xref: /linux/arch/s390/kernel/time.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  *    Time of day based timer functions.
3  *
4  *  S390 version
5  *    Copyright IBM Corp. 1999, 2008
6  *    Author(s): Hartmut Penner (hp@de.ibm.com),
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
8  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
9  *
10  *  Derived from "arch/i386/kernel/time.c"
11  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
12  */
13 
14 #define KMSG_COMPONENT "time"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16 
17 #include <linux/kernel_stat.h>
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/cpu.h>
27 #include <linux/stop_machine.h>
28 #include <linux/time.h>
29 #include <linux/device.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/smp.h>
33 #include <linux/types.h>
34 #include <linux/profile.h>
35 #include <linux/timex.h>
36 #include <linux/notifier.h>
37 #include <linux/timekeeper_internal.h>
38 #include <linux/clockchips.h>
39 #include <linux/gfp.h>
40 #include <linux/kprobes.h>
41 #include <asm/uaccess.h>
42 #include <asm/facility.h>
43 #include <asm/delay.h>
44 #include <asm/div64.h>
45 #include <asm/vdso.h>
46 #include <asm/irq.h>
47 #include <asm/irq_regs.h>
48 #include <asm/vtimer.h>
49 #include <asm/stp.h>
50 #include <asm/cio.h>
51 #include "entry.h"
52 
53 /* change this if you have some constant time drift */
54 #define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
55 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
56 
57 u64 sched_clock_base_cc = -1;	/* Force to data section. */
58 EXPORT_SYMBOL_GPL(sched_clock_base_cc);
59 
60 static DEFINE_PER_CPU(struct clock_event_device, comparators);
61 
62 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
63 EXPORT_SYMBOL(s390_epoch_delta_notifier);
64 
65 unsigned char ptff_function_mask[16];
66 unsigned long lpar_offset;
67 unsigned long initial_leap_seconds;
68 
69 /*
70  * Get time offsets with PTFF
71  */
72 void __init ptff_init(void)
73 {
74 	struct ptff_qto qto;
75 	struct ptff_qui qui;
76 
77 	if (!test_facility(28))
78 		return;
79 	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
80 
81 	/* get LPAR offset */
82 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
83 		lpar_offset = qto.tod_epoch_difference;
84 
85 	/* get initial leap seconds */
86 	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
87 		initial_leap_seconds = (unsigned long)
88 			((long) qui.old_leap * 4096000000L);
89 }
90 
91 /*
92  * Scheduler clock - returns current time in nanosec units.
93  */
94 unsigned long long notrace sched_clock(void)
95 {
96 	return tod_to_ns(get_tod_clock_monotonic());
97 }
98 NOKPROBE_SYMBOL(sched_clock);
99 
100 /*
101  * Monotonic_clock - returns # of nanoseconds passed since time_init()
102  */
103 unsigned long long monotonic_clock(void)
104 {
105 	return sched_clock();
106 }
107 EXPORT_SYMBOL(monotonic_clock);
108 
109 void tod_to_timeval(__u64 todval, struct timespec64 *xt)
110 {
111 	unsigned long long sec;
112 
113 	sec = todval >> 12;
114 	do_div(sec, 1000000);
115 	xt->tv_sec = sec;
116 	todval -= (sec * 1000000) << 12;
117 	xt->tv_nsec = ((todval * 1000) >> 12);
118 }
119 EXPORT_SYMBOL(tod_to_timeval);
120 
121 void clock_comparator_work(void)
122 {
123 	struct clock_event_device *cd;
124 
125 	S390_lowcore.clock_comparator = -1ULL;
126 	cd = this_cpu_ptr(&comparators);
127 	cd->event_handler(cd);
128 }
129 
130 /*
131  * Fixup the clock comparator.
