xref: /linux/arch/s390/kernel/time.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  *    Time of day based timer functions.
3  *
4  *  S390 version
5  *    Copyright IBM Corp. 1999, 2008
6  *    Author(s): Hartmut Penner (hp@de.ibm.com),
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
8  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
9  *
10  *  Derived from "arch/i386/kernel/time.c"
11  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
12  */
13 
14 #define KMSG_COMPONENT "time"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16 
17 #include <linux/kernel_stat.h>
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/cpu.h>
27 #include <linux/stop_machine.h>
28 #include <linux/time.h>
29 #include <linux/device.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/smp.h>
33 #include <linux/types.h>
34 #include <linux/profile.h>
35 #include <linux/timex.h>
36 #include <linux/notifier.h>
37 #include <linux/timekeeper_internal.h>
38 #include <linux/clockchips.h>
39 #include <linux/gfp.h>
40 #include <linux/kprobes.h>
41 #include <asm/uaccess.h>
42 #include <asm/delay.h>
43 #include <asm/div64.h>
44 #include <asm/vdso.h>
45 #include <asm/irq.h>
46 #include <asm/irq_regs.h>
47 #include <asm/vtimer.h>
48 #include <asm/etr.h>
49 #include <asm/cio.h>
50 #include "entry.h"
51 
52 /* change this if you have some constant time drift */
53 #define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
54 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
55 
56 u64 sched_clock_base_cc = -1;	/* Force to data section. */
57 EXPORT_SYMBOL_GPL(sched_clock_base_cc);
58 
59 static DEFINE_PER_CPU(struct clock_event_device, comparators);
60 
61 /*
62  * Scheduler clock - returns current time in nanosec units.
63  */
64 unsigned long long notrace __kprobes sched_clock(void)
65 {
66 	return (get_clock_monotonic() * 125) >> 9;
67 }
68 
69 /*
70  * Monotonic_clock - returns # of nanoseconds passed since time_init()
71  */
72 unsigned long long monotonic_clock(void)
73 {
74 	return sched_clock();
75 }
76 EXPORT_SYMBOL(monotonic_clock);
77 
78 void tod_to_timeval(__u64 todval, struct timespec *xt)
79 {
80 	unsigned long long sec;
81 
82 	sec = todval >> 12;
83 	do_div(sec, 1000000);
84 	xt->tv_sec = sec;
85 	todval -= (sec * 1000000) << 12;
86 	xt->tv_nsec = ((todval * 1000) >> 12);
87 }
88 EXPORT_SYMBOL(tod_to_timeval);
89 
90 void clock_comparator_work(void)
91 {
92 	struct clock_event_device *cd;
93 
94 	S390_lowcore.clock_comparator = -1ULL;
95 	set_clock_comparator(S390_lowcore.clock_comparator);
96 	cd = &__get_cpu_var(comparators);
97 	cd->event_handler(cd);
98 }
99 
100 /*
101  * Fixup the clock comparator.
102  */
103 static void fixup_clock_comparator(unsigned long long delta)
104 {
105 	/* If nobody is waiting there's nothing to fix. */
106 	if (S390_lowcore.clock_comparator == -1ULL)
107 		return;
108 	S390_lowcore.clock_comparator += delta;
109 	set_clock_comparator(S390_lowcore.clock_comparator);
110 }
111 
112 static int s390_next_ktime(ktime_t expires,
113 			   struct clock_event_device *evt)
114 {
115 	struct timespec ts;
116 	u64 nsecs;
117 
118 	ts.tv_sec = ts.tv_nsec = 0;
119 	monotonic_to_bootbased(&ts);
120 	nsecs = ktime_to_ns(ktime_add(timespec_to_ktime(ts), expires));
121 	do_div(nsecs, 125);
122 	S390_lowcore.clock_comparator = sched_clock_base_cc + (nsecs << 9);
123 	set_clock_comparator(S390_lowcore.clock_comparator);
124 	return 0;
125 }
126 
127 static void s390_set_mode(enum clock_event_mode mode,
128 			  struct clock_event_device *evt)
129 {
130 }
131 
132 /*
133  * Set up lowcore and control register of the current cpu to
134  * enable TOD clock and clock comparator interrupts.
135  */
136 void init_cpu_timer(void)
137 {
138 	struct clock_event_device *cd;
139 	int cpu;
140 
141 	S390_lowcore.clock_comparator = -1ULL;
142 	set_clock_comparator(S390_lowcore.clock_comparator);
143 
144 	cpu = smp_processor_id();
145 	cd = &per_cpu(comparators, cpu);
146 	cd->name		= "comparator";
147 	cd->features		= CLOCK_EVT_FEAT_ONESHOT |
148 				  CLOCK_EVT_FEAT_KTIME;
149 	cd->mult		= 16777;
150 	cd->shift		= 12;
151 	cd->min_delta_ns	= 1;
152 	cd->max_delta_ns	= LONG_MAX;
153 	cd->rating		= 400;
154 	cd->cpumask		= cpumask_of(cpu);
155 	cd->set_next_ktime	= s390_next_ktime;
156 	cd->set_mode		= s390_set_mode;
157 
158 	clockevents_register_device(cd);
159 
160 	/* Enable clock comparator timer interrupt. */
161 	__ctl_set_bit(0,11);
162 
163 	/* Always allow the timing alert external interrupt. */
164 	__ctl_set_bit(0, 4);
165 }
166 
167 static void clock_comparator_interrupt(struct ext_code ext_code,
168 				       unsigned int param32,
169 				       unsigned long param64)
170 {
171 	kstat_cpu(smp_processor_id()).irqs[EXTINT_CLK]++;
172 	if (S390_lowcore.clock_comparator == -1ULL)
173 		set_clock_comparator(S390_lowcore.clock_comparator);
174 }
175 
176 static void etr_timing_alert(struct etr_irq_parm *);
177 static void stp_timing_alert(struct stp_irq_parm *);
178 
179 static void timing_alert_interrupt(struct ext_code ext_code,
180 				   unsigned int param32, unsigned long param64)
181 {
182 	kstat_cpu(smp_processor_id()).irqs[EXTINT_TLA]++;
183 	if (param32 & 0x00c40000)
184 		etr_timing_alert((struct etr_irq_parm *) &param32);
185 	if (param32 & 0x00038000)
186 		stp_timing_alert((struct stp_irq_parm *) &param32);
187 }
188 
189 static void etr_reset(void);
190 static void stp_reset(void);
191 
192 void read_persistent_clock(struct timespec *ts)
193 {
194 	tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, ts);
195 }
196 
197 void read_boot_clock(struct timespec *ts)
198 {
199 	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
200 }
201 
202 static cycle_t read_tod_clock(struct clocksource *cs)
203 {
204 	return get_clock();
205 }
206 
207 static struct clocksource clocksource_tod = {
208 	.name		= "tod",
209 	.rating		= 400,
210 	.read		= read_tod_clock,
211 	.mask		= -1ULL,
212 	.mult		= 1000,
213 	.shift		= 12,
214 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
215 };
216 
217 struct clocksource * __init clocksource_default_clock(void)
218 {
219 	return &clocksource_tod;
220 }
221 
222 void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
223 			struct clocksource *clock, u32 mult)
224 {
225 	if (clock != &clocksource_tod)
226 		return;
227 
228 	/* Make userspace gettimeofday spin until we're done. */
229 	++vdso_data->tb_update_count;
230 	smp_wmb();
231 	vdso_data->xtime_tod_stamp = clock->cycle_last;
232 	vdso_data->xtime_clock_sec = wall_time->tv_sec;
233 	vdso_data->xtime_clock_nsec = wall_time->tv_nsec;
234 	vdso_data->wtom_clock_sec = wtm->tv_sec;
235 	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
236 	vdso_data->ntp_mult = mult;
237 	smp_wmb();
238 	++vdso_data->tb_update_count;
239 }
240 
241 extern struct timezone sys_tz;
242 
243 void update_vsyscall_tz(void)
244 {
245 	/* Make userspace gettimeofday spin until we're done. */
246 	++vdso_data->tb_update_count;
247 	smp_wmb();
248 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
249 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
250 	smp_wmb();
251 	++vdso_data->tb_update_count;
252 }
253 
254 /*
255  * Initialize the TOD clock and the CPU timer of
256  * the boot cpu.
