xref: /linux/arch/s390/kernel/time.c (revision 185000fc556372b7fb7f26516c325f212030dbd3)
1 /*
2  *  arch/s390/kernel/time.c
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #include <linux/errno.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/kernel.h>
19 #include <linux/param.h>
20 #include <linux/string.h>
21 #include <linux/mm.h>
22 #include <linux/interrupt.h>
23 #include <linux/time.h>
24 #include <linux/sysdev.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/smp.h>
28 #include <linux/types.h>
29 #include <linux/profile.h>
30 #include <linux/timex.h>
31 #include <linux/notifier.h>
32 #include <linux/clocksource.h>
33 #include <linux/clockchips.h>
34 #include <linux/bootmem.h>
35 #include <asm/uaccess.h>
36 #include <asm/delay.h>
37 #include <asm/s390_ext.h>
38 #include <asm/div64.h>
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/timer.h>
42 #include <asm/etr.h>
43 #include <asm/cio.h>
44 
45 /* change this if you have some constant time drift */
46 #define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
47 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
48 
49 /* The value of the TOD clock for 1.1.1970. */
50 #define TOD_UNIX_EPOCH 0x7d91048bca000000ULL
51 
52 /*
53  * Create a small time difference between the timer interrupts
54  * on the different cpus to avoid lock contention.
55  */
56 #define CPU_DEVIATION       (smp_processor_id() << 12)
57 
58 #define TICK_SIZE tick
59 
60 static ext_int_info_t ext_int_info_cc;
61 static ext_int_info_t ext_int_etr_cc;
62 static u64 jiffies_timer_cc;
63 
64 static DEFINE_PER_CPU(struct clock_event_device, comparators);
65 
66 /*
67  * Scheduler clock - returns current time in nanosec units.
68  */
69 unsigned long long sched_clock(void)
70 {
71 	return ((get_clock_xt() - jiffies_timer_cc) * 125) >> 9;
72 }
73 
74 /*
75  * Monotonic_clock - returns # of nanoseconds passed since time_init()
76  */
77 unsigned long long monotonic_clock(void)
78 {
79 	return sched_clock();
80 }
81 EXPORT_SYMBOL(monotonic_clock);
82 
83 void tod_to_timeval(__u64 todval, struct timespec *xtime)
84 {
85 	unsigned long long sec;
86 
87 	sec = todval >> 12;
88 	do_div(sec, 1000000);
89 	xtime->tv_sec = sec;
90 	todval -= (sec * 1000000) << 12;
91 	xtime->tv_nsec = ((todval * 1000) >> 12);
92 }
93 
94 #ifdef CONFIG_PROFILING
95 #define s390_do_profile()	profile_tick(CPU_PROFILING)
96 #else
97 #define s390_do_profile()	do { ; } while(0)
98 #endif /* CONFIG_PROFILING */
99 
100 void clock_comparator_work(void)
101 {
102 	struct clock_event_device *cd;
103 
104 	S390_lowcore.clock_comparator = -1ULL;
105 	set_clock_comparator(S390_lowcore.clock_comparator);
106 	cd = &__get_cpu_var(comparators);
107 	cd->event_handler(cd);
108 	s390_do_profile();
109 }
110 
111 /*
112  * Fixup the clock comparator.
113  */
114 static void fixup_clock_comparator(unsigned long long delta)
115 {
116 	/* If nobody is waiting there's nothing to fix. */
117 	if (S390_lowcore.clock_comparator == -1ULL)
118 		return;
119 	S390_lowcore.clock_comparator += delta;
120 	set_clock_comparator(S390_lowcore.clock_comparator);
121 }
122 
123 static int s390_next_event(unsigned long delta,
124 			   struct clock_event_device *evt)
125 {
126 	S390_lowcore.clock_comparator = get_clock() + delta;
127 	set_clock_comparator(S390_lowcore.clock_comparator);
128 	return 0;
129 }
130 
131 static void s390_set_mode(enum clock_event_mode mode,
132 			  struct clock_event_device *evt)
133 {
134 }
135 
136 /*
137  * Set up lowcore and control register of the current cpu to
138  * enable TOD clock and clock comparator interrupts.
139  */
140 void init_cpu_timer(void)
141 {
142 	struct clock_event_device *cd;
143 	int cpu;
144 
145 	S390_lowcore.clock_comparator = -1ULL;
146 	set_clock_comparator(S390_lowcore.clock_comparator);
147 
148 	cpu = smp_processor_id();
149 	cd = &per_cpu(comparators, cpu);
150 	cd->name		= "comparator";
151 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
152 	cd->mult		= 16777;
153 	cd->shift		= 12;
154 	cd->min_delta_ns	= 1;
155 	cd->max_delta_ns	= LONG_MAX;
156 	cd->rating		= 400;
157 	cd->cpumask		= cpumask_of_cpu(cpu);
158 	cd->set_next_event	= s390_next_event;
159 	cd->set_mode		= s390_set_mode;
160 
161 	clockevents_register_device(cd);
162 
163 	/* Enable clock comparator timer interrupt. */
164 	__ctl_set_bit(0,11);
165 
166 	/* Always allow the timing alert external interrupt. */
167 	__ctl_set_bit(0, 4);
168 }
169 
170 static void clock_comparator_interrupt(__u16 code)
171 {
172 }
173 
174 static void etr_timing_alert(struct etr_irq_parm *);
175 static void stp_timing_alert(struct stp_irq_parm *);
176 
177 static void timing_alert_interrupt(__u16 code)
178 {
179 	if (S390_lowcore.ext_params & 0x00c40000)
180 		etr_timing_alert((struct etr_irq_parm *)
181 				 &S390_lowcore.ext_params);
182 	if (S390_lowcore.ext_params & 0x00038000)
183 		stp_timing_alert((struct stp_irq_parm *)
184 				 &S390_lowcore.ext_params);
185 }
186 
187 static void etr_reset(void);
188 static void stp_reset(void);
189 
190 /*
191  * Get the TOD clock running.
192  */
193 static u64 __init reset_tod_clock(void)
194 {
195 	u64 time;
196 
197 	etr_reset();
198 	stp_reset();
199 	if (store_clock(&time) == 0)
200 		return time;
201 	/* TOD clock not running. Set the clock to Unix Epoch. */
202 	if (set_clock(TOD_UNIX_EPOCH) != 0 || store_clock(&time) != 0)
203 		panic("TOD clock not operational.");
204 
205 	return TOD_UNIX_EPOCH;
206 }
207 
208 static cycle_t read_tod_clock(void)
209 {
210 	return get_clock();
211 }
212 
213 static struct clocksource clocksource_tod = {
214 	.name		= "tod",
215 	.rating		= 400,
216 	.read		= read_tod_clock,
217 	.mask		= -1ULL,
218 	.mult		= 1000,
219 	.shift		= 12,
220 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
221 };
222 
223 
224 /*
225  * Initialize the TOD clock and the CPU timer of
226  * the boot cpu.
