(sw_ptr); 373 } 374 375 /* 376 * Make get_sync_clock return 0 again. 377 * Needs to be called from a context disabled for preemption. 378 */ 379 static void enable_sync_clock(void) 380 { 381 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word); 382 atomic_set_mask(0x80000000, sw_ptr); 383 } 384 385 /* 386 * Function to check if the clock is in sync. 387 */ 388 static inline int check_sync_clock(void) 389 { 390 atomic_t *sw_ptr; 391 int rc; 392 393 sw_ptr = &get_cpu_var(clock_sync_word); 394 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 395 put_cpu_var(clock_sync_word); 396 return rc; 397 } 398 399 /* Single threaded workqueue used for etr and stp sync events */ 400 static struct workqueue_struct *time_sync_wq; 401 402 static void __init time_init_wq(void) 403 { 404 if (time_sync_wq) 405 return; 406 time_sync_wq = create_singlethread_workqueue("timesync"); 407 } 408 409 /* 410 * External Time Reference (ETR) code. 411 */ 412 static int etr_port0_online; 413 static int etr_port1_online; 414 static int etr_steai_available; 415 416 static int __init early_parse_etr(char *p) 417 { 418 if (strncmp(p, "off", 3) == 0) 419 etr_port0_online = etr_port1_online = 0; 420 else if (strncmp(p, "port0", 5) == 0) 421 etr_port0_online = 1; 422 else if (strncmp(p, "port1", 5) == 0) 423 etr_port1_online = 1; 424 else if (strncmp(p, "on", 2) == 0) 425 etr_port0_online = etr_port1_online = 1; 426 return 0; 427 } 428 early_param("etr", early_parse_etr); 429 430 enum etr_event { 431 ETR_EVENT_PORT0_CHANGE, 432 ETR_EVENT_PORT1_CHANGE, 433 ETR_EVENT_PORT_ALERT, 434 ETR_EVENT_SYNC_CHECK, 435 ETR_EVENT_SWITCH_LOCAL, 436 ETR_EVENT_UPDATE, 437 }; 438 439 /* 440 * Valid bit combinations of the eacr register are (x = don't care): 441 * e0 e1 dp p0 p1 ea es sl 442 * 0 0 x 0 0 0 0 0 initial, disabled state 443 * 0 0 x 0 1 1 0 0 port 1 online 444 * 0 0 x 1 0 1 0 0 port 0 online 445 * 0 0 x 1 1 1 0 0 both ports online 446 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode 447 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode 448 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync 449 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync 450 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable 451 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync 452 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync 453 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode 454 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode 455 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync 456 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync 457 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable 458 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync 459 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync 460 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync 461 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync 462 */ 463 static struct etr_eacr etr_eacr; 464 static u64 etr_tolec; /* time of last eacr update */ 465 static struct etr_aib etr_port0; 466 static int etr_port0_uptodate; 467 static struct etr_aib etr_port1; 468 static int etr_port1_uptodate; 469 static unsigned long etr_events; 470 static struct timer_list etr_timer; 471 472 static void etr_timeout(unsigned long dummy); 473 static void etr_work_fn(struct work_struct *work); 474 static DEFINE_MUTEX(etr_work_mutex); 475 static DECLARE_WORK(etr_work, etr_work_fn); 476 477 /* 478 * Reset ETR attachment. 479 */ 480 static void etr_reset(void) 481 { 482 etr_eacr = (struct etr_eacr) { 483 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0, 484 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0, 485 .es = 0, .sl = 0 }; 486 if (etr_setr(&etr_eacr) == 0) { 487 etr_tolec = get_clock(); 488 set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags); 489 if (etr_port0_online && etr_port1_online) 490 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 491 } else if (etr_port0_online || etr_port1_online) { 492 pr_warning("The real or virtual hardware system does " 493 "not provide an ETR interface\n"); 494 etr_port0_online = etr_port1_online = 0; 495 } 496 } 497 498 static int __init etr_init(void) 499 { 500 struct etr_aib aib; 501 502 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags)) 503 return 0; 504 time_init_wq(); 505 /* Check if this machine has the steai instruction. */ 506 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0) 507 etr_steai_available = 1; 508 setup_timer(&etr_timer, etr_timeout, 0UL); 509 if (etr_port0_online) { 510 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 511 queue_work(time_sync_wq, &etr_work); 512 } 513 if (etr_port1_online) { 514 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 515 queue_work(time_sync_wq, &etr_work); 516 } 517 return 0; 518 } 519 520 arch_initcall(etr_init); 521 522 /* 523 * Two sorts of ETR machine checks. The architecture reads: 524 * "When a machine-check niterruption occurs and if a switch-to-local or 525 * ETR-sync-check interrupt request is pending but disabled, this pending 526 * disabled interruption request is indicated and is cleared". 