257  */
258 void __init time_init(void)
259 {
260 	/* Reset time synchronization interfaces. */
261 	etr_reset();
262 	stp_reset();
263 
264 	/* request the clock comparator external interrupt */
265 	if (register_external_interrupt(0x1004, clock_comparator_interrupt))
266                 panic("Couldn't request external interrupt 0x1004");
267 
268 	/* request the timing alert external interrupt */
269 	if (register_external_interrupt(0x1406, timing_alert_interrupt))
270 		panic("Couldn't request external interrupt 0x1406");
271 
272 	if (clocksource_register(&clocksource_tod) != 0)
273 		panic("Could not register TOD clock source");
274 
275 	/* Enable TOD clock interrupts on the boot cpu. */
276 	init_cpu_timer();
277 
278 	/* Enable cpu timer interrupts on the boot cpu. */
279 	vtime_init();
280 }
281 
282 /*
283  * The time is "clock". old is what we think the time is.
284  * Adjust the value by a multiple of jiffies and add the delta to ntp.
285  * "delay" is an approximation how long the synchronization took. If
286  * the time correction is positive, then "delay" is subtracted from
287  * the time difference and only the remaining part is passed to ntp.
288  */
289 static unsigned long long adjust_time(unsigned long long old,
290 				      unsigned long long clock,
291 				      unsigned long long delay)
292 {
293 	unsigned long long delta, ticks;
294 	struct timex adjust;
295 
296 	if (clock > old) {
297 		/* It is later than we thought. */
298 		delta = ticks = clock - old;
299 		delta = ticks = (delta < delay) ? 0 : delta - delay;
300 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
301 		adjust.offset = ticks * (1000000 / HZ);
302 	} else {
303 		/* It is earlier than we thought. */
304 		delta = ticks = old - clock;
305 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
306 		delta = -delta;
307 		adjust.offset = -ticks * (1000000 / HZ);
308 	}
309 	sched_clock_base_cc += delta;
310 	if (adjust.offset != 0) {
311 		pr_notice("The ETR interface has adjusted the clock "
312 			  "by %li microseconds\n", adjust.offset);
313 		adjust.modes = ADJ_OFFSET_SINGLESHOT;
314 		do_adjtimex(&adjust);
315 	}
316 	return delta;
317 }
318 
319 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
320 static DEFINE_MUTEX(clock_sync_mutex);
321 static unsigned long clock_sync_flags;
322 
323 #define CLOCK_SYNC_HAS_ETR	0
324 #define CLOCK_SYNC_HAS_STP	1
325 #define CLOCK_SYNC_ETR		2
326 #define CLOCK_SYNC_STP		3
327 
328 /*
329  * The synchronous get_clock function. It will write the current clock
330  * value to the clock pointer and return 0 if the clock is in sync with
331  * the external time source. If the clock mode is local it will return
332  * -EOPNOTSUPP and -EAGAIN if the clock is not in sync with the external
333  * reference.
334  */
335 int get_sync_clock(unsigned long long *clock)
336 {
337 	atomic_t *sw_ptr;
338 	unsigned int sw0, sw1;
339 
340 	sw_ptr = &get_cpu_var(clock_sync_word);
341 	sw0 = atomic_read(sw_ptr);
342 	*clock = get_clock();
343 	sw1 = atomic_read(sw_ptr);
344 	put_cpu_var(clock_sync_word);
345 	if (sw0 == sw1 && (sw0 & 0x80000000U))
346 		/* Success: time is in sync. */
347 		return 0;
348 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
349 	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
350 		return -EOPNOTSUPP;
351 	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
352 	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
353 		return -EACCES;
354 	return -EAGAIN;
355 }
356 EXPORT_SYMBOL(get_sync_clock);
357 
358 /*
359  * Make get_sync_clock return -EAGAIN.
360  */
361 static void disable_sync_clock(void *dummy)
362 {
363 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
364 	/*
365 	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
366 	 * fail until the sync bit is turned back on. In addition
367 	 * increase the "sequence" counter to avoid the race of an
368 	 * etr event and the complete recovery against get_sync_clock.
369 	 */
370 	atomic_clear_mask(0x80000000, sw_ptr);
371 	atomic_inc(sw_ptr);
372 }
373 
374 /*
375  * Make get_sync_clock return 0 again.
376  * Needs to be called from a context disabled for preemption.
377  */
378 static void enable_sync_clock(void)
379 {
380 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
381 	atomic_set_mask(0x80000000, sw_ptr);
382 }
383 
384 /*
385  * Function to check if the clock is in sync.
386  */
387 static inline int check_sync_clock(void)
388 {
389 	atomic_t *sw_ptr;
390 	int rc;
391 
392 	sw_ptr = &get_cpu_var(clock_sync_word);
393 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
394 	put_cpu_var(clock_sync_word);
395 	return rc;
396 }
397 
398 /* Single threaded workqueue used for etr and stp sync events */
399 static struct workqueue_struct *time_sync_wq;
400 
401 static void __init time_init_wq(void)
402 {
403 	if (time_sync_wq)
404 		return;
405 	time_sync_wq = create_singlethread_workqueue("timesync");
406 }
407 
408 /*
409  * External Time Reference (ETR) code.
410  */
411 static int etr_port0_online;
412 static int etr_port1_online;
413 static int etr_steai_available;
414 
415 static int __init early_parse_etr(char *p)
416 {
417 	if (strncmp(p, "off", 3) == 0)
418 		etr_port0_online = etr_port1_online = 0;
419 	else if (strncmp(p, "port0", 5) == 0)
420 		etr_port0_online = 1;
421 	else if (strncmp(p, "port1", 5) == 0)
422 		etr_port1_online = 1;
423 	else if (strncmp(p, "on", 2) == 0)
424 		etr_port0_online = etr_port1_online = 1;
425 	return 0;
426 }
427 early_param("etr", early_parse_etr);
428 
429 enum etr_event {
430 	ETR_EVENT_PORT0_CHANGE,
431 	ETR_EVENT_PORT1_CHANGE,
432 	ETR_EVENT_PORT_ALERT,
433 	ETR_EVENT_SYNC_CHECK,
434 	ETR_EVENT_SWITCH_LOCAL,
435 	ETR_EVENT_UPDATE,
436 };
437 
438 /*
439  * Valid bit combinations of the eacr register are (x = don't care):
440  * e0 e1 dp p0 p1 ea es sl
441  *  0  0  x  0	0  0  0  0  initial, disabled state
442  *  0  0  x  0	1  1  0  0  port 1 online
443  *  0  0  x  1	0  1  0  0  port 0 online
444  *  0  0  x  1	1  1  0  0  both ports online
445  *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
446  *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
447  *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
448  *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
449  *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
450  *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
451  *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
452  *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
453  *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
454  *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
455  *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
456  *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
457  *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
458  *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
459  *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
460  *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
461  */
462 static struct etr_eacr etr_eacr;
463 static u64 etr_tolec;			/* time of last eacr update */
464 static struct etr_aib etr_port0;
465 static int etr_port0_uptodate;
466 static struct etr_aib etr_port1;
467 static int etr_port1_uptodate;
468 static unsigned long etr_events;
469 static struct timer_list etr_timer;
470 
471 static void etr_timeout(unsigned long dummy);
472 static void etr_work_fn(struct work_struct *work);
473 static DEFINE_MUTEX(etr_work_mutex);
474 static DECLARE_WORK(etr_work, etr_work_fn);
475 
476 /*
477  * Reset ETR attachment.