227  */
228 void __init time_init(void)
229 {
230 	u64 init_timer_cc;
231 
232 	init_timer_cc = reset_tod_clock();
233 	jiffies_timer_cc = init_timer_cc - jiffies_64 * CLK_TICKS_PER_JIFFY;
234 
235 	/* set xtime */
236 	tod_to_timeval(init_timer_cc - TOD_UNIX_EPOCH, &xtime);
237         set_normalized_timespec(&wall_to_monotonic,
238                                 -xtime.tv_sec, -xtime.tv_nsec);
239 
240 	/* request the clock comparator external interrupt */
241 	if (register_early_external_interrupt(0x1004,
242 					      clock_comparator_interrupt,
243 					      &ext_int_info_cc) != 0)
244                 panic("Couldn't request external interrupt 0x1004");
245 
246 	if (clocksource_register(&clocksource_tod) != 0)
247 		panic("Could not register TOD clock source");
248 
249 	/* request the timing alert external interrupt */
250 	if (register_early_external_interrupt(0x1406,
251 					      timing_alert_interrupt,
252 					      &ext_int_etr_cc) != 0)
253 		panic("Couldn't request external interrupt 0x1406");
254 
255 	/* Enable TOD clock interrupts on the boot cpu. */
256 	init_cpu_timer();
257 
258 #ifdef CONFIG_VIRT_TIMER
259 	vtime_init();
260 #endif
261 }
262 
263 /*
264  * The time is "clock". old is what we think the time is.
265  * Adjust the value by a multiple of jiffies and add the delta to ntp.
266  * "delay" is an approximation how long the synchronization took. If
267  * the time correction is positive, then "delay" is subtracted from
268  * the time difference and only the remaining part is passed to ntp.
269  */
270 static unsigned long long adjust_time(unsigned long long old,
271 				      unsigned long long clock,
272 				      unsigned long long delay)
273 {
274 	unsigned long long delta, ticks;
275 	struct timex adjust;
276 
277 	if (clock > old) {
278 		/* It is later than we thought. */
279 		delta = ticks = clock - old;
280 		delta = ticks = (delta < delay) ? 0 : delta - delay;
281 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
282 		adjust.offset = ticks * (1000000 / HZ);
283 	} else {
284 		/* It is earlier than we thought. */
285 		delta = ticks = old - clock;
286 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
287 		delta = -delta;
288 		adjust.offset = -ticks * (1000000 / HZ);
289 	}
290 	jiffies_timer_cc += delta;
291 	if (adjust.offset != 0) {
292 		printk(KERN_NOTICE "etr: time adjusted by %li micro-seconds\n",
293 		       adjust.offset);
294 		adjust.modes = ADJ_OFFSET_SINGLESHOT;
295 		do_adjtimex(&adjust);
296 	}
297 	return delta;
298 }
299 
300 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
301 static unsigned long clock_sync_flags;
302 
303 #define CLOCK_SYNC_HAS_ETR	0
304 #define CLOCK_SYNC_HAS_STP	1
305 #define CLOCK_SYNC_ETR		2
306 #define CLOCK_SYNC_STP		3
307 
308 /*
309  * The synchronous get_clock function. It will write the current clock
310  * value to the clock pointer and return 0 if the clock is in sync with
311  * the external time source. If the clock mode is local it will return
312  * -ENOSYS and -EAGAIN if the clock is not in sync with the external
313  * reference.
314  */
315 int get_sync_clock(unsigned long long *clock)
316 {
317 	atomic_t *sw_ptr;
318 	unsigned int sw0, sw1;
319 
320 	sw_ptr = &get_cpu_var(clock_sync_word);
321 	sw0 = atomic_read(sw_ptr);
322 	*clock = get_clock();
323 	sw1 = atomic_read(sw_ptr);
324 	put_cpu_var(clock_sync_sync);
325 	if (sw0 == sw1 && (sw0 & 0x80000000U))
326 		/* Success: time is in sync. */
327 		return 0;
328 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
329 	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
330 		return -ENOSYS;
331 	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
332 	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
333 		return -EACCES;
334 	return -EAGAIN;
335 }
336 EXPORT_SYMBOL(get_sync_clock);
337 
338 /*
339  * Make get_sync_clock return -EAGAIN.
340  */
341 static void disable_sync_clock(void *dummy)
342 {
343 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
344 	/*
345 	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
346 	 * fail until the sync bit is turned back on. In addition
347 	 * increase the "sequence" counter to avoid the race of an
348 	 * etr event and the complete recovery against get_sync_clock.
349 	 */
350 	atomic_clear_mask(0x80000000, sw_ptr);
351 	atomic_inc(sw_ptr);
352 }
353 
354 /*
355  * Make get_sync_clock return 0 again.
356  * Needs to be called from a context disabled for preemption.
357  */
358 static void enable_sync_clock(void)
359 {
360 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
361 	atomic_set_mask(0x80000000, sw_ptr);
362 }
363 
364 /*
365  * External Time Reference (ETR) code.
366  */
367 static int etr_port0_online;
368 static int etr_port1_online;
369 static int etr_steai_available;
370 
371 static int __init early_parse_etr(char *p)
372 {
373 	if (strncmp(p, "off", 3) == 0)
374 		etr_port0_online = etr_port1_online = 0;
375 	else if (strncmp(p, "port0", 5) == 0)
376 		etr_port0_online = 1;
377 	else if (strncmp(p, "port1", 5) == 0)
378 		etr_port1_online = 1;
379 	else if (strncmp(p, "on", 2) == 0)
380 		etr_port0_online = etr_port1_online = 1;
381 	return 0;
382 }
383 early_param("etr", early_parse_etr);
384 
385 enum etr_event {
386 	ETR_EVENT_PORT0_CHANGE,
387 	ETR_EVENT_PORT1_CHANGE,
388 	ETR_EVENT_PORT_ALERT,
389 	ETR_EVENT_SYNC_CHECK,
390 	ETR_EVENT_SWITCH_LOCAL,
391 	ETR_EVENT_UPDATE,
392 };
393 
394 /*
395  * Valid bit combinations of the eacr register are (x = don't care):
396  * e0 e1 dp p0 p1 ea es sl
397  *  0  0  x  0	0  0  0  0  initial, disabled state
398  *  0  0  x  0	1  1  0  0  port 1 online
399  *  0  0  x  1	0  1  0  0  port 0 online
400  *  0  0  x  1	1  1  0  0  both ports online
401  *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
402  *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
403  *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
404  *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
405  *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
406  *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
407  *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
408  *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
409  *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
410  *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
411  *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
412  *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
413  *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
414  *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
415  *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
416  *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
417  */
418 static struct etr_eacr etr_eacr;
419 static u64 etr_tolec;			/* time of last eacr update */
420 static struct etr_aib etr_port0;
421 static int etr_port0_uptodate;
422 static struct etr_aib etr_port1;
423 static int etr_port1_uptodate;
424 static unsigned long etr_events;
425 static struct timer_list etr_timer;
426 
427 static void etr_timeout(unsigned long dummy);
428 static void etr_work_fn(struct work_struct *work);
429 static DECLARE_WORK(etr_work, etr_work_fn);
430 
431 /*
432  * Reset ETR attachment.