527 * Which means that we can get etr_switch_to_local events from the machine 528 * check handler although the interruption condition is disabled. Lovely.. 529 */ 530 531 /* 532 * Switch to local machine check. This is called when the last usable 533 * ETR port goes inactive. After switch to local the clock is not in sync. 534 */ 535 void etr_switch_to_local(void) 536 { 537 if (!etr_eacr.sl) 538 return; 539 disable_sync_clock(NULL); 540 if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) { 541 etr_eacr.es = etr_eacr.sl = 0; 542 etr_setr(&etr_eacr); 543 queue_work(time_sync_wq, &etr_work); 544 } 545 } 546 547 /* 548 * ETR sync check machine check. This is called when the ETR OTE and the 549 * local clock OTE are farther apart than the ETR sync check tolerance. 550 * After a ETR sync check the clock is not in sync. The machine check 551 * is broadcasted to all cpus at the same time. 552 */ 553 void etr_sync_check(void) 554 { 555 if (!etr_eacr.es) 556 return; 557 disable_sync_clock(NULL); 558 if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) { 559 etr_eacr.es = 0; 560 etr_setr(&etr_eacr); 561 queue_work(time_sync_wq, &etr_work); 562 } 563 } 564 565 /* 566 * ETR timing alert. There are two causes: 567 * 1) port state change, check the usability of the port 568 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the 569 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3) 570 * or ETR-data word 4 (edf4) has changed. 571 */ 572 static void etr_timing_alert(struct etr_irq_parm *intparm) 573 { 574 if (intparm->pc0) 575 /* ETR port 0 state change. */ 576 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 577 if (intparm->pc1) 578 /* ETR port 1 state change. */ 579 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 580 if (intparm->eai) 581 /* 582 * ETR port alert on either port 0, 1 or both. 583 * Both ports are not up-to-date now. 584 */ 585 set_bit(ETR_EVENT_PORT_ALERT, &etr_events); 586 queue_work(time_sync_wq, &etr_work); 587 } 588 589 static void etr_timeout(unsigned long dummy) 590 { 591 set_bit(ETR_EVENT_UPDATE, &etr_events); 592 queue_work(time_sync_wq, &etr_work); 593 } 594 595 /* 596 * Check if the etr mode is pss. 597 */ 598 static inline int etr_mode_is_pps(struct etr_eacr eacr) 599 { 600 return eacr.es && !eacr.sl; 601 } 602 603 /* 604 * Check if the etr mode is etr. 605 */ 606 static inline int etr_mode_is_etr(struct etr_eacr eacr) 607 { 608 return eacr.es && eacr.sl; 609 } 610 611 /* 612 * Check if the port can be used for TOD synchronization. 613 * For PPS mode the port has to receive OTEs. For ETR mode 614 * the port has to receive OTEs, the ETR stepping bit has to 615 * be zero and the validity bits for data frame 1, 2, and 3 616 * have to be 1. 617 */ 618 static int etr_port_valid(struct etr_aib *aib, int port) 619 { 620 unsigned int psc; 621 622 /* Check that this port is receiving OTEs. */ 623 if (aib->tsp == 0) 624 return 0; 625 626 psc = port ? aib->esw.psc1 : aib->esw.psc0; 627 if (psc == etr_lpsc_pps_mode) 628 return 1; 629 if (psc == etr_lpsc_operational_step) 630 return !aib->esw.y && aib->slsw.v1 && 631 aib->slsw.v2 && aib->slsw.v3; 632 return 0; 633 } 634 635 /* 636 * Check if two ports are on the same network. 637 */ 638 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2) 639 { 640 // FIXME: any other fields we have to compare? 641 return aib1->edf1.net_id == aib2->edf1.net_id; 642 } 643 644 /* 645 * Wrapper for etr_stei that converts physical port states 646 * to logical port states to be consistent with the output 647 * of stetr (see etr_psc vs. etr_lpsc). 648 */ 649 static void etr_steai_cv(struct etr_aib *aib, unsigned int func) 650 { 651 BUG_ON(etr_steai(aib, func) != 0); 652 /* Convert port state to logical port state. */ 653 if (aib->esw.psc0 == 1) 654 aib->esw.psc0 = 2; 655 else if (aib->esw.psc0 == 0 && aib->esw.p == 0) 656 aib->esw.psc0 = 1; 657 if (aib->esw.psc1 == 1) 658 aib->esw.psc1 = 2; 659 else if (aib->esw.psc1 == 0 && aib->esw.p == 1) 660 aib->esw.psc1 = 1; 661 } 662 663 /* 664 * Check if the aib a2 is still connected to the same attachment as 665 * aib a1, the etv values differ by one and a2 is valid. 666 */ 667 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p) 668 { 669 int state_a1, state_a2; 670 671 /* Paranoia check: e0/e1 should better be the same. */ 672 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 || 673 a1->esw.eacr.e1 != a2->esw.eacr.e1) 674 return 0; 675 676 /* Still connected to the same etr ? */ 677 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0; 678 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0; 679 if (state_a1 == etr_lpsc_operational_step) { 680 if (state_a2 != etr_lpsc_operational_step || 681 a1->edf1.net_id != a2->edf1.net_id || 682 a1->edf1.etr_id != a2->edf1.etr_id || 683 a1->edf1.etr_pn != a2->edf1.etr_pn) 684 return 0; 685 } else if (state_a2 != etr_lpsc_pps_mode) 686 return 0; 687 688 /* The ETV value of a2 needs to be ETV of a1 + 1. */ 689 if (a1->edf2.etv + 1 != a2->edf2.etv) 690 return 0; 691 692 if (!etr_port_valid(a2, p)) 693 return 0; 694 695 return 1; 696 } 697 698 struct clock_sync_data { 699 atomic_t cpus; 700 int in_sync; 701 unsigned long long fixup_cc; 702 int etr_port; 703 struct etr_aib *etr_aib; 704 }; 705 706 static void clock_sync_cpu(struct clock_sync_data *sync) 707 { 708 atomic_dec(&sync->cpus); 709 enable_sync_clock(); 710 /* 711 * This looks like a busy wait loop but it isn't. etr_sync_cpus 712 * is called on all other cpus while the TOD clocks is stopped. 