478  */
479 static void etr_reset(void)
480 {
481 	etr_eacr =  (struct etr_eacr) {
482 		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
483 		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
484 		.es = 0, .sl = 0 };
485 	if (etr_setr(&etr_eacr) == 0) {
486 		etr_tolec = get_clock();
487 		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
488 		if (etr_port0_online && etr_port1_online)
489 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
490 	} else if (etr_port0_online || etr_port1_online) {
491 		pr_warning("The real or virtual hardware system does "
492 			   "not provide an ETR interface\n");
493 		etr_port0_online = etr_port1_online = 0;
494 	}
495 }
496 
497 static int __init etr_init(void)
498 {
499 	struct etr_aib aib;
500 
501 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
502 		return 0;
503 	time_init_wq();
504 	/* Check if this machine has the steai instruction. */
505 	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
506 		etr_steai_available = 1;
507 	setup_timer(&etr_timer, etr_timeout, 0UL);
508 	if (etr_port0_online) {
509 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
510 		queue_work(time_sync_wq, &etr_work);
511 	}
512 	if (etr_port1_online) {
513 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
514 		queue_work(time_sync_wq, &etr_work);
515 	}
516 	return 0;
517 }
518 
519 arch_initcall(etr_init);
520 
521 /*
522  * Two sorts of ETR machine checks. The architecture reads:
523  * "When a machine-check niterruption occurs and if a switch-to-local or
524  *  ETR-sync-check interrupt request is pending but disabled, this pending
525  *  disabled interruption request is indicated and is cleared".
526  * Which means that we can get etr_switch_to_local events from the machine
527  * check handler although the interruption condition is disabled. Lovely..
528  */
529 
530 /*
531  * Switch to local machine check. This is called when the last usable
532  * ETR port goes inactive. After switch to local the clock is not in sync.
533  */
534 void etr_switch_to_local(void)
535 {
536 	if (!etr_eacr.sl)
537 		return;
538 	disable_sync_clock(NULL);
539 	if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
540 		etr_eacr.es = etr_eacr.sl = 0;
541 		etr_setr(&etr_eacr);
542 		queue_work(time_sync_wq, &etr_work);
543 	}
544 }
545 
546 /*
547  * ETR sync check machine check. This is called when the ETR OTE and the
548  * local clock OTE are farther apart than the ETR sync check tolerance.
549  * After a ETR sync check the clock is not in sync. The machine check
550  * is broadcasted to all cpus at the same time.
551  */
552 void etr_sync_check(void)
553 {
554 	if (!etr_eacr.es)
555 		return;
556 	disable_sync_clock(NULL);
557 	if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
558 		etr_eacr.es = 0;
559 		etr_setr(&etr_eacr);
560 		queue_work(time_sync_wq, &etr_work);
561 	}
562 }
563 
564 /*
565  * ETR timing alert. There are two causes:
566  * 1) port state change, check the usability of the port
567  * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
568  *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
569  *    or ETR-data word 4 (edf4) has changed.
570  */
571 static void etr_timing_alert(struct etr_irq_parm *intparm)
572 {
573 	if (intparm->pc0)
574 		/* ETR port 0 state change. */
575 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
576 	if (intparm->pc1)
577 		/* ETR port 1 state change. */
578 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
579 	if (intparm->eai)
580 		/*
581 		 * ETR port alert on either port 0, 1 or both.
582 		 * Both ports are not up-to-date now.
583 		 */
584 		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
585 	queue_work(time_sync_wq, &etr_work);
586 }
587 
588 static void etr_timeout(unsigned long dummy)
589 {
590 	set_bit(ETR_EVENT_UPDATE, &etr_events);
591 	queue_work(time_sync_wq, &etr_work);
592 }
593 
594 /*
595  * Check if the etr mode is pss.
596  */
597 static inline int etr_mode_is_pps(struct etr_eacr eacr)
598 {
599 	return eacr.es && !eacr.sl;
600 }
601 
602 /*
603  * Check if the etr mode is etr.
604  */
605 static inline int etr_mode_is_etr(struct etr_eacr eacr)
606 {
607 	return eacr.es && eacr.sl;
608 }
609 
610 /*
611  * Check if the port can be used for TOD synchronization.
612  * For PPS mode the port has to receive OTEs. For ETR mode
613  * the port has to receive OTEs, the ETR stepping bit has to
614  * be zero and the validity bits for data frame 1, 2, and 3
615  * have to be 1.
616  */
617 static int etr_port_valid(struct etr_aib *aib, int port)
618 {
619 	unsigned int psc;
620 
621 	/* Check that this port is receiving OTEs. */
622 	if (aib->tsp == 0)
623 		return 0;
624 
625 	psc = port ? aib->esw.psc1 : aib->esw.psc0;
626 	if (psc == etr_lpsc_pps_mode)
627 		return 1;
628 	if (psc == etr_lpsc_operational_step)
629 		return !aib->esw.y && aib->slsw.v1 &&
630 			aib->slsw.v2 && aib->slsw.v3;
631 	return 0;
632 }
633 
634 /*
635  * Check if two ports are on the same network.
636  */
637 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
638 {
639 	// FIXME: any other fields we have to compare?
640 	return aib1->edf1.net_id == aib2->edf1.net_id;
641 }
642 
643 /*
644  * Wrapper for etr_stei that converts physical port states
645  * to logical port states to be consistent with the output
646  * of stetr (see etr_psc vs. etr_lpsc).
647  */
648 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
649 {
650 	BUG_ON(etr_steai(aib, func) != 0);
651 	/* Convert port state to logical port state. */
652 	if (aib->esw.psc0 == 1)
653 		aib->esw.psc0 = 2;
654 	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
655 		aib->esw.psc0 = 1;
656 	if (aib->esw.psc1 == 1)
657 		aib->esw.psc1 = 2;
658 	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
659 		aib->esw.psc1 = 1;
660 }
661 
662 /*
663  * Check if the aib a2 is still connected to the same attachment as
664  * aib a1, the etv values differ by one and a2 is valid.