132  */
133 static void fixup_clock_comparator(unsigned long long delta)
134 {
135 	/* If nobody is waiting there's nothing to fix. */
136 	if (S390_lowcore.clock_comparator == -1ULL)
137 		return;
138 	S390_lowcore.clock_comparator += delta;
139 	set_clock_comparator(S390_lowcore.clock_comparator);
140 }
141 
142 static int s390_next_event(unsigned long delta,
143 			   struct clock_event_device *evt)
144 {
145 	S390_lowcore.clock_comparator = get_tod_clock() + delta;
146 	set_clock_comparator(S390_lowcore.clock_comparator);
147 	return 0;
148 }
149 
150 /*
151  * Set up lowcore and control register of the current cpu to
152  * enable TOD clock and clock comparator interrupts.
153  */
154 void init_cpu_timer(void)
155 {
156 	struct clock_event_device *cd;
157 	int cpu;
158 
159 	S390_lowcore.clock_comparator = -1ULL;
160 	set_clock_comparator(S390_lowcore.clock_comparator);
161 
162 	cpu = smp_processor_id();
163 	cd = &per_cpu(comparators, cpu);
164 	cd->name		= "comparator";
165 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
166 	cd->mult		= 16777;
167 	cd->shift		= 12;
168 	cd->min_delta_ns	= 1;
169 	cd->max_delta_ns	= LONG_MAX;
170 	cd->rating		= 400;
171 	cd->cpumask		= cpumask_of(cpu);
172 	cd->set_next_event	= s390_next_event;
173 
174 	clockevents_register_device(cd);
175 
176 	/* Enable clock comparator timer interrupt. */
177 	__ctl_set_bit(0,11);
178 
179 	/* Always allow the timing alert external interrupt. */
180 	__ctl_set_bit(0, 4);
181 }
182 
183 static void clock_comparator_interrupt(struct ext_code ext_code,
184 				       unsigned int param32,
185 				       unsigned long param64)
186 {
187 	inc_irq_stat(IRQEXT_CLK);
188 	if (S390_lowcore.clock_comparator == -1ULL)
189 		set_clock_comparator(S390_lowcore.clock_comparator);
190 }
191 
192 static void stp_timing_alert(struct stp_irq_parm *);
193 
194 static void timing_alert_interrupt(struct ext_code ext_code,
195 				   unsigned int param32, unsigned long param64)
196 {
197 	inc_irq_stat(IRQEXT_TLA);
198 	if (param32 & 0x00038000)
199 		stp_timing_alert((struct stp_irq_parm *) &param32);
200 }
201 
202 static void stp_reset(void);
203 
204 void read_persistent_clock64(struct timespec64 *ts)
205 {
206 	__u64 clock;
207 
208 	clock = get_tod_clock() - initial_leap_seconds;
209 	tod_to_timeval(clock - TOD_UNIX_EPOCH, ts);
210 }
211 
212 void read_boot_clock64(struct timespec64 *ts)
213 {
214 	__u64 clock;
215 
216 	clock = sched_clock_base_cc - initial_leap_seconds;
217 	tod_to_timeval(clock - TOD_UNIX_EPOCH, ts);
218 }
219 
220 static cycle_t read_tod_clock(struct clocksource *cs)
221 {
222 	return get_tod_clock();
223 }
224 
225 static struct clocksource clocksource_tod = {
226 	.name		= "tod",
227 	.rating		= 400,
228 	.read		= read_tod_clock,
229 	.mask		= -1ULL,
230 	.mult		= 1000,
231 	.shift		= 12,
232 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
233 };
234 
235 struct clocksource * __init clocksource_default_clock(void)
236 {
237 	return &clocksource_tod;
238 }
239 
240 void update_vsyscall(struct timekeeper *tk)
241 {
242 	u64 nsecps;
243 
244 	if (tk->tkr_mono.clock != &clocksource_tod)
245 		return;
246 
247 	/* Make userspace gettimeofday spin until we're done. */
248 	++vdso_data->tb_update_count;
249 	smp_wmb();
250 	vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
251 	vdso_data->xtime_clock_sec = tk->xtime_sec;
252 	vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
253 	vdso_data->wtom_clock_sec =
254 		tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
255 	vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
256 		+ ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
257 	nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
258 	while (vdso_data->wtom_clock_nsec >= nsecps) {