433  */
434 static void etr_reset(void)
435 {
436 	etr_eacr =  (struct etr_eacr) {
437 		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
438 		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
439 		.es = 0, .sl = 0 };
440 	if (etr_setr(&etr_eacr) == 0) {
441 		etr_tolec = get_clock();
442 		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
443 	} else if (etr_port0_online || etr_port1_online) {
444 		printk(KERN_WARNING "Running on non ETR capable "
445 		       "machine, only local mode available.\n");
446 		etr_port0_online = etr_port1_online = 0;
447 	}
448 }
449 
450 static int __init etr_init(void)
451 {
452 	struct etr_aib aib;
453 
454 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
455 		return 0;
456 	/* Check if this machine has the steai instruction. */
457 	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
458 		etr_steai_available = 1;
459 	setup_timer(&etr_timer, etr_timeout, 0UL);
460 	if (etr_port0_online) {
461 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
462 		schedule_work(&etr_work);
463 	}
464 	if (etr_port1_online) {
465 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
466 		schedule_work(&etr_work);
467 	}
468 	return 0;
469 }
470 
471 arch_initcall(etr_init);
472 
473 /*
474  * Two sorts of ETR machine checks. The architecture reads:
475  * "When a machine-check niterruption occurs and if a switch-to-local or
476  *  ETR-sync-check interrupt request is pending but disabled, this pending
477  *  disabled interruption request is indicated and is cleared".
478  * Which means that we can get etr_switch_to_local events from the machine
479  * check handler although the interruption condition is disabled. Lovely..
480  */
481 
482 /*
483  * Switch to local machine check. This is called when the last usable
484  * ETR port goes inactive. After switch to local the clock is not in sync.
485  */
486 void etr_switch_to_local(void)
487 {
488 	if (!etr_eacr.sl)
489 		return;
490 	if (test_bit(CLOCK_SYNC_ETR, &clock_sync_flags))
491 		disable_sync_clock(NULL);
492 	set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events);
493 	schedule_work(&etr_work);
494 }
495 
496 /*
497  * ETR sync check machine check. This is called when the ETR OTE and the
498  * local clock OTE are farther apart than the ETR sync check tolerance.
499  * After a ETR sync check the clock is not in sync. The machine check
500  * is broadcasted to all cpus at the same time.
501  */
502 void etr_sync_check(void)
503 {
504 	if (!etr_eacr.es)
505 		return;
506 	if (test_bit(CLOCK_SYNC_ETR, &clock_sync_flags))
507 		disable_sync_clock(NULL);
508 	set_bit(ETR_EVENT_SYNC_CHECK, &etr_events);
509 	schedule_work(&etr_work);
510 }
511 
512 /*
513  * ETR timing alert. There are two causes:
514  * 1) port state change, check the usability of the port
515  * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
516  *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
517  *    or ETR-data word 4 (edf4) has changed.
518  */
519 static void etr_timing_alert(struct etr_irq_parm *intparm)
520 {
521 	if (intparm->pc0)
522 		/* ETR port 0 state change. */
523 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
524 	if (intparm->pc1)
525 		/* ETR port 1 state change. */
526 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
527 	if (intparm->eai)
528 		/*
529 		 * ETR port alert on either port 0, 1 or both.
530 		 * Both ports are not up-to-date now.
531 		 */
532 		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
533 	schedule_work(&etr_work);
534 }
535 
536 static void etr_timeout(unsigned long dummy)
537 {
538 	set_bit(ETR_EVENT_UPDATE, &etr_events);
539 	schedule_work(&etr_work);
540 }
541 
542 /*
543  * Check if the etr mode is pss.
544  */
545 static inline int etr_mode_is_pps(struct etr_eacr eacr)
546 {
547 	return eacr.es && !eacr.sl;
548 }
549 
550 /*
551  * Check if the etr mode is etr.
552  */
553 static inline int etr_mode_is_etr(struct etr_eacr eacr)
554 {
555 	return eacr.es && eacr.sl;
556 }
557 
558 /*
559  * Check if the port can be used for TOD synchronization.
560  * For PPS mode the port has to receive OTEs. For ETR mode
561  * the port has to receive OTEs, the ETR stepping bit has to
562  * be zero and the validity bits for data frame 1, 2, and 3
563  * have to be 1.
564  */
565 static int etr_port_valid(struct etr_aib *aib, int port)
566 {
567 	unsigned int psc;
568 
569 	/* Check that this port is receiving OTEs. */
570 	if (aib->tsp == 0)
571 		return 0;
572 
573 	psc = port ? aib->esw.psc1 : aib->esw.psc0;
574 	if (psc == etr_lpsc_pps_mode)
575 		return 1;
576 	if (psc == etr_lpsc_operational_step)
577 		return !aib->esw.y && aib->slsw.v1 &&
578 			aib->slsw.v2 && aib->slsw.v3;
579 	return 0;
580 }
581 
582 /*
583  * Check if two ports are on the same network.
584  */
585 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
586 {
587 	// FIXME: any other fields we have to compare?
588 	return aib1->edf1.net_id == aib2->edf1.net_id;
589 }
590 
591 /*
592  * Wrapper for etr_stei that converts physical port states
593  * to logical port states to be consistent with the output
594  * of stetr (see etr_psc vs. etr_lpsc).
595  */
596 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
597 {
598 	BUG_ON(etr_steai(aib, func) != 0);
599 	/* Convert port state to logical port state. */
600 	if (aib->esw.psc0 == 1)
601 		aib->esw.psc0 = 2;
602 	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
603 		aib->esw.psc0 = 1;
604 	if (aib->esw.psc1 == 1)
605 		aib->esw.psc1 = 2;
606 	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
607 		aib->esw.psc1 = 1;
608 }
609 
610 /*
611  * Check if the aib a2 is still connected to the same attachment as
612  * aib a1, the etv values differ by one and a2 is valid.