665  */
666 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
667 {
668 	int state_a1, state_a2;
669 
670 	/* Paranoia check: e0/e1 should better be the same. */
671 	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
672 	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
673 		return 0;
674 
675 	/* Still connected to the same etr ? */
676 	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
677 	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
678 	if (state_a1 == etr_lpsc_operational_step) {
679 		if (state_a2 != etr_lpsc_operational_step ||
680 		    a1->edf1.net_id != a2->edf1.net_id ||
681 		    a1->edf1.etr_id != a2->edf1.etr_id ||
682 		    a1->edf1.etr_pn != a2->edf1.etr_pn)
683 			return 0;
684 	} else if (state_a2 != etr_lpsc_pps_mode)
685 		return 0;
686 
687 	/* The ETV value of a2 needs to be ETV of a1 + 1. */
688 	if (a1->edf2.etv + 1 != a2->edf2.etv)
689 		return 0;
690 
691 	if (!etr_port_valid(a2, p))
692 		return 0;
693 
694 	return 1;
695 }
696 
697 struct clock_sync_data {
698 	atomic_t cpus;
699 	int in_sync;
700 	unsigned long long fixup_cc;
701 	int etr_port;
702 	struct etr_aib *etr_aib;
703 };
704 
705 static void clock_sync_cpu(struct clock_sync_data *sync)
706 {
707 	atomic_dec(&sync->cpus);
708 	enable_sync_clock();
709 	/*
710 	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
711 	 * is called on all other cpus while the TOD clocks is stopped.
712 	 * __udelay will stop the cpu on an enabled wait psw until the
713 	 * TOD is running again.
714 	 */
715 	while (sync->in_sync == 0) {
716 		__udelay(1);
717 		/*
718 		 * A different cpu changes *in_sync. Therefore use
719 		 * barrier() to force memory access.
720 		 */
721 		barrier();
722 	}
723 	if (sync->in_sync != 1)
724 		/* Didn't work. Clear per-cpu in sync bit again. */
725 		disable_sync_clock(NULL);
726 	/*
727 	 * This round of TOD syncing is done. Set the clock comparator
728 	 * to the next tick and let the processor continue.
729 	 */
730 	fixup_clock_comparator(sync->fixup_cc);
731 }
732 
733 /*
734  * Sync the TOD clock using the port referred to by aibp. This port
735  * has to be enabled and the other port has to be disabled. The
736  * last eacr update has to be more than 1.6 seconds in the past.
737  */
738 static int etr_sync_clock(void *data)
739 {
740 	static int first;
741 	unsigned long long clock, old_clock, delay, delta;
742 	struct clock_sync_data *etr_sync;
743 	struct etr_aib *sync_port, *aib;
744 	int port;
745 	int rc;
746 
747 	etr_sync = data;
748 
749 	if (xchg(&first, 1) == 1) {
750 		/* Slave */
751 		clock_sync_cpu(etr_sync);
752 		return 0;
753 	}
754 
755 	/* Wait until all other cpus entered the sync function. */
756 	while (atomic_read(&etr_sync->cpus) != 0)
757 		cpu_relax();
758 
759 	port = etr_sync->etr_port;
760 	aib = etr_sync->etr_aib;
761 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
762 	enable_sync_clock();
763 
764 	/* Set clock to next OTE. */
765 	__ctl_set_bit(14, 21);
766 	__ctl_set_bit(0, 29);
767 	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
768 	old_clock = get_clock();
769 	if (set_clock(clock) == 0) {
770 		__udelay(1);	/* Wait for the clock to start. */
771 		__ctl_clear_bit(0, 29);
772 		__ctl_clear_bit(14, 21);
773 		etr_stetr(aib);
774 		/* Adjust Linux timing variables. */
775 		delay = (unsigned long long)
776 			(aib->edf2.etv - sync_port->edf2.etv) << 32;
777 		delta = adjust_time(old_clock, clock, delay);
778 		etr_sync->fixup_cc = delta;
779 		fixup_clock_comparator(delta);
780 		/* Verify that the clock is properly set. */
781 		if (!etr_aib_follows(sync_port, aib, port)) {
782 			/* Didn't work. */
783 			disable_sync_clock(NULL);
784 			etr_sync->in_sync = -EAGAIN;
785 			rc = -EAGAIN;
786 		} else {
787 			etr_sync->in_sync = 1;
788 			rc = 0;
789 		}
790 	} else {
791 		/* Could not set the clock ?!? */
792 		__ctl_clear_bit(0, 29);
793 		__ctl_clear_bit(14, 21);
794 		disable_sync_clock(NULL);
795 		etr_sync->in_sync = -EAGAIN;
796 		rc = -EAGAIN;
797 	}
798 	xchg(&first, 0);
799 	return rc;
800 }
801 
802 static int etr_sync_clock_stop(struct etr_aib *aib, int port)
803 {
804 	struct clock_sync_data etr_sync;
805 	struct etr_aib *sync_port;
806 	int follows;
807 	int rc;
808 
809 	/* Check if the current aib is adjacent to the sync port aib. */
810 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
811 	follows = etr_aib_follows(sync_port, aib, port);
812 	memcpy(sync_port, aib, sizeof(*aib));
813 	if (!follows)
814 		return -EAGAIN;
815 	memset(&etr_sync, 0, sizeof(etr_sync));
816 	etr_sync.etr_aib = aib;
817 	etr_sync.etr_port = port;
818 	get_online_cpus();
819 	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
820 	rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
821 	put_online_cpus();
822 	return rc;
823 }
824 
825 /*
826  * Handle the immediate effects of the different events.
827  * The port change event is used for online/offline changes.
828  */
829 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
830 {
831 	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
832 		eacr.es = 0;
833 	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
834 		eacr.es = eacr.sl = 0;
835 	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
836 		etr_port0_uptodate = etr_port1_uptodate = 0;
837 
838 	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
839 		if (eacr.e0)
840 			/*
841 			 * Port change of an enabled port. We have to
842 			 * assume that this can have caused an stepping
843 			 * port switch.
844 			 */
845 			etr_tolec = get_clock();
846 		eacr.p0 = etr_port0_online;
847 		if (!eacr.p0)
848 			eacr.e0 = 0;
849 		etr_port0_uptodate = 0;
850 	}
851 	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
852 		if (eacr.e1)
853 			/*
854 			 * Port change of an enabled port. We have to
855 			 * assume that this can have caused an stepping
856 			 * port switch.
857 			 */
858 			etr_tolec = get_clock();
859 		eacr.p1 = etr_port1_online;
860 		if (!eacr.p1)
861 			eacr.e1 = 0;
862 		etr_port1_uptodate = 0;
863 	}
864 	clear_bit(ETR_EVENT_UPDATE, &etr_events);
865 	return eacr;
866 }
867 
868 /*
869  * Set up a timer that expires after the etr_tolec + 1.6 seconds if
870  * one of the ports needs an update.
871  */
872 static void etr_set_tolec_timeout(unsigned long long now)
873 {
874 	unsigned long micros;
875 
876 	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
877 	    (!etr_eacr.p1 || etr_port1_uptodate))
878 		return;
879 	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
880 	micros = (micros > 1600000) ? 0 : 1600000 - micros;
881 	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
882 }
883 
884 /*
885  * Set up a time that expires after 1/2 second.
886  */
887 static void etr_set_sync_timeout(void)
888 {
889 	mod_timer(&etr_timer, jiffies + HZ/2);
890 }
891 
892 /*
893  * Update the aib information for one or both ports.