713 * __udelay will stop the cpu on an enabled wait psw until the 714 * TOD is running again. 715 */ 716 while (sync->in_sync == 0) { 717 __udelay(1); 718 /* 719 * A different cpu changes *in_sync. Therefore use 720 * barrier() to force memory access. 721 */ 722 barrier(); 723 } 724 if (sync->in_sync != 1) 725 /* Didn't work. Clear per-cpu in sync bit again. */ 726 disable_sync_clock(NULL); 727 /* 728 * This round of TOD syncing is done. Set the clock comparator 729 * to the next tick and let the processor continue. 730 */ 731 fixup_clock_comparator(sync->fixup_cc); 732 } 733 734 /* 735 * Sync the TOD clock using the port referred to by aibp. This port 736 * has to be enabled and the other port has to be disabled. The 737 * last eacr update has to be more than 1.6 seconds in the past. 738 */ 739 static int etr_sync_clock(void *data) 740 { 741 static int first; 742 unsigned long long clock, old_clock, delay, delta; 743 struct clock_sync_data *etr_sync; 744 struct etr_aib *sync_port, *aib; 745 int port; 746 int rc; 747 748 etr_sync = data; 749 750 if (xchg(&first, 1) == 1) { 751 /* Slave */ 752 clock_sync_cpu(etr_sync); 753 return 0; 754 } 755 756 /* Wait until all other cpus entered the sync function. */ 757 while (atomic_read(&etr_sync->cpus) != 0) 758 cpu_relax(); 759 760 port = etr_sync->etr_port; 761 aib = etr_sync->etr_aib; 762 sync_port = (port == 0) ? &etr_port0 : &etr_port1; 763 enable_sync_clock(); 764 765 /* Set clock to next OTE. */ 766 __ctl_set_bit(14, 21); 767 __ctl_set_bit(0, 29); 768 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32; 769 old_clock = get_clock(); 770 if (set_clock(clock) == 0) { 771 __udelay(1); /* Wait for the clock to start. */ 772 __ctl_clear_bit(0, 29); 773 __ctl_clear_bit(14, 21); 774 etr_stetr(aib); 775 /* Adjust Linux timing variables. */ 776 delay = (unsigned long long) 777 (aib->edf2.etv - sync_port->edf2.etv) << 32; 778 delta = adjust_time(old_clock, clock, delay); 779 etr_sync->fixup_cc = delta; 780 fixup_clock_comparator(delta); 781 /* Verify that the clock is properly set. */ 782 if (!etr_aib_follows(sync_port, aib, port)) { 783 /* Didn't work. */ 784 disable_sync_clock(NULL); 785 etr_sync->in_sync = -EAGAIN; 786 rc = -EAGAIN; 787 } else { 788 etr_sync->in_sync = 1; 789 rc = 0; 790 } 791 } else { 792 /* Could not set the clock ?!? */ 793 __ctl_clear_bit(0, 29); 794 __ctl_clear_bit(14, 21); 795 disable_sync_clock(NULL); 796 etr_sync->in_sync = -EAGAIN; 797 rc = -EAGAIN; 798 } 799 xchg(&first, 0); 800 return rc; 801 } 802 803 static int etr_sync_clock_stop(struct etr_aib *aib, int port) 804 { 805 struct clock_sync_data etr_sync; 806 struct etr_aib *sync_port; 807 int follows; 808 int rc; 809 810 /* Check if the current aib is adjacent to the sync port aib. */ 811 sync_port = (port == 0) ? &etr_port0 : &etr_port1; 812 follows = etr_aib_follows(sync_port, aib, port); 813 memcpy(sync_port, aib, sizeof(*aib)); 814 if (!follows) 815 return -EAGAIN; 816 memset(&etr_sync, 0, sizeof(etr_sync)); 817 etr_sync.etr_aib = aib; 818 etr_sync.etr_port = port; 819 get_online_cpus(); 820 atomic_set(&etr_sync.cpus, num_online_cpus() - 1); 821 rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask); 822 put_online_cpus(); 823 return rc; 824 } 825 826 /* 827 * Handle the immediate effects of the different events. 828 * The port change event is used for online/offline changes. 829 */ 830 static struct etr_eacr etr_handle_events(struct etr_eacr eacr) 831 { 832 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) 833 eacr.es = 0; 834 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) 835 eacr.es = eacr.sl = 0; 836 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events)) 837 etr_port0_uptodate = etr_port1_uptodate = 0; 838 839 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) { 840 if (eacr.e0) 841 /* 842 * Port change of an enabled port. We have to 843 * assume that this can have caused an stepping 844 * port switch. 845 */ 846 etr_tolec = get_clock(); 847 eacr.p0 = etr_port0_online; 848 if (!eacr.p0) 849 eacr.e0 = 0; 850 etr_port0_uptodate = 0; 851 } 852 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) { 853 if (eacr.e1) 854 /* 855 * Port change of an enabled port. We have to 856 * assume that this can have caused an stepping 857 * port switch. 858 */ 859 etr_tolec = get_clock(); 860 eacr.p1 = etr_port1_online; 861 if (!eacr.p1) 862 eacr.e1 = 0; 863 etr_port1_uptodate = 0; 864 } 865 clear_bit(ETR_EVENT_UPDATE, &etr_events); 866 return eacr; 867 } 868 869 /* 870 * Set up a timer that expires after the etr_tolec + 1.6 seconds if 871 * one of the ports needs an update. 872 */ 873 static void etr_set_tolec_timeout(unsigned long long now) 874 { 875 unsigned long micros; 876 877 if ((!etr_eacr.p0 || etr_port0_uptodate) && 878 (!etr_eacr.p1 || etr_port1_uptodate)) 879 return; 880 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0; 881 micros = (micros > 1600000) ? 