613  */
614 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
615 {
616 	int state_a1, state_a2;
617 
618 	/* Paranoia check: e0/e1 should better be the same. */
619 	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
620 	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
621 		return 0;
622 
623 	/* Still connected to the same etr ? */
624 	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
625 	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
626 	if (state_a1 == etr_lpsc_operational_step) {
627 		if (state_a2 != etr_lpsc_operational_step ||
628 		    a1->edf1.net_id != a2->edf1.net_id ||
629 		    a1->edf1.etr_id != a2->edf1.etr_id ||
630 		    a1->edf1.etr_pn != a2->edf1.etr_pn)
631 			return 0;
632 	} else if (state_a2 != etr_lpsc_pps_mode)
633 		return 0;
634 
635 	/* The ETV value of a2 needs to be ETV of a1 + 1. */
636 	if (a1->edf2.etv + 1 != a2->edf2.etv)
637 		return 0;
638 
639 	if (!etr_port_valid(a2, p))
640 		return 0;
641 
642 	return 1;
643 }
644 
645 struct clock_sync_data {
646 	int in_sync;
647 	unsigned long long fixup_cc;
648 };
649 
650 static void clock_sync_cpu_start(void *dummy)
651 {
652 	struct clock_sync_data *sync = dummy;
653 
654 	enable_sync_clock();
655 	/*
656 	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
657 	 * is called on all other cpus while the TOD clocks is stopped.
658 	 * __udelay will stop the cpu on an enabled wait psw until the
659 	 * TOD is running again.
660 	 */
661 	while (sync->in_sync == 0) {
662 		__udelay(1);
663 		/*
664 		 * A different cpu changes *in_sync. Therefore use
665 		 * barrier() to force memory access.
666 		 */
667 		barrier();
668 	}
669 	if (sync->in_sync != 1)
670 		/* Didn't work. Clear per-cpu in sync bit again. */
671 		disable_sync_clock(NULL);
672 	/*
673 	 * This round of TOD syncing is done. Set the clock comparator
674 	 * to the next tick and let the processor continue.
675 	 */
676 	fixup_clock_comparator(sync->fixup_cc);
677 }
678 
679 static void clock_sync_cpu_end(void *dummy)
680 {
681 }
682 
683 /*
684  * Sync the TOD clock using the port refered to by aibp. This port
685  * has to be enabled and the other port has to be disabled. The
686  * last eacr update has to be more than 1.6 seconds in the past.
687  */
688 static int etr_sync_clock(struct etr_aib *aib, int port)
689 {
690 	struct etr_aib *sync_port;
691 	struct clock_sync_data etr_sync;
692 	unsigned long long clock, old_clock, delay, delta;
693 	int follows;
694 	int rc;
695 
696 	/* Check if the current aib is adjacent to the sync port aib. */
697 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
698 	follows = etr_aib_follows(sync_port, aib, port);
699 	memcpy(sync_port, aib, sizeof(*aib));
700 	if (!follows)
701 		return -EAGAIN;
702 
703 	/*
704 	 * Catch all other cpus and make them wait until we have
705 	 * successfully synced the clock. smp_call_function will
706 	 * return after all other cpus are in etr_sync_cpu_start.
707 	 */
708 	memset(&etr_sync, 0, sizeof(etr_sync));
709 	preempt_disable();
710 	smp_call_function(clock_sync_cpu_start, &etr_sync, 0);
711 	local_irq_disable();
712 	enable_sync_clock();
713 
714 	/* Set clock to next OTE. */
715 	__ctl_set_bit(14, 21);
716 	__ctl_set_bit(0, 29);
717 	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
718 	old_clock = get_clock();
719 	if (set_clock(clock) == 0) {
720 		__udelay(1);	/* Wait for the clock to start. */
721 		__ctl_clear_bit(0, 29);
722 		__ctl_clear_bit(14, 21);
723 		etr_stetr(aib);
724 		/* Adjust Linux timing variables. */
725 		delay = (unsigned long long)
726 			(aib->edf2.etv - sync_port->edf2.etv) << 32;
727 		delta = adjust_time(old_clock, clock, delay);
728 		etr_sync.fixup_cc = delta;
729 		fixup_clock_comparator(delta);
730 		/* Verify that the clock is properly set. */
731 		if (!etr_aib_follows(sync_port, aib, port)) {
732 			/* Didn't work. */
733 			disable_sync_clock(NULL);
734 			etr_sync.in_sync = -EAGAIN;
735 			rc = -EAGAIN;
736 		} else {
737 			etr_sync.in_sync = 1;
738 			rc = 0;
739 		}
740 	} else {
741 		/* Could not set the clock ?!? */
742 		__ctl_clear_bit(0, 29);
743 		__ctl_clear_bit(14, 21);
744 		disable_sync_clock(NULL);
745 		etr_sync.in_sync = -EAGAIN;
746 		rc = -EAGAIN;
747 	}
748 	local_irq_enable();
749 	smp_call_function(clock_sync_cpu_end, NULL, 0);
750 	preempt_enable();
751 	return rc;
752 }
753 
754 /*
755  * Handle the immediate effects of the different events.
756  * The port change event is used for online/offline changes.
757  */
758 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
759 {
760 	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
761 		eacr.es = 0;
762 	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
763 		eacr.es = eacr.sl = 0;
764 	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
765 		etr_port0_uptodate = etr_port1_uptodate = 0;
766 
767 	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
768 		if (eacr.e0)
769 			/*
770 			 * Port change of an enabled port. We have to
771 			 * assume that this can have caused an stepping
772 			 * port switch.
773 			 */
774 			etr_tolec = get_clock();
775 		eacr.p0 = etr_port0_online;
776 		if (!eacr.p0)
777 			eacr.e0 = 0;
778 		etr_port0_uptodate = 0;
779 	}
780 	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
781 		if (eacr.e1)
782 			/*
783 			 * Port change of an enabled port. We have to
784 			 * assume that this can have caused an stepping
785 			 * port switch.
786 			 */
787 			etr_tolec = get_clock();
788 		eacr.p1 = etr_port1_online;
789 		if (!eacr.p1)
790 			eacr.e1 = 0;
791 		etr_port1_uptodate = 0;
792 	}
793 	clear_bit(ETR_EVENT_UPDATE, &etr_events);
794 	return eacr;
795 }
796 
797 /*
798  * Set up a timer that expires after the etr_tolec + 1.6 seconds if
799  * one of the ports needs an update.
800  */
801 static void etr_set_tolec_timeout(unsigned long long now)
802 {
803 	unsigned long micros;
804 
805 	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
806 	    (!etr_eacr.p1 || etr_port1_uptodate))
807 		return;
808 	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
809 	micros = (micros > 1600000) ? 0 : 1600000 - micros;
810 	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
811 }
812 
813 /*
814  * Set up a time that expires after 1/2 second.
815  */
816 static void etr_set_sync_timeout(void)
817 {
818 	mod_timer(&etr_timer, jiffies + HZ/2);
819 }
820 
821 /*
822  * Update the aib information for one or both ports.