894  */
895 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
896 					 struct etr_eacr eacr)
897 {
898 	/* With both ports disabled the aib information is useless. */
899 	if (!eacr.e0 && !eacr.e1)
900 		return eacr;
901 
902 	/* Update port0 or port1 with aib stored in etr_work_fn. */
903 	if (aib->esw.q == 0) {
904 		/* Information for port 0 stored. */
905 		if (eacr.p0 && !etr_port0_uptodate) {
906 			etr_port0 = *aib;
907 			if (etr_port0_online)
908 				etr_port0_uptodate = 1;
909 		}
910 	} else {
911 		/* Information for port 1 stored. */
912 		if (eacr.p1 && !etr_port1_uptodate) {
913 			etr_port1 = *aib;
914 			if (etr_port0_online)
915 				etr_port1_uptodate = 1;
916 		}
917 	}
918 
919 	/*
920 	 * Do not try to get the alternate port aib if the clock
921 	 * is not in sync yet.
922 	 */
923 	if (!eacr.es || !check_sync_clock())
924 		return eacr;
925 
926 	/*
927 	 * If steai is available we can get the information about
928 	 * the other port immediately. If only stetr is available the
929 	 * data-port bit toggle has to be used.
930 	 */
931 	if (etr_steai_available) {
932 		if (eacr.p0 && !etr_port0_uptodate) {
933 			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
934 			etr_port0_uptodate = 1;
935 		}
936 		if (eacr.p1 && !etr_port1_uptodate) {
937 			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
938 			etr_port1_uptodate = 1;
939 		}
940 	} else {
941 		/*
942 		 * One port was updated above, if the other
943 		 * port is not uptodate toggle dp bit.
944 		 */
945 		if ((eacr.p0 && !etr_port0_uptodate) ||
946 		    (eacr.p1 && !etr_port1_uptodate))
947 			eacr.dp ^= 1;
948 		else
949 			eacr.dp = 0;
950 	}
951 	return eacr;
952 }
953 
954 /*
955  * Write new etr control register if it differs from the current one.
956  * Return 1 if etr_tolec has been updated as well.
957  */
958 static void etr_update_eacr(struct etr_eacr eacr)
959 {
960 	int dp_changed;
961 
962 	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
963 		/* No change, return. */
964 		return;
965 	/*
966 	 * The disable of an active port of the change of the data port
967 	 * bit can/will cause a change in the data port.
968 	 */
969 	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
970 		(etr_eacr.dp ^ eacr.dp) != 0;
971 	etr_eacr = eacr;
972 	etr_setr(&etr_eacr);
973 	if (dp_changed)
974 		etr_tolec = get_clock();
975 }
976 
977 /*
978  * ETR work. In this function you'll find the main logic. In
979  * particular this is the only function that calls etr_update_eacr(),
980  * it "controls" the etr control register.
981  */
982 static void etr_work_fn(struct work_struct *work)
983 {
984 	unsigned long long now;
985 	struct etr_eacr eacr;
986 	struct etr_aib aib;
987 	int sync_port;
988 
989 	/* prevent multiple execution. */
990 	mutex_lock(&etr_work_mutex);
991 
992 	/* Create working copy of etr_eacr. */
993 	eacr = etr_eacr;
994 
995 	/* Check for the different events and their immediate effects. */
996 	eacr = etr_handle_events(eacr);
997 
998 	/* Check if ETR is supposed to be active. */
999 	eacr.ea = eacr.p0 || eacr.p1;
1000 	if (!eacr.ea) {
1001 		/* Both ports offline. Reset everything. */
1002 		eacr.dp = eacr.es = eacr.sl = 0;
1003 		on_each_cpu(disable_sync_clock, NULL, 1);
1004 		del_timer_sync(&etr_timer);
1005 		etr_update_eacr(eacr);
1006 		goto out_unlock;
1007 	}
1008 
1009 	/* Store aib to get the current ETR status word. */
1010 	BUG_ON(etr_stetr(&aib) != 0);
1011 	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
1012 	now = get_clock();
1013 
1014 	/*
1015 	 * Update the port information if the last stepping port change
1016 	 * or data port change is older than 1.6 seconds.
1017 	 */
1018 	if (now >= etr_tolec + (1600000 << 12))
1019 		eacr = etr_handle_update(&aib, eacr);
1020 
1021 	/*
1022 	 * Select ports to enable. The preferred synchronization mode is PPS.
1023 	 * If a port can be enabled depends on a number of things:
1024 	 * 1) The port needs to be online and uptodate. A port is not
1025 	 *    disabled just because it is not uptodate, but it is only
1026 	 *    enabled if it is uptodate.
1027 	 * 2) The port needs to have the same mode (pps / etr).
1028 	 * 3) The port needs to be usable -> etr_port_valid() == 1
1029 	 * 4) To enable the second port the clock needs to be in sync.
1030 	 * 5) If both ports are useable and are ETR ports, the network id
1031 	 *    has to be the same.
1032 	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1033 	 */
1034 	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1035 		eacr.sl = 0;
1036 		eacr.e0 = 1;
1037 		if (!etr_mode_is_pps(etr_eacr))
1038 			eacr.es = 0;
1039 		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1040 			eacr.e1 = 0;
1041 		// FIXME: uptodate checks ?
1042 		else if (etr_port0_uptodate && etr_port1_uptodate)
1043 			eacr.e1 = 1;
1044 		sync_port = (etr_port0_uptodate &&
1045 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1046 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1047 		eacr.sl = 0;
1048 		eacr.e0 = 0;
1049 		eacr.e1 = 1;
1050 		if (!etr_mode_is_pps(etr_eacr))
1051 			eacr.es = 0;
1052 		sync_port = (etr_port1_uptodate &&
1053 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1054 	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1055 		eacr.sl = 1;
1056 		eacr.e0 = 1;
1057 		if (!etr_mode_is_etr(etr_eacr))
1058 			eacr.es = 0;
1059 		if (!eacr.es || !eacr.p1 ||
1060 		    aib.esw.psc1 != etr_lpsc_operational_alt)
1061 			eacr.e1 = 0;
1062 		else if (etr_port0_uptodate && etr_port1_uptodate &&
1063 			 etr_compare_network(&etr_port0, &etr_port1))
1064 			eacr.e1 = 1;
1065 		sync_port = (etr_port0_uptodate &&
1066 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1067 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1068 		eacr.sl = 1;
1069 		eacr.e0 = 0;
1070 		eacr.e1 = 1;
1071 		if (!etr_mode_is_etr(etr_eacr))
1072 			eacr.es = 0;
1073 		sync_port = (etr_port1_uptodate &&
1074 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1075 	} else {
1076 		/* Both ports not usable. */
1077 		eacr.es = eacr.sl = 0;
1078 		sync_port = -1;
1079 	}
1080 
1081 	/*
1082 	 * If the clock is in sync just update the eacr and return.
1083 	 * If there is no valid sync port wait for a port update.
1084 	 */
1085 	if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1086 		etr_update_eacr(eacr);
1087 		etr_set_tolec_timeout(now);
1088 		goto out_unlock;
1089 	}
1090 
1091 	/*
1092 	 * Prepare control register for clock syncing
1093 	 * (reset data port bit, set sync check control.