0 : 1600000 - micros; 882 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1); 883 } 884 885 /* 886 * Set up a time that expires after 1/2 second. 887 */ 888 static void etr_set_sync_timeout(void) 889 { 890 mod_timer(&etr_timer, jiffies + HZ/2); 891 } 892 893 /* 894 * Update the aib information for one or both ports. 895 */ 896 static struct etr_eacr etr_handle_update(struct etr_aib *aib, 897 struct etr_eacr eacr) 898 { 899 /* With both ports disabled the aib information is useless. */ 900 if (!eacr.e0 && !eacr.e1) 901 return eacr; 902 903 /* Update port0 or port1 with aib stored in etr_work_fn. */ 904 if (aib->esw.q == 0) { 905 /* Information for port 0 stored. */ 906 if (eacr.p0 && !etr_port0_uptodate) { 907 etr_port0 = *aib; 908 if (etr_port0_online) 909 etr_port0_uptodate = 1; 910 } 911 } else { 912 /* Information for port 1 stored. */ 913 if (eacr.p1 && !etr_port1_uptodate) { 914 etr_port1 = *aib; 915 if (etr_port0_online) 916 etr_port1_uptodate = 1; 917 } 918 } 919 920 /* 921 * Do not try to get the alternate port aib if the clock 922 * is not in sync yet. 923 */ 924 if (!eacr.es || !check_sync_clock()) 925 return eacr; 926 927 /* 928 * If steai is available we can get the information about 929 * the other port immediately. If only stetr is available the 930 * data-port bit toggle has to be used. 931 */ 932 if (etr_steai_available) { 933 if (eacr.p0 && !etr_port0_uptodate) { 934 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0); 935 etr_port0_uptodate = 1; 936 } 937 if (eacr.p1 && !etr_port1_uptodate) { 938 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1); 939 etr_port1_uptodate = 1; 940 } 941 } else { 942 /* 943 * One port was updated above, if the other 944 * port is not uptodate toggle dp bit. 945 */ 946 if ((eacr.p0 && !etr_port0_uptodate) || 947 (eacr.p1 && !etr_port1_uptodate)) 948 eacr.dp ^= 1; 949 else 950 eacr.dp = 0; 951 } 952 return eacr; 953 } 954 955 /* 956 * Write new etr control register if it differs from the current one. 957 * Return 1 if etr_tolec has been updated as well. 958 */ 959 static void etr_update_eacr(struct etr_eacr eacr) 960 { 961 int dp_changed; 962 963 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0) 964 /* No change, return. */ 965 return; 966 /* 967 * The disable of an active port of the change of the data port 968 * bit can/will cause a change in the data port. 969 */ 970 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 || 971 (etr_eacr.dp ^ eacr.dp) != 0; 972 etr_eacr = eacr; 973 etr_setr(&etr_eacr); 974 if (dp_changed) 975 etr_tolec = get_clock(); 976 } 977 978 /* 979 * ETR work. In this function you'll find the main logic. In 980 * particular this is the only function that calls etr_update_eacr(), 981 * it "controls" the etr control register. 982 */ 983 static void etr_work_fn(struct work_struct *work) 984 { 985 unsigned long long now; 986 struct etr_eacr eacr; 987 struct etr_aib aib; 988 int sync_port; 989 990 /* prevent multiple execution. */ 991 mutex_lock(&etr_work_mutex); 992 993 /* Create working copy of etr_eacr. */ 994 eacr = etr_eacr; 995 996 /* Check for the different events and their immediate effects. */ 997 eacr = etr_handle_events(eacr); 998 999 /* Check if ETR is supposed to be active. */ 1000 eacr.ea = eacr.p0 || eacr.p1; 1001 if (!eacr.ea) { 1002 /* Both ports offline. Reset everything. */ 1003 eacr.dp = eacr.es = eacr.sl = 0; 1004 on_each_cpu(disable_sync_clock, NULL, 1); 1005 del_timer_sync(&etr_timer); 1006 etr_update_eacr(eacr); 1007 goto out_unlock; 1008 } 1009 1010 /* Store aib to get the current ETR status word. */ 1011 BUG_ON(etr_stetr(&aib) != 0); 1012 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */ 1013 now = get_clock(); 1014 1015 /* 1016 * Update the port information if the last stepping port change 1017 * or data port change is older than 1.6 seconds. 1018 */ 1019 if (now >= etr_tolec + (1600000 << 12)) 1020 eacr = etr_handle_update(&aib, eacr); 1021 1022 /* 1023 * Select ports to enable. The preferred synchronization mode is PPS. 1024 * If a port can be enabled depends on a number of things: 1025 * 1) The port needs to be online and uptodate. A port is not 1026 * disabled just because it is not uptodate, but it is only 1027 * enabled if it is uptodate. 1028 * 2) The port needs to have the same mode (pps / etr). 1029 * 3) The port needs to be usable -> etr_port_valid() == 1 1030 * 4) To enable the second port the clock needs to be in sync. 1031 * 5) If both ports are useable and are ETR ports, the network id 1032 * has to be the same. 1033 * The eacr.sl bit is used to indicate etr mode vs. pps mode. 1034 */ 1035 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) { 1036 eacr.sl = 0; 1037 eacr.e0 = 1; 1038 if (!etr_mode_is_pps(etr_eacr)) 1039 eacr.es = 0; 1040 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode) 1041 eacr.e1 = 0; 1042 // FIXME: uptodate checks ? 1043 else if (etr_port0_uptodate && etr_port1_uptodate) 1044 eacr.e1 = 1; 1045 sync_port = (etr_port0_uptodate && 1046 etr_port_valid(&etr_port0, 0)) ? 0 : -1; 1047 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) { 1048 eacr.sl = 0; 1049 eacr.e0 = 0; 1050 eacr.e1 = 1; 1051 if (!etr_mode_is_pps(etr_eacr)) 1052 eacr.es = 0; 1053 sync_port = (etr_port1_uptodate && 1054 etr_port_valid(&etr_port1, 1)) ? 