823  */
824 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
825 					 struct etr_eacr eacr)
826 {
827 	/* With both ports disabled the aib information is useless. */
828 	if (!eacr.e0 && !eacr.e1)
829 		return eacr;
830 
831 	/* Update port0 or port1 with aib stored in etr_work_fn. */
832 	if (aib->esw.q == 0) {
833 		/* Information for port 0 stored. */
834 		if (eacr.p0 && !etr_port0_uptodate) {
835 			etr_port0 = *aib;
836 			if (etr_port0_online)
837 				etr_port0_uptodate = 1;
838 		}
839 	} else {
840 		/* Information for port 1 stored. */
841 		if (eacr.p1 && !etr_port1_uptodate) {
842 			etr_port1 = *aib;
843 			if (etr_port0_online)
844 				etr_port1_uptodate = 1;
845 		}
846 	}
847 
848 	/*
849 	 * Do not try to get the alternate port aib if the clock
850 	 * is not in sync yet.
851 	 */
852 	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags) && !eacr.es)
853 		return eacr;
854 
855 	/*
856 	 * If steai is available we can get the information about
857 	 * the other port immediately. If only stetr is available the
858 	 * data-port bit toggle has to be used.
859 	 */
860 	if (etr_steai_available) {
861 		if (eacr.p0 && !etr_port0_uptodate) {
862 			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
863 			etr_port0_uptodate = 1;
864 		}
865 		if (eacr.p1 && !etr_port1_uptodate) {
866 			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
867 			etr_port1_uptodate = 1;
868 		}
869 	} else {
870 		/*
871 		 * One port was updated above, if the other
872 		 * port is not uptodate toggle dp bit.
873 		 */
874 		if ((eacr.p0 && !etr_port0_uptodate) ||
875 		    (eacr.p1 && !etr_port1_uptodate))
876 			eacr.dp ^= 1;
877 		else
878 			eacr.dp = 0;
879 	}
880 	return eacr;
881 }
882 
883 /*
884  * Write new etr control register if it differs from the current one.
885  * Return 1 if etr_tolec has been updated as well.
886  */
887 static void etr_update_eacr(struct etr_eacr eacr)
888 {
889 	int dp_changed;
890 
891 	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
892 		/* No change, return. */
893 		return;
894 	/*
895 	 * The disable of an active port of the change of the data port
896 	 * bit can/will cause a change in the data port.
897 	 */
898 	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
899 		(etr_eacr.dp ^ eacr.dp) != 0;
900 	etr_eacr = eacr;
901 	etr_setr(&etr_eacr);
902 	if (dp_changed)
903 		etr_tolec = get_clock();
904 }
905 
906 /*
907  * ETR tasklet. In this function you'll find the main logic. In
908  * particular this is the only function that calls etr_update_eacr(),
909  * it "controls" the etr control register.
910  */
911 static void etr_work_fn(struct work_struct *work)
912 {
913 	unsigned long long now;
914 	struct etr_eacr eacr;
915 	struct etr_aib aib;
916 	int sync_port;
917 
918 	/* Create working copy of etr_eacr. */
919 	eacr = etr_eacr;
920 
921 	/* Check for the different events and their immediate effects. */
922 	eacr = etr_handle_events(eacr);
923 
924 	/* Check if ETR is supposed to be active. */
925 	eacr.ea = eacr.p0 || eacr.p1;
926 	if (!eacr.ea) {
927 		/* Both ports offline. Reset everything. */
928 		eacr.dp = eacr.es = eacr.sl = 0;
929 		on_each_cpu(disable_sync_clock, NULL, 1);
930 		del_timer_sync(&etr_timer);
931 		etr_update_eacr(eacr);
932 		clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
933 		return;
934 	}
935 
936 	/* Store aib to get the current ETR status word. */
937 	BUG_ON(etr_stetr(&aib) != 0);
938 	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
939 	now = get_clock();
940 
941 	/*
942 	 * Update the port information if the last stepping port change
943 	 * or data port change is older than 1.6 seconds.
944 	 */
945 	if (now >= etr_tolec + (1600000 << 12))
946 		eacr = etr_handle_update(&aib, eacr);
947 
948 	/*
949 	 * Select ports to enable. The prefered synchronization mode is PPS.
950 	 * If a port can be enabled depends on a number of things:
951 	 * 1) The port needs to be online and uptodate. A port is not
952 	 *    disabled just because it is not uptodate, but it is only
953 	 *    enabled if it is uptodate.
954 	 * 2) The port needs to have the same mode (pps / etr).
955 	 * 3) The port needs to be usable -> etr_port_valid() == 1
956 	 * 4) To enable the second port the clock needs to be in sync.
957 	 * 5) If both ports are useable and are ETR ports, the network id
958 	 *    has to be the same.
959 	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
960 	 */
961 	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
962 		eacr.sl = 0;
963 		eacr.e0 = 1;
964 		if (!etr_mode_is_pps(etr_eacr))
965 			eacr.es = 0;
966 		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
967 			eacr.e1 = 0;
968 		// FIXME: uptodate checks ?
969 		else if (etr_port0_uptodate && etr_port1_uptodate)
970 			eacr.e1 = 1;
971 		sync_port = (etr_port0_uptodate &&
972 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
973 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
974 		eacr.sl = 0;
975 		eacr.e0 = 0;
976 		eacr.e1 = 1;
977 		if (!etr_mode_is_pps(etr_eacr))
978 			eacr.es = 0;
979 		sync_port = (etr_port1_uptodate &&
980 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
981 	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
982 		eacr.sl = 1;
983 		eacr.e0 = 1;
984 		if (!etr_mode_is_etr(etr_eacr))
985 			eacr.es = 0;
986 		if (!eacr.es || !eacr.p1 ||
987 		    aib.esw.psc1 != etr_lpsc_operational_alt)
988 			eacr.e1 = 0;
989 		else if (etr_port0_uptodate && etr_port1_uptodate &&
990 			 etr_compare_network(&etr_port0, &etr_port1))
991 			eacr.e1 = 1;
992 		sync_port = (etr_port0_uptodate &&
993 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
994 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
995 		eacr.sl = 1;
996 		eacr.e0 = 0;
997 		eacr.e1 = 1;
998 		if (!etr_mode_is_etr(etr_eacr))
999 			eacr.es = 0;
1000 		sync_port = (etr_port1_uptodate &&
1001 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1002 	} else {
1003 		/* Both ports not usable. */
1004 		eacr.es = eacr.sl = 0;
1005 		sync_port = -1;
1006 		clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1007 	}
1008 
1009 	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags))
1010 		eacr.es = 0;
1011 
1012 	/*
1013 	 * If the clock is in sync just update the eacr and return.