259 		vdso_data->wtom_clock_nsec -= nsecps;
260 		vdso_data->wtom_clock_sec++;
261 	}
262 
263 	vdso_data->xtime_coarse_sec = tk->xtime_sec;
264 	vdso_data->xtime_coarse_nsec =
265 		(long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
266 	vdso_data->wtom_coarse_sec =
267 		vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
268 	vdso_data->wtom_coarse_nsec =
269 		vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
270 	while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
271 		vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
272 		vdso_data->wtom_coarse_sec++;
273 	}
274 
275 	vdso_data->tk_mult = tk->tkr_mono.mult;
276 	vdso_data->tk_shift = tk->tkr_mono.shift;
277 	smp_wmb();
278 	++vdso_data->tb_update_count;
279 }
280 
281 extern struct timezone sys_tz;
282 
283 void update_vsyscall_tz(void)
284 {
285 	/* Make userspace gettimeofday spin until we're done. */
286 	++vdso_data->tb_update_count;
287 	smp_wmb();
288 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
289 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
290 	smp_wmb();
291 	++vdso_data->tb_update_count;
292 }
293 
294 /*
295  * Initialize the TOD clock and the CPU timer of
296  * the boot cpu.
297  */
298 void __init time_init(void)
299 {
300 	/* Reset time synchronization interfaces. */
301 	stp_reset();
302 
303 	/* request the clock comparator external interrupt */
304 	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
305 		panic("Couldn't request external interrupt 0x1004");
306 
307 	/* request the timing alert external interrupt */
308 	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
309 		panic("Couldn't request external interrupt 0x1406");
310 
311 	if (__clocksource_register(&clocksource_tod) != 0)
312 		panic("Could not register TOD clock source");
313 
314 	/* Enable TOD clock interrupts on the boot cpu. */
315 	init_cpu_timer();
316 
317 	/* Enable cpu timer interrupts on the boot cpu. */
318 	vtime_init();
319 }
320 
321 /*
322  * The time is "clock". old is what we think the time is.
323  * Adjust the value by a multiple of jiffies and add the delta to ntp.
324  * "delay" is an approximation how long the synchronization took. If
325  * the time correction is positive, then "delay" is subtracted from
326  * the time difference and only the remaining part is passed to ntp.
327  */
328 static unsigned long long adjust_time(unsigned long long old,
329 				      unsigned long long clock,
330 				      unsigned long long delay)
331 {
332 	unsigned long long delta, ticks;
333 	struct timex adjust;
334 
335 	if (clock > old) {
336 		/* It is later than we thought. */
337 		delta = ticks = clock - old;
338 		delta = ticks = (delta < delay) ? 0 : delta - delay;
339 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
340 		adjust.offset = ticks * (1000000 / HZ);
341 	} else {
342 		/* It is earlier than we thought. */
343 		delta = ticks = old - clock;
344 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
345 		delta = -delta;
346 		adjust.offset = -ticks * (1000000 / HZ);
347 	}
348 	sched_clock_base_cc += delta;
349 	if (adjust.offset != 0) {
350 		pr_notice("The ETR interface has adjusted the clock "
351 			  "by %li microseconds\n", adjust.offset);
352 		adjust.modes = ADJ_OFFSET_SINGLESHOT;
353 		do_adjtimex(&adjust);
354 	}
355 	return delta;
356 }
357 
358 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
359 static DEFINE_MUTEX(clock_sync_mutex);
360 static unsigned long clock_sync_flags;
361 
362 #define CLOCK_SYNC_HAS_ETR	0
363 #define CLOCK_SYNC_HAS_STP	1
364 #define CLOCK_SYNC_ETR		2
365 #define CLOCK_SYNC_STP		3
366 
367 /*
368  * The get_clock function for the physical clock. It will get the current
369  * TOD clock, subtract the LPAR offset and write the result to *clock.