1 : -1; 1055 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) { 1056 eacr.sl = 1; 1057 eacr.e0 = 1; 1058 if (!etr_mode_is_etr(etr_eacr)) 1059 eacr.es = 0; 1060 if (!eacr.es || !eacr.p1 || 1061 aib.esw.psc1 != etr_lpsc_operational_alt) 1062 eacr.e1 = 0; 1063 else if (etr_port0_uptodate && etr_port1_uptodate && 1064 etr_compare_network(&etr_port0, &etr_port1)) 1065 eacr.e1 = 1; 1066 sync_port = (etr_port0_uptodate && 1067 etr_port_valid(&etr_port0, 0)) ? 0 : -1; 1068 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) { 1069 eacr.sl = 1; 1070 eacr.e0 = 0; 1071 eacr.e1 = 1; 1072 if (!etr_mode_is_etr(etr_eacr)) 1073 eacr.es = 0; 1074 sync_port = (etr_port1_uptodate && 1075 etr_port_valid(&etr_port1, 1)) ? 1 : -1; 1076 } else { 1077 /* Both ports not usable. */ 1078 eacr.es = eacr.sl = 0; 1079 sync_port = -1; 1080 } 1081 1082 /* 1083 * If the clock is in sync just update the eacr and return. 1084 * If there is no valid sync port wait for a port update. 1085 */ 1086 if ((eacr.es && check_sync_clock()) || sync_port < 0) { 1087 etr_update_eacr(eacr); 1088 etr_set_tolec_timeout(now); 1089 goto out_unlock; 1090 } 1091 1092 /* 1093 * Prepare control register for clock syncing 1094 * (reset data port bit, set sync check control. 1095 */ 1096 eacr.dp = 0; 1097 eacr.es = 1; 1098 1099 /* 1100 * Update eacr and try to synchronize the clock. If the update 1101 * of eacr caused a stepping port switch (or if we have to 1102 * assume that a stepping port switch has occurred) or the 1103 * clock syncing failed, reset the sync check control bit 1104 * and set up a timer to try again after 0.5 seconds 1105 */ 1106 etr_update_eacr(eacr); 1107 if (now < etr_tolec + (1600000 << 12) || 1108 etr_sync_clock_stop(&aib, sync_port) != 0) { 1109 /* Sync failed. Try again in 1/2 second. */ 1110 eacr.es = 0; 1111 etr_update_eacr(eacr); 1112 etr_set_sync_timeout(); 1113 } else 1114 etr_set_tolec_timeout(now); 1115 out_unlock: 1116 mutex_unlock(&etr_work_mutex); 1117 } 1118 1119 /* 1120 * Sysfs interface functions 1121 */ 1122 static struct bus_type etr_subsys = { 1123 .name = "etr", 1124 .dev_name = "etr", 1125 }; 1126 1127 static struct device etr_port0_dev = { 1128 .id = 0, 1129 .bus = &etr_subsys, 1130 }; 1131 1132 static struct device etr_port1_dev = { 1133 .id = 1, 1134 .bus = &etr_subsys, 1135 }; 1136 1137 /* 1138 * ETR subsys attributes 1139 */ 1140 static ssize_t etr_stepping_port_show(struct device *dev, 1141 struct device_attribute *attr, 1142 char *buf) 1143 { 1144 return sprintf(buf, "%i\n", etr_port0.esw.p); 1145 } 1146 1147 static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL); 1148 1149 static ssize_t etr_stepping_mode_show(struct device *dev, 1150 struct device_attribute *attr, 1151 char *buf) 1152 { 1153 char *mode_str; 1154 1155 if (etr_mode_is_pps(etr_eacr)) 1156 mode_str = "pps"; 1157 else if (etr_mode_is_etr(etr_eacr)) 1158 mode_str = "etr"; 1159 else 1160 mode_str = "local"; 1161 return sprintf(buf, "%s\n", mode_str); 1162 } 1163 1164 static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL); 1165 1166 /* 1167 * ETR port attributes 1168 */ 1169 static inline struct etr_aib *etr_aib_from_dev(struct device *dev) 1170 { 1171 if (dev == &etr_port0_dev) 1172 return etr_port0_online ? &etr_port0 : NULL; 1173 else 1174 return etr_port1_online ? &etr_port1 : NULL; 1175 } 1176 1177 static ssize_t etr_online_show(struct device *dev, 1178 struct device_attribute *attr, 1179 char *buf) 1180 { 1181 unsigned int online; 1182 1183 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online; 1184 return sprintf(buf, "%i\n", online); 1185 } 1186 1187 static ssize_t etr_online_store(struct device *dev, 1188 struct device_attribute *attr, 1189 const char *buf, size_t count) 1190 { 1191 unsigned int value; 1192 1193 value = simple_strtoul(buf, NULL, 0); 1194 if (value != 0 && value != 1) 1195 return -EINVAL; 1196 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags)) 1197 return -EOPNOTSUPP; 1198 mutex_lock(&clock_sync_mutex); 1199 if (dev == &etr_port0_dev) { 1200 if (etr_port0_online == value) 1201 goto out; /* Nothing to do. */ 1202 etr_port0_online = value; 1203 if (etr_port0_online && etr_port1_online) 1204 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1205 else 1206 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1207 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 1208 queue_work(time_sync_wq, &etr_work); 1209 } else { 1210 if (etr_port1_online == value) 1211 goto out; /* Nothing to do. */ 1212 etr_port1_online = value; 1213 if (etr_port0_online && etr_port1_online) 1214 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1215 else 1216 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1217 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 1218 queue_work(time_sync_wq, &etr_work); 1219 } 1220 out: 1221 mutex_unlock(&clock_sync_mutex); 1222 return count; 1223 } 1224 1225 static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store); 1226 1227 static ssize_t etr_stepping_control_show(struct device *dev, 1228 struct device_attribute *attr, 1229 char *buf) 1230 { 1231 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ? 