1014 	 * If there is no valid sync port wait for a port update.
1015 	 */
1016 	if (test_bit(CLOCK_SYNC_STP, &clock_sync_flags) ||
1017 	    eacr.es || sync_port < 0) {
1018 		etr_update_eacr(eacr);
1019 		etr_set_tolec_timeout(now);
1020 		return;
1021 	}
1022 
1023 	/*
1024 	 * Prepare control register for clock syncing
1025 	 * (reset data port bit, set sync check control.
1026 	 */
1027 	eacr.dp = 0;
1028 	eacr.es = 1;
1029 
1030 	/*
1031 	 * Update eacr and try to synchronize the clock. If the update
1032 	 * of eacr caused a stepping port switch (or if we have to
1033 	 * assume that a stepping port switch has occured) or the
1034 	 * clock syncing failed, reset the sync check control bit
1035 	 * and set up a timer to try again after 0.5 seconds
1036 	 */
1037 	etr_update_eacr(eacr);
1038 	set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1039 	if (now < etr_tolec + (1600000 << 12) ||
1040 	    etr_sync_clock(&aib, sync_port) != 0) {
1041 		/* Sync failed. Try again in 1/2 second. */
1042 		eacr.es = 0;
1043 		etr_update_eacr(eacr);
1044 		clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1045 		etr_set_sync_timeout();
1046 	} else
1047 		etr_set_tolec_timeout(now);
1048 }
1049 
1050 /*
1051  * Sysfs interface functions
1052  */
1053 static struct sysdev_class etr_sysclass = {
1054 	.name	= "etr",
1055 };
1056 
1057 static struct sys_device etr_port0_dev = {
1058 	.id	= 0,
1059 	.cls	= &etr_sysclass,
1060 };
1061 
1062 static struct sys_device etr_port1_dev = {
1063 	.id	= 1,
1064 	.cls	= &etr_sysclass,
1065 };
1066 
1067 /*
1068  * ETR class attributes
1069  */
1070 static ssize_t etr_stepping_port_show(struct sysdev_class *class, char *buf)
1071 {
1072 	return sprintf(buf, "%i\n", etr_port0.esw.p);
1073 }
1074 
1075 static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1076 
1077 static ssize_t etr_stepping_mode_show(struct sysdev_class *class, char *buf)
1078 {
1079 	char *mode_str;
1080 
1081 	if (etr_mode_is_pps(etr_eacr))
1082 		mode_str = "pps";
1083 	else if (etr_mode_is_etr(etr_eacr))
1084 		mode_str = "etr";
1085 	else
1086 		mode_str = "local";
1087 	return sprintf(buf, "%s\n", mode_str);
1088 }
1089 
1090 static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1091 
1092 /*
1093  * ETR port attributes
1094  */
1095 static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev)
1096 {
1097 	if (dev == &etr_port0_dev)
1098 		return etr_port0_online ? &etr_port0 : NULL;
1099 	else
1100 		return etr_port1_online ? &etr_port1 : NULL;
1101 }
1102 
1103 static ssize_t etr_online_show(struct sys_device *dev, char *buf)
1104 {
1105 	unsigned int online;
1106 
1107 	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1108 	return sprintf(buf, "%i\n", online);
1109 }
1110 
1111 static ssize_t etr_online_store(struct sys_device *dev,
1112 			      const char *buf, size_t count)
1113 {
1114 	unsigned int value;
1115 
1116 	value = simple_strtoul(buf, NULL, 0);
1117 	if (value != 0 && value != 1)
1118 		return -EINVAL;
1119 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1120 		return -EOPNOTSUPP;
1121 	if (dev == &etr_port0_dev) {
1122 		if (etr_port0_online == value)
1123 			return count;	/* Nothing to do. */
1124 		etr_port0_online = value;
1125 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1126 		schedule_work(&etr_work);
1127 	} else {
1128 		if (etr_port1_online == value)
1129 			return count;	/* Nothing to do. */
1130 		etr_port1_online = value;
1131 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1132 		schedule_work(&etr_work);
1133 	}
1134 	return count;
1135 }
1136 
1137 static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store);
1138 
1139 static ssize_t etr_stepping_control_show(struct sys_device *dev, char *buf)
1140 {
1141 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1142 		       etr_eacr.e0 : etr_eacr.e1);
1143 }
1144 
1145 static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1146 
1147 static ssize_t etr_mode_code_show(struct sys_device *dev, char *buf)
1148 {
1149 	if (!etr_port0_online && !etr_port1_online)
1150 		/* Status word is not uptodate if both ports are offline. */
1151 		return -ENODATA;
1152 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1153 		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1154 }
1155 
1156 static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1157 
1158 static ssize_t etr_untuned_show(struct sys_device *dev, char *buf)
1159 {
1160 	struct etr_aib *aib = etr_aib_from_dev(dev);
1161 
1162 	if (!aib || !aib->slsw.v1)
1163 		return -ENODATA;
1164 	return sprintf(buf, "%i\n", aib->edf1.u);
1165 }
1166 
1167 static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL);
1168 
1169 static ssize_t etr_network_id_show(struct sys_device *dev, char *buf)
1170 {
1171 	struct etr_aib *aib = etr_aib_from_dev(dev);
1172 
1173 	if (!aib || !aib->slsw.v1)
1174 		return -ENODATA;
1175 	return sprintf(buf, "%i\n", aib->edf1.net_id);
1176 }
1177 
1178 static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL);
1179 
1180 static ssize_t etr_id_show(struct sys_device *dev, char *buf)
1181 {
1182 	struct etr_aib *aib = etr_aib_from_dev(dev);
1183 
1184 	if (!aib || !aib->slsw.v1)
1185 		return -ENODATA;
1186 	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1187 }
1188 
1189 static SYSDEV_ATTR(id, 0400, etr_id_show, NULL);
1190 
1191 static ssize_t etr_port_number_show(struct sys_device *dev, char *buf)
1192 {
1193 	struct etr_aib *aib = etr_aib_from_dev(dev);
1194 
1195 	if (!aib || !aib->slsw.v1)
1196 		return -ENODATA;
1197 	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1198 }
1199 
1200 static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL);
1201 
1202 static ssize_t etr_coupled_show(struct sys_device *dev, char *buf)
1203 {
1204 	struct etr_aib *aib = etr_aib_from_dev(dev);
1205 
1206 	if (!aib || !aib->slsw.v3)
1207 		return -ENODATA;
1208 	return sprintf(buf, "%i\n", aib->edf3.c);
1209 }
1210 
1211 static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL);
1212 
1213 static ssize_t etr_local_time_show(struct sys_device *dev, char *buf)
1214 {
1215 	struct etr_aib *aib = etr_aib_from_dev(dev);