1094 	 */
1095 	eacr.dp = 0;
1096 	eacr.es = 1;
1097 
1098 	/*
1099 	 * Update eacr and try to synchronize the clock. If the update
1100 	 * of eacr caused a stepping port switch (or if we have to
1101 	 * assume that a stepping port switch has occurred) or the
1102 	 * clock syncing failed, reset the sync check control bit
1103 	 * and set up a timer to try again after 0.5 seconds
1104 	 */
1105 	etr_update_eacr(eacr);
1106 	if (now < etr_tolec + (1600000 << 12) ||
1107 	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1108 		/* Sync failed. Try again in 1/2 second. */
1109 		eacr.es = 0;
1110 		etr_update_eacr(eacr);
1111 		etr_set_sync_timeout();
1112 	} else
1113 		etr_set_tolec_timeout(now);
1114 out_unlock:
1115 	mutex_unlock(&etr_work_mutex);
1116 }
1117 
1118 /*
1119  * Sysfs interface functions
1120  */
1121 static struct bus_type etr_subsys = {
1122 	.name		= "etr",
1123 	.dev_name	= "etr",
1124 };
1125 
1126 static struct device etr_port0_dev = {
1127 	.id	= 0,
1128 	.bus	= &etr_subsys,
1129 };
1130 
1131 static struct device etr_port1_dev = {
1132 	.id	= 1,
1133 	.bus	= &etr_subsys,
1134 };
1135 
1136 /*
1137  * ETR subsys attributes
1138  */
1139 static ssize_t etr_stepping_port_show(struct device *dev,
1140 					struct device_attribute *attr,
1141 					char *buf)
1142 {
1143 	return sprintf(buf, "%i\n", etr_port0.esw.p);
1144 }
1145 
1146 static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1147 
1148 static ssize_t etr_stepping_mode_show(struct device *dev,
1149 					struct device_attribute *attr,
1150 					char *buf)
1151 {
1152 	char *mode_str;
1153 
1154 	if (etr_mode_is_pps(etr_eacr))
1155 		mode_str = "pps";
1156 	else if (etr_mode_is_etr(etr_eacr))
1157 		mode_str = "etr";
1158 	else
1159 		mode_str = "local";
1160 	return sprintf(buf, "%s\n", mode_str);
1161 }
1162 
1163 static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1164 
1165 /*
1166  * ETR port attributes
1167  */
1168 static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1169 {
1170 	if (dev == &etr_port0_dev)
1171 		return etr_port0_online ? &etr_port0 : NULL;
1172 	else
1173 		return etr_port1_online ? &etr_port1 : NULL;
1174 }
1175 
1176 static ssize_t etr_online_show(struct device *dev,
1177 				struct device_attribute *attr,
1178 				char *buf)
1179 {
1180 	unsigned int online;
1181 
1182 	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1183 	return sprintf(buf, "%i\n", online);
1184 }
1185 
1186 static ssize_t etr_online_store(struct device *dev,
1187 				struct device_attribute *attr,
1188 				const char *buf, size_t count)
1189 {
1190 	unsigned int value;
1191 
1192 	value = simple_strtoul(buf, NULL, 0);
1193 	if (value != 0 && value != 1)
1194 		return -EINVAL;
1195 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1196 		return -EOPNOTSUPP;
1197 	mutex_lock(&clock_sync_mutex);
1198 	if (dev == &etr_port0_dev) {
1199 		if (etr_port0_online == value)
1200 			goto out;	/* Nothing to do. */
1201 		etr_port0_online = value;
1202 		if (etr_port0_online && etr_port1_online)
1203 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1204 		else
1205 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1206 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1207 		queue_work(time_sync_wq, &etr_work);
1208 	} else {
1209 		if (etr_port1_online == value)
1210 			goto out;	/* Nothing to do. */
1211 		etr_port1_online = value;
1212 		if (etr_port0_online && etr_port1_online)
1213 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1214 		else
1215 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1216 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1217 		queue_work(time_sync_wq, &etr_work);
1218 	}
1219 out:
1220 	mutex_unlock(&clock_sync_mutex);
1221 	return count;
1222 }
1223 
1224 static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1225 
1226 static ssize_t etr_stepping_control_show(struct device *dev,
1227 					struct device_attribute *attr,
1228 					char *buf)
1229 {
1230 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1231 		       etr_eacr.e0 : etr_eacr.e1);
1232 }
1233 
1234 static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1235 
1236 static ssize_t etr_mode_code_show(struct device *dev,
1237 				struct device_attribute *attr, char *buf)
1238 {
1239 	if (!etr_port0_online && !etr_port1_online)
1240 		/* Status word is not uptodate if both ports are offline. */
1241 		return -ENODATA;
1242 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1243 		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1244 }
1245 
1246 static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1247 
1248 static ssize_t etr_untuned_show(struct device *dev,
1249 				struct device_attribute *attr, char *buf)
1250 {
1251 	struct etr_aib *aib = etr_aib_from_dev(dev);
1252 
1253 	if (!aib || !aib->slsw.v1)
1254 		return -ENODATA;
1255 	return sprintf(buf, "%i\n", aib->edf1.u);
1256 }
1257 
1258 static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1259 
1260 static ssize_t etr_network_id_show(struct device *dev,
1261 				struct device_attribute *attr, char *buf)
1262 {
1263 	struct etr_aib *aib = etr_aib_from_dev(dev);
1264 
1265 	if (!aib || !aib->slsw.v1)
1266 		return -ENODATA;
1267 	return sprintf(buf, "%i\n", aib->edf1.net_id);
1268 }
1269 
1270 static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1271 
1272 static ssize_t etr_id_show(struct device *dev,
1273 			struct device_attribute *attr, char *buf)
1274 {
1275 	struct etr_aib *aib = etr_aib_from_dev(dev);
1276 
1277 	if (!aib || !aib->slsw.v1)
1278 		return -ENODATA;
1279 	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1280 }
1281 
1282 static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1283 
1284 static ssize_t etr_port_number_show(struct device *dev,
1285 			struct device_attribute *attr, char *buf)
1286 {
1287 	struct etr_aib *aib = etr_aib_from_dev(dev);
1288 
1289 	if (!aib || !aib->slsw.v1)
1290 		return -ENODATA;
1291 	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1292 }
1293 
1294 static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1295 
1296 static ssize_t etr_coupled_show(struct device *dev,
1297 			struct device_attribute *attr, char *buf)
1298 {
1299 	struct etr_aib *aib = etr_aib_from_dev(dev);
1300 
1301 	if (!aib || !aib->slsw.v3)
1302 		return -ENODATA;
1303 	return sprintf(buf, "%i\n", aib->edf3.c);
1304 }
1305 
1306 static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1307 
1308 static ssize_t etr_local_time_show(struct device *dev,
1309 			struct device_attribute *attr, char *buf)
1310 {
1311 	struct etr_aib *aib = etr_aib_from_dev(dev);
1312 
1313 	if (!aib || !aib->slsw.v3)
1314 		return -ENODATA;
1315 	return sprintf(buf, "%i\n", aib->edf3.blto);
1316 }
1317 
1318 static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1319 