1232 etr_eacr.e0 : etr_eacr.e1); 1233 } 1234 1235 static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL); 1236 1237 static ssize_t etr_mode_code_show(struct device *dev, 1238 struct device_attribute *attr, char *buf) 1239 { 1240 if (!etr_port0_online && !etr_port1_online) 1241 /* Status word is not uptodate if both ports are offline. */ 1242 return -ENODATA; 1243 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ? 1244 etr_port0.esw.psc0 : etr_port0.esw.psc1); 1245 } 1246 1247 static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL); 1248 1249 static ssize_t etr_untuned_show(struct device *dev, 1250 struct device_attribute *attr, char *buf) 1251 { 1252 struct etr_aib *aib = etr_aib_from_dev(dev); 1253 1254 if (!aib || !aib->slsw.v1) 1255 return -ENODATA; 1256 return sprintf(buf, "%i\n", aib->edf1.u); 1257 } 1258 1259 static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL); 1260 1261 static ssize_t etr_network_id_show(struct device *dev, 1262 struct device_attribute *attr, char *buf) 1263 { 1264 struct etr_aib *aib = etr_aib_from_dev(dev); 1265 1266 if (!aib || !aib->slsw.v1) 1267 return -ENODATA; 1268 return sprintf(buf, "%i\n", aib->edf1.net_id); 1269 } 1270 1271 static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL); 1272 1273 static ssize_t etr_id_show(struct device *dev, 1274 struct device_attribute *attr, char *buf) 1275 { 1276 struct etr_aib *aib = etr_aib_from_dev(dev); 1277 1278 if (!aib || !aib->slsw.v1) 1279 return -ENODATA; 1280 return sprintf(buf, "%i\n", aib->edf1.etr_id); 1281 } 1282 1283 static DEVICE_ATTR(id, 0400, etr_id_show, NULL); 1284 1285 static ssize_t etr_port_number_show(struct device *dev, 1286 struct device_attribute *attr, char *buf) 1287 { 1288 struct etr_aib *aib = etr_aib_from_dev(dev); 1289 1290 if (!aib || !aib->slsw.v1) 1291 return -ENODATA; 1292 return sprintf(buf, "%i\n", aib->edf1.etr_pn); 1293 } 1294 1295 static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL); 1296 1297 static ssize_t etr_coupled_show(struct device *dev, 1298 struct device_attribute *attr, char *buf) 1299 { 1300 struct etr_aib *aib = etr_aib_from_dev(dev); 1301 1302 if (!aib || !aib->slsw.v3) 1303 return -ENODATA; 1304 return sprintf(buf, "%i\n", aib->edf3.c); 1305 } 1306 1307 static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL); 1308 1309 static ssize_t etr_local_time_show(struct device *dev, 1310 struct device_attribute *attr, char *buf) 1311 { 1312 struct etr_aib *aib = etr_aib_from_dev(dev); 1313 1314 if (!aib || !aib->slsw.v3) 1315 return -ENODATA; 1316 return sprintf(buf, "%i\n", aib->edf3.blto); 1317 } 1318 1319 static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL); 1320 1321 static ssize_t etr_utc_offset_show(struct device *dev, 1322 struct device_attribute *attr, char *buf) 1323 { 1324 struct etr_aib *aib = etr_aib_from_dev(dev); 1325 1326 if (!aib || !aib->slsw.v3) 1327 return -ENODATA; 1328 return sprintf(buf, "%i\n", aib->edf3.buo); 1329 } 1330 1331 static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL); 1332 1333 static struct device_attribute *etr_port_attributes[] = { 1334 &dev_attr_online, 1335 &dev_attr_stepping_control, 1336 &dev_attr_state_code, 1337 &dev_attr_untuned, 1338 &dev_attr_network, 1339 &dev_attr_id, 1340 &dev_attr_port, 1341 &dev_attr_coupled, 1342 &dev_attr_local_time, 1343 &dev_attr_utc_offset, 1344 NULL 1345 }; 1346 1347 static int __init etr_register_port(struct device *dev) 1348 { 1349 struct device_attribute **attr; 1350 int rc; 1351 1352 rc = device_register(dev); 1353 if (rc) 1354 goto out; 1355 for (attr = etr_port_attributes; *attr; attr++) { 1356 rc = device_create_file(dev, *attr); 1357 if (rc) 1358 goto out_unreg; 1359 } 1360 return 0; 1361 out_unreg: 1362 for (; attr >= etr_port_attributes; attr--) 1363 device_remove_file(dev, *attr); 1364 device_unregister(dev); 1365 out: 1366 return rc; 1367 } 1368 1369 static void __init etr_unregister_port(struct device *dev) 1370 { 1371 struct device_attribute **attr; 1372 1373 for (attr = etr_port_attributes; *attr; attr++) 1374 device_remove_file(dev, *attr); 1375 device_unregister(dev); 1376 } 1377 1378 static int __init etr_init_sysfs(void) 1379 { 1380 int rc; 1381 1382 rc = subsys_system_register(&etr_subsys, NULL); 1383 if (rc) 1384 goto out; 1385 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port); 1386 if (rc) 1387 goto out_unreg_subsys; 1388 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode); 1389 if (rc) 1390 goto out_remove_stepping_port; 1391 rc = etr_register_port(&etr_port0_dev); 1392 if (rc) 1393 goto out_remove_stepping_mode; 1394 rc = etr_register_port(&etr_port1_dev); 1395 if (rc) 1396 goto out_remove_port0; 1397 return 0; 1398 1399 out_remove_port0: 1400 etr_unregister_port(&etr_port0_dev); 1401 out_remove_stepping_mode: 1402 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode); 1403 out_remove_stepping_port: 1404 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port); 1405 out_unreg_subsys: 1406 bus_unregister(&etr_subsys); 1407 out: 1408 return rc; 1409 } 1410 1411 device_initcall(etr_init_sysfs); 1412 1413 /* 1414 * Server Time Protocol (STP) code. 1415 */ 1416 static int stp_online; 1417 static struct stp_sstpi stp_info; 1418 static void *stp_page; 1419 1420 static void stp_work_fn(struct work_struct *work); 1421 static DEFINE_MUTEX(stp_work_mutex); 1422 static DECLARE_WORK(stp_work, stp_work_fn); 1423 static struct timer_list stp_timer; 1424 1425 static int __init early_parse_stp(char *p) 1426 { 1427 if (strncmp(p, "off", 3) == 0) 1428 stp_online = 0; 1429 else if (strncmp(p, "on", 2) == 0) 1430 stp_online = 1; 1431 return 0; 1432 } 1433 early_param("stp", early_parse_stp); 1434 1435 /* 1436 * Reset STP attachment. 