1216 
1217 	if (!aib || !aib->slsw.v3)
1218 		return -ENODATA;
1219 	return sprintf(buf, "%i\n", aib->edf3.blto);
1220 }
1221 
1222 static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL);
1223 
1224 static ssize_t etr_utc_offset_show(struct sys_device *dev, char *buf)
1225 {
1226 	struct etr_aib *aib = etr_aib_from_dev(dev);
1227 
1228 	if (!aib || !aib->slsw.v3)
1229 		return -ENODATA;
1230 	return sprintf(buf, "%i\n", aib->edf3.buo);
1231 }
1232 
1233 static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1234 
1235 static struct sysdev_attribute *etr_port_attributes[] = {
1236 	&attr_online,
1237 	&attr_stepping_control,
1238 	&attr_state_code,
1239 	&attr_untuned,
1240 	&attr_network,
1241 	&attr_id,
1242 	&attr_port,
1243 	&attr_coupled,
1244 	&attr_local_time,
1245 	&attr_utc_offset,
1246 	NULL
1247 };
1248 
1249 static int __init etr_register_port(struct sys_device *dev)
1250 {
1251 	struct sysdev_attribute **attr;
1252 	int rc;
1253 
1254 	rc = sysdev_register(dev);
1255 	if (rc)
1256 		goto out;
1257 	for (attr = etr_port_attributes; *attr; attr++) {
1258 		rc = sysdev_create_file(dev, *attr);
1259 		if (rc)
1260 			goto out_unreg;
1261 	}
1262 	return 0;
1263 out_unreg:
1264 	for (; attr >= etr_port_attributes; attr--)
1265 		sysdev_remove_file(dev, *attr);
1266 	sysdev_unregister(dev);
1267 out:
1268 	return rc;
1269 }
1270 
1271 static void __init etr_unregister_port(struct sys_device *dev)
1272 {
1273 	struct sysdev_attribute **attr;
1274 
1275 	for (attr = etr_port_attributes; *attr; attr++)
1276 		sysdev_remove_file(dev, *attr);
1277 	sysdev_unregister(dev);
1278 }
1279 
1280 static int __init etr_init_sysfs(void)
1281 {
1282 	int rc;
1283 
1284 	rc = sysdev_class_register(&etr_sysclass);
1285 	if (rc)
1286 		goto out;
1287 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port);
1288 	if (rc)
1289 		goto out_unreg_class;
1290 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode);
1291 	if (rc)
1292 		goto out_remove_stepping_port;
1293 	rc = etr_register_port(&etr_port0_dev);
1294 	if (rc)
1295 		goto out_remove_stepping_mode;
1296 	rc = etr_register_port(&etr_port1_dev);
1297 	if (rc)
1298 		goto out_remove_port0;
1299 	return 0;
1300 
1301 out_remove_port0:
1302 	etr_unregister_port(&etr_port0_dev);
1303 out_remove_stepping_mode:
1304 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode);
1305 out_remove_stepping_port:
1306 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port);
1307 out_unreg_class:
1308 	sysdev_class_unregister(&etr_sysclass);
1309 out:
1310 	return rc;
1311 }
1312 
1313 device_initcall(etr_init_sysfs);
1314 
1315 /*
1316  * Server Time Protocol (STP) code.
1317  */
1318 static int stp_online;
1319 static struct stp_sstpi stp_info;
1320 static void *stp_page;
1321 
1322 static void stp_work_fn(struct work_struct *work);
1323 static DECLARE_WORK(stp_work, stp_work_fn);
1324 
1325 static int __init early_parse_stp(char *p)
1326 {
1327 	if (strncmp(p, "off", 3) == 0)
1328 		stp_online = 0;
1329 	else if (strncmp(p, "on", 2) == 0)
1330 		stp_online = 1;
1331 	return 0;
1332 }
1333 early_param("stp", early_parse_stp);
1334 
1335 /*
1336  * Reset STP attachment.
1337  */
1338 static void stp_reset(void)
1339 {
1340 	int rc;
1341 
1342 	stp_page = alloc_bootmem_pages(PAGE_SIZE);
1343 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1344 	if (rc == 1)
1345 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1346 	else if (stp_online) {
1347 		printk(KERN_WARNING "Running on non STP capable machine.\n");
1348 		free_bootmem((unsigned long) stp_page, PAGE_SIZE);
1349 		stp_page = NULL;
1350 		stp_online = 0;
1351 	}
1352 }
1353 
1354 static int __init stp_init(void)
1355 {
1356 	if (test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags) && stp_online)
1357 		schedule_work(&stp_work);
1358 	return 0;
1359 }
1360 
1361 arch_initcall(stp_init);
1362 
1363 /*
1364  * STP timing alert. There are three causes:
1365  * 1) timing status change
1366  * 2) link availability change
1367  * 3) time control parameter change
1368  * In all three cases we are only interested in the clock source state.
1369  * If a STP clock source is now available use it.
1370  */
1371 static void stp_timing_alert(struct stp_irq_parm *intparm)
1372 {
1373 	if (intparm->tsc || intparm->lac || intparm->tcpc)
1374 		schedule_work(&stp_work);
1375 }
1376 
1377 /*
1378  * STP sync check machine check. This is called when the timing state
1379  * changes from the synchronized state to the unsynchronized state.
1380  * After a STP sync check the clock is not in sync. The machine check
1381  * is broadcasted to all cpus at the same time.
1382  */
1383 void stp_sync_check(void)
1384 {
1385 	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
1386 		return;
1387 	disable_sync_clock(NULL);
1388 	schedule_work(&stp_work);
1389 }
1390 
1391 /*
1392  * STP island condition machine check. This is called when an attached
1393  * server  attempts to communicate over an STP link and the servers
1394  * have matching CTN ids and have a valid stratum-1 configuration
1395  * but the configurations do not match.
1396  */
1397 void stp_island_check(void)
1398 {
1399 	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
1400 		return;
1401 	disable_sync_clock(NULL);
1402 	schedule_work(&stp_work);
1403 }
1404 
1405 /*
1406  * STP tasklet. Check for the STP state and take over the clock
1407  * synchronization if the STP clock source is usable.
1408  */
1409 static void stp_work_fn(struct work_struct *work)
1410 {
1411 	struct clock_sync_data stp_sync;
1412 	unsigned long long old_clock, delta;
1413 	int rc;
1414 
1415 	if (!stp_online) {
1416 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1417 		return;
1418 	}
1419 
1420 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1421 	if (rc)
1422 		return;
1423 
1424 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1425 	if (rc || stp_info.c == 0)
1426 		return;
1427 
1428 	/*
1429 	 * Catch all other cpus and make them wait until we have
1430 	 * successfully synced the clock. smp_call_function will
1431 	 * return after all other cpus are in clock_sync_cpu_start.