1320 static ssize_t etr_utc_offset_show(struct device *dev,
1321 			struct device_attribute *attr, char *buf)
1322 {
1323 	struct etr_aib *aib = etr_aib_from_dev(dev);
1324 
1325 	if (!aib || !aib->slsw.v3)
1326 		return -ENODATA;
1327 	return sprintf(buf, "%i\n", aib->edf3.buo);
1328 }
1329 
1330 static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1331 
1332 static struct device_attribute *etr_port_attributes[] = {
1333 	&dev_attr_online,
1334 	&dev_attr_stepping_control,
1335 	&dev_attr_state_code,
1336 	&dev_attr_untuned,
1337 	&dev_attr_network,
1338 	&dev_attr_id,
1339 	&dev_attr_port,
1340 	&dev_attr_coupled,
1341 	&dev_attr_local_time,
1342 	&dev_attr_utc_offset,
1343 	NULL
1344 };
1345 
1346 static int __init etr_register_port(struct device *dev)
1347 {
1348 	struct device_attribute **attr;
1349 	int rc;
1350 
1351 	rc = device_register(dev);
1352 	if (rc)
1353 		goto out;
1354 	for (attr = etr_port_attributes; *attr; attr++) {
1355 		rc = device_create_file(dev, *attr);
1356 		if (rc)
1357 			goto out_unreg;
1358 	}
1359 	return 0;
1360 out_unreg:
1361 	for (; attr >= etr_port_attributes; attr--)
1362 		device_remove_file(dev, *attr);
1363 	device_unregister(dev);
1364 out:
1365 	return rc;
1366 }
1367 
1368 static void __init etr_unregister_port(struct device *dev)
1369 {
1370 	struct device_attribute **attr;
1371 
1372 	for (attr = etr_port_attributes; *attr; attr++)
1373 		device_remove_file(dev, *attr);
1374 	device_unregister(dev);
1375 }
1376 
1377 static int __init etr_init_sysfs(void)
1378 {
1379 	int rc;
1380 
1381 	rc = subsys_system_register(&etr_subsys, NULL);
1382 	if (rc)
1383 		goto out;
1384 	rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1385 	if (rc)
1386 		goto out_unreg_subsys;
1387 	rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1388 	if (rc)
1389 		goto out_remove_stepping_port;
1390 	rc = etr_register_port(&etr_port0_dev);
1391 	if (rc)
1392 		goto out_remove_stepping_mode;
1393 	rc = etr_register_port(&etr_port1_dev);
1394 	if (rc)
1395 		goto out_remove_port0;
1396 	return 0;
1397 
1398 out_remove_port0:
1399 	etr_unregister_port(&etr_port0_dev);
1400 out_remove_stepping_mode:
1401 	device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1402 out_remove_stepping_port:
1403 	device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1404 out_unreg_subsys:
1405 	bus_unregister(&etr_subsys);
1406 out:
1407 	return rc;
1408 }
1409 
1410 device_initcall(etr_init_sysfs);
1411 
1412 /*
1413  * Server Time Protocol (STP) code.
1414  */
1415 static int stp_online;
1416 static struct stp_sstpi stp_info;
1417 static void *stp_page;
1418 
1419 static void stp_work_fn(struct work_struct *work);
1420 static DEFINE_MUTEX(stp_work_mutex);
1421 static DECLARE_WORK(stp_work, stp_work_fn);
1422 static struct timer_list stp_timer;
1423 
1424 static int __init early_parse_stp(char *p)
1425 {
1426 	if (strncmp(p, "off", 3) == 0)
1427 		stp_online = 0;
1428 	else if (strncmp(p, "on", 2) == 0)
1429 		stp_online = 1;
1430 	return 0;
1431 }
1432 early_param("stp", early_parse_stp);
1433 
1434 /*
1435  * Reset STP attachment.
1436  */
1437 static void __init stp_reset(void)
1438 {
1439 	int rc;
1440 
1441 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1442 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1443 	if (rc == 0)
1444 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1445 	else if (stp_online) {
1446 		pr_warning("The real or virtual hardware system does "
1447 			   "not provide an STP interface\n");
1448 		free_page((unsigned long) stp_page);
1449 		stp_page = NULL;
1450 		stp_online = 0;
1451 	}
1452 }
1453 
1454 static void stp_timeout(unsigned long dummy)
1455 {
1456 	queue_work(time_sync_wq, &stp_work);
1457 }
1458 
1459 static int __init stp_init(void)
1460 {
1461 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1462 		return 0;
1463 	setup_timer(&stp_timer, stp_timeout, 0UL);
1464 	time_init_wq();
1465 	if (!stp_online)
1466 		return 0;
1467 	queue_work(time_sync_wq, &stp_work);
1468 	return 0;
1469 }
1470 
1471 arch_initcall(stp_init);
1472 
1473 /*
1474  * STP timing alert. There are three causes:
1475  * 1) timing status change
1476  * 2) link availability change
1477  * 3) time control parameter change
1478  * In all three cases we are only interested in the clock source state.
1479  * If a STP clock source is now available use it.
1480  */
1481 static void stp_timing_alert(struct stp_irq_parm *intparm)
1482 {
1483 	if (intparm->tsc || intparm->lac || intparm->tcpc)
1484 		queue_work(time_sync_wq, &stp_work);
1485 }
1486 
1487 /*
1488  * STP sync check machine check. This is called when the timing state
1489  * changes from the synchronized state to the unsynchronized state.
1490  * After a STP sync check the clock is not in sync. The machine check
1491  * is broadcasted to all cpus at the same time.
1492  */
1493 void stp_sync_check(void)
1494 {
1495 	disable_sync_clock(NULL);
1496 	queue_work(time_sync_wq, &stp_work);
1497 }
1498 
1499 /*
1500  * STP island condition machine check. This is called when an attached
1501  * server  attempts to communicate over an STP link and the servers
1502  * have matching CTN ids and have a valid stratum-1 configuration
1503  * but the configurations do not match.
1504  */
1505 void stp_island_check(void)
1506 {
1507 	disable_sync_clock(NULL);
1508 	queue_work(time_sync_wq, &stp_work);
1509 }
1510 
1511 
1512 static int stp_sync_clock(void *data)
1513 {
1514 	static int first;
1515 	unsigned long long old_clock, delta;
1516 	struct clock_sync_data *stp_sync;
1517 	int rc;
1518 
1519 	stp_sync = data;
1520 
1521 	if (xchg(&first, 1) == 1) {
1522 		/* Slave */
1523 		clock_sync_cpu(stp_sync);
1524 		return 0;
1525 	}
1526 
1527 	/* Wait until all other cpus entered the sync function. */
1528 	while (atomic_read(&stp_sync->cpus) != 0)
1529 		cpu_relax();
1530 
1531 	enable_sync_clock();
1532 
1533 	rc = 0;
1534 	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1535 	    stp_info.todoff[2] || stp_info.todoff[3] ||
1536 	    stp_info.tmd != 2) {
1537 		old_clock = get_clock();
1538 		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1539 		if (rc == 0) {
1540 			delta = adjust_time(old_clock, get_clock(), 0);
1541 			fixup_clock_comparator(delta);
1542 			rc = chsc_sstpi(stp_page, &stp_info,
1543 					sizeof(struct stp_sstpi));
1544 			if (rc == 0 && stp_info.tmd != 2)
1545 				rc = -EAGAIN;
1546 		}
1547 	}
1548 	if (rc) {
1549 		disable_sync_clock(NULL);
1550 		stp_sync->in_sync = -EAGAIN;
1551 	} else
1552 		stp_sync->in_sync = 1;
1553 	xchg(&first, 0);
1554 	return 0;
1555 }
1556 
1557 /*
1558  * STP work. Check for the STP state and take over the clock
1559  * synchronization if the STP clock source is usable.