1437 */ 1438 static void __init stp_reset(void) 1439 { 1440 int rc; 1441 1442 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 1443 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000); 1444 if (rc == 0) 1445 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 1446 else if (stp_online) { 1447 pr_warning("The real or virtual hardware system does " 1448 "not provide an STP interface\n"); 1449 free_page((unsigned long) stp_page); 1450 stp_page = NULL; 1451 stp_online = 0; 1452 } 1453 } 1454 1455 static void stp_timeout(unsigned long dummy) 1456 { 1457 queue_work(time_sync_wq, &stp_work); 1458 } 1459 1460 static int __init stp_init(void) 1461 { 1462 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 1463 return 0; 1464 setup_timer(&stp_timer, stp_timeout, 0UL); 1465 time_init_wq(); 1466 if (!stp_online) 1467 return 0; 1468 queue_work(time_sync_wq, &stp_work); 1469 return 0; 1470 } 1471 1472 arch_initcall(stp_init); 1473 1474 /* 1475 * STP timing alert. There are three causes: 1476 * 1) timing status change 1477 * 2) link availability change 1478 * 3) time control parameter change 1479 * In all three cases we are only interested in the clock source state. 1480 * If a STP clock source is now available use it. 1481 */ 1482 static void stp_timing_alert(struct stp_irq_parm *intparm) 1483 { 1484 if (intparm->tsc || intparm->lac || intparm->tcpc) 1485 queue_work(time_sync_wq, &stp_work); 1486 } 1487 1488 /* 1489 * STP sync check machine check. This is called when the timing state 1490 * changes from the synchronized state to the unsynchronized state. 1491 * After a STP sync check the clock is not in sync. The machine check 1492 * is broadcasted to all cpus at the same time. 1493 */ 1494 void stp_sync_check(void) 1495 { 1496 disable_sync_clock(NULL); 1497 queue_work(time_sync_wq, &stp_work); 1498 } 1499 1500 /* 1501 * STP island condition machine check. This is called when an attached 1502 * server attempts to communicate over an STP link and the servers 1503 * have matching CTN ids and have a valid stratum-1 configuration 1504 * but the configurations do not match. 1505 */ 1506 void stp_island_check(void) 1507 { 1508 disable_sync_clock(NULL); 1509 queue_work(time_sync_wq, &stp_work); 1510 } 1511 1512 1513 static int stp_sync_clock(void *data) 1514 { 1515 static int first; 1516 unsigned long long old_clock, delta; 1517 struct clock_sync_data *stp_sync; 1518 int rc; 1519 1520 stp_sync = data; 1521 1522 if (xchg(&first, 1) == 1) { 1523 /* Slave */ 1524 clock_sync_cpu(stp_sync); 1525 return 0; 1526 } 1527 1528 /* Wait until all other cpus entered the sync function. */ 1529 while (atomic_read(&stp_sync->cpus) != 0) 1530 cpu_relax(); 1531 1532 enable_sync_clock(); 1533 1534 rc = 0; 1535 if (stp_info.todoff[0] || stp_info.todoff[1] || 1536 stp_info.todoff[2] || stp_info.todoff[3] || 1537 stp_info.tmd != 2) { 1538 old_clock = get_clock(); 1539 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0); 1540 if (rc == 0) { 1541 delta = adjust_time(old_clock, get_clock(), 0); 1542 fixup_clock_comparator(delta); 1543 rc = chsc_sstpi(stp_page, &stp_info, 1544 sizeof(struct stp_sstpi)); 1545 if (rc == 0 && stp_info.tmd != 2) 1546 rc = -EAGAIN; 1547 } 1548 } 1549 if (rc) { 1550 disable_sync_clock(NULL); 1551 stp_sync->in_sync = -EAGAIN; 1552 } else 1553 stp_sync->in_sync = 1; 1554 xchg(&first, 0); 1555 return 0; 1556 } 1557 1558 /* 1559 * STP work. Check for the STP state and take over the clock 1560 * synchronization if the STP clock source is usable. 1561 */ 1562 static void stp_work_fn(struct work_struct *work) 1563 { 1564 struct clock_sync_data stp_sync; 1565 int rc; 1566 1567 /* prevent multiple execution. */ 1568 mutex_lock(&stp_work_mutex); 1569 1570 if (!stp_online) { 1571 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000); 1572 del_timer_sync(&stp_timer); 1573 goto out_unlock; 1574 } 1575 1576 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0); 1577 if (rc) 1578 goto out_unlock; 1579 1580 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 1581 if (rc || stp_info.c == 0) 1582 goto out_unlock; 1583 1584 /* Skip synchronization if the clock is already in sync. */ 1585 if (check_sync_clock()) 1586 goto out_unlock; 1587 1588 memset(&stp_sync, 0, sizeof(stp_sync)); 1589 get_online_cpus(); 1590 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 1591 stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask); 1592 put_online_cpus(); 1593 1594 if (!check_sync_clock()) 1595 /* 1596 * There is a usable clock but the synchonization failed. 1597 * Retry after a second. 