1432 	 */
1433 	memset(&stp_sync, 0, sizeof(stp_sync));
1434 	preempt_disable();
1435 	smp_call_function(clock_sync_cpu_start, &stp_sync, 0);
1436 	local_irq_disable();
1437 	enable_sync_clock();
1438 
1439 	set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1440 	if (test_and_clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags))
1441 		schedule_work(&etr_work);
1442 
1443 	rc = 0;
1444 	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1445 	    stp_info.todoff[2] || stp_info.todoff[3] ||
1446 	    stp_info.tmd != 2) {
1447 		old_clock = get_clock();
1448 		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1449 		if (rc == 0) {
1450 			delta = adjust_time(old_clock, get_clock(), 0);
1451 			fixup_clock_comparator(delta);
1452 			rc = chsc_sstpi(stp_page, &stp_info,
1453 					sizeof(struct stp_sstpi));
1454 			if (rc == 0 && stp_info.tmd != 2)
1455 				rc = -EAGAIN;
1456 		}
1457 	}
1458 	if (rc) {
1459 		disable_sync_clock(NULL);
1460 		stp_sync.in_sync = -EAGAIN;
1461 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1462 		if (etr_port0_online || etr_port1_online)
1463 			schedule_work(&etr_work);
1464 	} else
1465 		stp_sync.in_sync = 1;
1466 
1467 	local_irq_enable();
1468 	smp_call_function(clock_sync_cpu_end, NULL, 0);
1469 	preempt_enable();
1470 }
1471 
1472 /*
1473  * STP class sysfs interface functions
1474  */
1475 static struct sysdev_class stp_sysclass = {
1476 	.name	= "stp",
1477 };
1478 
1479 static ssize_t stp_ctn_id_show(struct sysdev_class *class, char *buf)
1480 {
1481 	if (!stp_online)
1482 		return -ENODATA;
1483 	return sprintf(buf, "%016llx\n",
1484 		       *(unsigned long long *) stp_info.ctnid);
1485 }
1486 
1487 static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1488 
1489 static ssize_t stp_ctn_type_show(struct sysdev_class *class, char *buf)
1490 {
1491 	if (!stp_online)
1492 		return -ENODATA;
1493 	return sprintf(buf, "%i\n", stp_info.ctn);
1494 }
1495 
1496 static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1497 
1498 static ssize_t stp_dst_offset_show(struct sysdev_class *class, char *buf)
1499 {
1500 	if (!stp_online || !(stp_info.vbits & 0x2000))
1501 		return -ENODATA;
1502 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1503 }
1504 
1505 static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1506 
1507 static ssize_t stp_leap_seconds_show(struct sysdev_class *class, char *buf)
1508 {
1509 	if (!stp_online || !(stp_info.vbits & 0x8000))
1510 		return -ENODATA;
1511 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1512 }
1513 
1514 static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1515 
1516 static ssize_t stp_stratum_show(struct sysdev_class *class, char *buf)
1517 {
1518 	if (!stp_online)
1519 		return -ENODATA;
1520 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1521 }
1522 
1523 static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL);
1524 
1525 static ssize_t stp_time_offset_show(struct sysdev_class *class, char *buf)
1526 {
1527 	if (!stp_online || !(stp_info.vbits & 0x0800))
1528 		return -ENODATA;
1529 	return sprintf(buf, "%i\n", (int) stp_info.tto);
1530 }
1531 
1532 static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1533 
1534 static ssize_t stp_time_zone_offset_show(struct sysdev_class *class, char *buf)
1535 {
1536 	if (!stp_online || !(stp_info.vbits & 0x4000))
1537 		return -ENODATA;
1538 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1539 }
1540 
1541 static SYSDEV_CLASS_ATTR(time_zone_offset, 0400,
1542 			 stp_time_zone_offset_show, NULL);
1543 
1544 static ssize_t stp_timing_mode_show(struct sysdev_class *class, char *buf)
1545 {
1546 	if (!stp_online)
1547 		return -ENODATA;
1548 	return sprintf(buf, "%i\n", stp_info.tmd);
1549 }
1550 
1551 static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1552 
1553 static ssize_t stp_timing_state_show(struct sysdev_class *class, char *buf)
1554 {
1555 	if (!stp_online)
1556 		return -ENODATA;
1557 	return sprintf(buf, "%i\n", stp_info.tst);
1558 }
1559 
1560 static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1561 
1562 static ssize_t stp_online_show(struct sysdev_class *class, char *buf)
1563 {
1564 	return sprintf(buf, "%i\n", stp_online);
1565 }
1566 
1567 static ssize_t stp_online_store(struct sysdev_class *class,
1568 				const char *buf, size_t count)
1569 {
1570 	unsigned int value;
1571 
1572 	value = simple_strtoul(buf, NULL, 0);
1573 	if (value != 0 && value != 1)
1574 		return -EINVAL;
1575 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1576 		return -EOPNOTSUPP;
1577 	stp_online = value;
1578 	schedule_work(&stp_work);
1579 	return count;
1580 }
1581 
1582 /*
1583  * Can't use SYSDEV_CLASS_ATTR because the attribute should be named
1584  * stp/online but attr_online already exists in this file ..
1585  */
1586 static struct sysdev_class_attribute attr_stp_online = {
1587 	.attr = { .name = "online", .mode = 0600 },
1588 	.show	= stp_online_show,
1589 	.store	= stp_online_store,
1590 };
1591 
1592 static struct sysdev_class_attribute *stp_attributes[] = {
1593 	&attr_ctn_id,
1594 	&attr_ctn_type,
1595 	&attr_dst_offset,
1596 	&attr_leap_seconds,
1597 	&attr_stp_online,
1598 	&attr_stratum,
1599 	&attr_time_offset,
1600 	&attr_time_zone_offset,
1601 	&attr_timing_mode,
1602 	&attr_timing_state,
1603 	NULL
1604 };
1605 
1606 static int __init stp_init_sysfs(void)
1607 {
1608 	struct sysdev_class_attribute **attr;
1609 	int rc;
1610 
1611 	rc = sysdev_class_register(&stp_sysclass);
1612 	if (rc)
1613 		goto out;
1614 	for (attr = stp_attributes; *attr; attr++) {
1615 		rc = sysdev_class_create_file(&stp_sysclass, *attr);
1616 		if (rc)
1617 			goto out_unreg;
1618 	}
1619 	return 0;
1620 out_unreg:
1621 	for (; attr >= stp_attributes; attr--)
1622 		sysdev_class_remove_file(&stp_sysclass, *attr);
1623 	sysdev_class_unregister(&stp_sysclass);
1624 out:
1625 	return rc;
1626 }
1627 
1628 device_initcall(stp_init_sysfs);
1629