1560  */
1561 static void stp_work_fn(struct work_struct *work)
1562 {
1563 	struct clock_sync_data stp_sync;
1564 	int rc;
1565 
1566 	/* prevent multiple execution. */
1567 	mutex_lock(&stp_work_mutex);
1568 
1569 	if (!stp_online) {
1570 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1571 		del_timer_sync(&stp_timer);
1572 		goto out_unlock;
1573 	}
1574 
1575 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1576 	if (rc)
1577 		goto out_unlock;
1578 
1579 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1580 	if (rc || stp_info.c == 0)
1581 		goto out_unlock;
1582 
1583 	/* Skip synchronization if the clock is already in sync. */
1584 	if (check_sync_clock())
1585 		goto out_unlock;
1586 
1587 	memset(&stp_sync, 0, sizeof(stp_sync));
1588 	get_online_cpus();
1589 	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1590 	stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1591 	put_online_cpus();
1592 
1593 	if (!check_sync_clock())
1594 		/*
1595 		 * There is a usable clock but the synchonization failed.
1596 		 * Retry after a second.
1597 		 */
1598 		mod_timer(&stp_timer, jiffies + HZ);
1599 
1600 out_unlock:
1601 	mutex_unlock(&stp_work_mutex);
1602 }
1603 
1604 /*
1605  * STP subsys sysfs interface functions
1606  */
1607 static struct bus_type stp_subsys = {
1608 	.name		= "stp",
1609 	.dev_name	= "stp",
1610 };
1611 
1612 static ssize_t stp_ctn_id_show(struct device *dev,
1613 				struct device_attribute *attr,
1614 				char *buf)
1615 {
1616 	if (!stp_online)
1617 		return -ENODATA;
1618 	return sprintf(buf, "%016llx\n",
1619 		       *(unsigned long long *) stp_info.ctnid);
1620 }
1621 
1622 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1623 
1624 static ssize_t stp_ctn_type_show(struct device *dev,
1625 				struct device_attribute *attr,
1626 				char *buf)
1627 {
1628 	if (!stp_online)
1629 		return -ENODATA;
1630 	return sprintf(buf, "%i\n", stp_info.ctn);
1631 }
1632 
1633 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1634 
1635 static ssize_t stp_dst_offset_show(struct device *dev,
1636 				   struct device_attribute *attr,
1637 				   char *buf)
1638 {
1639 	if (!stp_online || !(stp_info.vbits & 0x2000))
1640 		return -ENODATA;
1641 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1642 }
1643 
1644 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1645 
1646 static ssize_t stp_leap_seconds_show(struct device *dev,
1647 					struct device_attribute *attr,
1648 					char *buf)
1649 {
1650 	if (!stp_online || !(stp_info.vbits & 0x8000))
1651 		return -ENODATA;
1652 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1653 }
1654 
1655 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1656 
1657 static ssize_t stp_stratum_show(struct device *dev,
1658 				struct device_attribute *attr,
1659 				char *buf)
1660 {
1661 	if (!stp_online)
1662 		return -ENODATA;
1663 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1664 }
1665 
1666 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1667 
1668 static ssize_t stp_time_offset_show(struct device *dev,
1669 				struct device_attribute *attr,
1670 				char *buf)
1671 {
1672 	if (!stp_online || !(stp_info.vbits & 0x0800))
1673 		return -ENODATA;
1674 	return sprintf(buf, "%i\n", (int) stp_info.tto);
1675 }
1676 
1677 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1678 
1679 static ssize_t stp_time_zone_offset_show(struct device *dev,
1680 				struct device_attribute *attr,
1681 				char *buf)
1682 {
1683 	if (!stp_online || !(stp_info.vbits & 0x4000))
1684 		return -ENODATA;
1685 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1686 }
1687 
1688 static DEVICE_ATTR(time_zone_offset, 0400,
1689 			 stp_time_zone_offset_show, NULL);
1690 
1691 static ssize_t stp_timing_mode_show(struct device *dev,
1692 				struct device_attribute *attr,
1693 				char *buf)
1694 {
1695 	if (!stp_online)
1696 		return -ENODATA;
1697 	return sprintf(buf, "%i\n", stp_info.tmd);
1698 }
1699 
1700 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1701 
1702 static ssize_t stp_timing_state_show(struct device *dev,
1703 				struct device_attribute *attr,
1704 				char *buf)
1705 {
1706 	if (!stp_online)
1707 		return -ENODATA;
1708 	return sprintf(buf, "%i\n", stp_info.tst);
1709 }
1710 
1711 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1712 
1713 static ssize_t stp_online_show(struct device *dev,
1714 				struct device_attribute *attr,
1715 				char *buf)
1716 {
1717 	return sprintf(buf, "%i\n", stp_online);
1718 }
1719 
1720 static ssize_t stp_online_store(struct device *dev,
1721 				struct device_attribute *attr,
1722 				const char *buf, size_t count)
1723 {
1724 	unsigned int value;
1725 
1726 	value = simple_strtoul(buf, NULL, 0);
1727 	if (value != 0 && value != 1)
1728 		return -EINVAL;
1729 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1730 		return -EOPNOTSUPP;
1731 	mutex_lock(&clock_sync_mutex);
1732 	stp_online = value;
1733 	if (stp_online)
1734 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1735 	else
1736 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1737 	queue_work(time_sync_wq, &stp_work);
1738 	mutex_unlock(&clock_sync_mutex);
1739 	return count;
1740 }
1741 
1742 /*
1743  * Can't use DEVICE_ATTR because the attribute should be named
1744  * stp/online but dev_attr_online already exists in this file ..
1745  */
1746 static struct device_attribute dev_attr_stp_online = {
1747 	.attr = { .name = "online", .mode = 0600 },
1748 	.show	= stp_online_show,
1749 	.store	= stp_online_store,
1750 };
1751 
1752 static struct device_attribute *stp_attributes[] = {
1753 	&dev_attr_ctn_id,
1754 	&dev_attr_ctn_type,
1755 	&dev_attr_dst_offset,
1756 	&dev_attr_leap_seconds,
1757 	&dev_attr_stp_online,
1758 	&dev_attr_stratum,
1759 	&dev_attr_time_offset,
1760 	&dev_attr_time_zone_offset,
1761 	&dev_attr_timing_mode,
1762 	&dev_attr_timing_state,
1763 	NULL
1764 };
1765 
1766 static int __init stp_init_sysfs(void)
1767 {
1768 	struct device_attribute **attr;
1769 	int rc;
1770 
1771 	rc = subsys_system_register(&stp_subsys, NULL);
1772 	if (rc)
1773 		goto out;
1774 	for (attr = stp_attributes; *attr; attr++) {
1775 		rc = device_create_file(stp_subsys.dev_root, *attr);
1776 		if (rc)
1777 			goto out_unreg;
1778 	}
1779 	return 0;
1780 out_unreg:
1781 	for (; attr >= stp_attributes; attr--)
1782 		device_remove_file(stp_subsys.dev_root, *attr);
1783 	bus_unregister(&stp_subsys);
1784 out:
1785 	return rc;
1786 }
1787 
1788 device_initcall(stp_init_sysfs);
1789