1598 */ 1599 mod_timer(&stp_timer, jiffies + HZ); 1600 1601 out_unlock: 1602 mutex_unlock(&stp_work_mutex); 1603 } 1604 1605 /* 1606 * STP subsys sysfs interface functions 1607 */ 1608 static struct bus_type stp_subsys = { 1609 .name = "stp", 1610 .dev_name = "stp", 1611 }; 1612 1613 static ssize_t stp_ctn_id_show(struct device *dev, 1614 struct device_attribute *attr, 1615 char *buf) 1616 { 1617 if (!stp_online) 1618 return -ENODATA; 1619 return sprintf(buf, "%016llx\n", 1620 *(unsigned long long *) stp_info.ctnid); 1621 } 1622 1623 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL); 1624 1625 static ssize_t stp_ctn_type_show(struct device *dev, 1626 struct device_attribute *attr, 1627 char *buf) 1628 { 1629 if (!stp_online) 1630 return -ENODATA; 1631 return sprintf(buf, "%i\n", stp_info.ctn); 1632 } 1633 1634 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL); 1635 1636 static ssize_t stp_dst_offset_show(struct device *dev, 1637 struct device_attribute *attr, 1638 char *buf) 1639 { 1640 if (!stp_online || !(stp_info.vbits & 0x2000)) 1641 return -ENODATA; 1642 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); 1643 } 1644 1645 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL); 1646 1647 static ssize_t stp_leap_seconds_show(struct device *dev, 1648 struct device_attribute *attr, 1649 char *buf) 1650 { 1651 if (!stp_online || !(stp_info.vbits & 0x8000)) 1652 return -ENODATA; 1653 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); 1654 } 1655 1656 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL); 1657 1658 static ssize_t stp_stratum_show(struct device *dev, 1659 struct device_attribute *attr, 1660 char *buf) 1661 { 1662 if (!stp_online) 1663 return -ENODATA; 1664 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); 1665 } 1666 1667 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL); 1668 1669 static ssize_t stp_time_offset_show(struct device *dev, 1670 struct device_attribute *attr, 1671 char *buf) 1672 { 1673 if (!stp_online || !(stp_info.vbits & 0x0800)) 1674 return -ENODATA; 1675 return sprintf(buf, "%i\n", (int) stp_info.tto); 1676 } 1677 1678 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL); 1679 1680 static ssize_t stp_time_zone_offset_show(struct device *dev, 1681 struct device_attribute *attr, 1682 char *buf) 1683 { 1684 if (!stp_online || !(stp_info.vbits & 0x4000)) 1685 return -ENODATA; 1686 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); 1687 } 1688 1689 static DEVICE_ATTR(time_zone_offset, 0400, 1690 stp_time_zone_offset_show, NULL); 1691 1692 static ssize_t stp_timing_mode_show(struct device *dev, 1693 struct device_attribute *attr, 1694 char *buf) 1695 { 1696 if (!stp_online) 1697 return -ENODATA; 1698 return sprintf(buf, "%i\n", stp_info.tmd); 1699 } 1700 1701 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL); 1702 1703 static ssize_t stp_timing_state_show(struct device *dev, 1704 struct device_attribute *attr, 1705 char *buf) 1706 { 1707 if (!stp_online) 1708 return -ENODATA; 1709 return sprintf(buf, "%i\n", stp_info.tst); 1710 } 1711 1712 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL); 1713 1714 static ssize_t stp_online_show(struct device *dev, 1715 struct device_attribute *attr, 1716 char *buf) 1717 { 1718 return sprintf(buf, "%i\n", stp_online); 1719 } 1720 1721 static ssize_t stp_online_store(struct device *dev, 1722 struct device_attribute *attr, 1723 const char *buf, size_t count) 1724 { 1725 unsigned int value; 1726 1727 value = simple_strtoul(buf, NULL, 0); 1728 if (value != 0 && value != 1) 1729 return -EINVAL; 1730 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 1731 return -EOPNOTSUPP; 1732 mutex_lock(&clock_sync_mutex); 1733 stp_online = value; 1734 if (stp_online) 1735 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 1736 else 1737 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 1738 queue_work(time_sync_wq, &stp_work); 1739 mutex_unlock(&clock_sync_mutex); 1740 return count; 1741 } 1742 1743 /* 1744 * Can't use DEVICE_ATTR because the attribute should be named 1745 * stp/online but dev_attr_online already exists in this file .. 1746 */ 1747 static struct device_attribute dev_attr_stp_online = { 1748 .attr = { .name = "online", .mode = 0600 }, 1749 .show = stp_online_show, 1750 .store = stp_online_store, 1751 }; 1752 1753 static struct device_attribute *stp_attributes[] = { 1754 &dev_attr_ctn_id, 1755 &dev_attr_ctn_type, 1756 &dev_attr_dst_offset, 1757 &dev_attr_leap_seconds, 1758 &dev_attr_stp_online, 1759 &dev_attr_stratum, 1760 &dev_attr_time_offset, 1761 &dev_attr_time_zone_offset, 1762 &dev_attr_timing_mode, 1763 &dev_attr_timing_state, 1764 NULL 1765 }; 1766 1767 static int __init stp_init_sysfs(void) 1768 { 1769 struct device_attribute **attr; 1770 int rc; 1771 1772 rc = subsys_system_register(&stp_subsys, NULL); 1773 if (rc) 1774 goto out; 1775 for (attr = stp_attributes; *attr; attr++) { 1776 rc = device_create_file(stp_subsys.dev_root, *attr); 1777 if (rc) 1778 goto out_unreg; 1779 } 1780 return 0; 1781 out_unreg: 1782 for (; attr >= stp_attributes; attr--) 1783 device_remove_file(stp_subsys.dev_root, *attr); 1784 bus_unregister(&stp_subsys); 1785 out: 1786 return rc; 1787 } 1788 1789 device_initcall(stp_init_sysfs); 1790