370  * The function returns 0 if the clock is in sync with the external time
371  * source. If the clock mode is local it will return -EOPNOTSUPP and
372  * -EAGAIN if the clock is not in sync with the external reference.
373  */
374 int get_phys_clock(unsigned long long *clock)
375 {
376 	atomic_t *sw_ptr;
377 	unsigned int sw0, sw1;
378 
379 	sw_ptr = &get_cpu_var(clock_sync_word);
380 	sw0 = atomic_read(sw_ptr);
381 	*clock = get_tod_clock() - lpar_offset;
382 	sw1 = atomic_read(sw_ptr);
383 	put_cpu_var(clock_sync_word);
384 	if (sw0 == sw1 && (sw0 & 0x80000000U))
385 		/* Success: time is in sync. */
386 		return 0;
387 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
388 	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
389 		return -EOPNOTSUPP;
390 	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
391 	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
392 		return -EACCES;
393 	return -EAGAIN;
394 }
395 EXPORT_SYMBOL(get_phys_clock);
396 
397 /*
398  * Make get_sync_clock return -EAGAIN.
399  */
400 static void disable_sync_clock(void *dummy)
401 {
402 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
403 	/*
404 	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
405 	 * fail until the sync bit is turned back on. In addition
406 	 * increase the "sequence" counter to avoid the race of an
407 	 * etr event and the complete recovery against get_sync_clock.
408 	 */
409 	atomic_andnot(0x80000000, sw_ptr);
410 	atomic_inc(sw_ptr);
411 }
412 
413 /*
414  * Make get_sync_clock return 0 again.
415  * Needs to be called from a context disabled for preemption.
416  */
417 static void enable_sync_clock(void)
418 {
419 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
420 	atomic_or(0x80000000, sw_ptr);
421 }
422 
423 /*
424  * Function to check if the clock is in sync.
425  */
426 static inline int check_sync_clock(void)
427 {
428 	atomic_t *sw_ptr;
429 	int rc;
430 
431 	sw_ptr = &get_cpu_var(clock_sync_word);
432 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
433 	put_cpu_var(clock_sync_word);
434 	return rc;
435 }
436 
437 /* Single threaded workqueue used for etr and stp sync events */
438 static struct workqueue_struct *time_sync_wq;
439 
440 static void __init time_init_wq(void)
441 {
442 	if (time_sync_wq)
443 		return;
444 	time_sync_wq = create_singlethread_workqueue("timesync");
445 }
446 
447 struct clock_sync_data {
448 	atomic_t cpus;
449 	int in_sync;
450 	unsigned long long fixup_cc;
451 	int etr_port;
452 	struct etr_aib *etr_aib;
453 };
454 
455 static void clock_sync_cpu(struct clock_sync_data *sync)
456 {
457 	atomic_dec(&sync->cpus);
458 	enable_sync_clock();
459 	/*
460 	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
461 	 * is called on all other cpus while the TOD clocks is stopped.
462 	 * __udelay will stop the cpu on an enabled wait psw until the
463 	 * TOD is running again.
464 	 */
465 	while (sync->in_sync == 0) {
466 		__udelay(1);
467 		/*
468 		 * A different cpu changes *in_sync. Therefore use
469 		 * barrier() to force memory access.
470 		 */
471 		barrier();
472 	}
473 	if (sync->in_sync != 1)
474 		/* Didn't work. Clear per-cpu in sync bit again. */
475 		disable_sync_clock(NULL);
476 	/*
477 	 * This round of TOD syncing is done. Set the clock comparator
478 	 * to the next tick and let the processor continue.
479 	 */
480 	fixup_clock_comparator(sync->fixup_cc);
481 }
482 
483 /*
484  * Server Time Protocol (STP) code.
485  */
486 static bool stp_online;
487 static struct stp_sstpi stp_info;
488 static void *stp_page;
489 
490 static void stp_work_fn(struct work_struct *work);
491 static DEFINE_MUTEX(stp_work_mutex);
492 static DECLARE_WORK(stp_work, stp_work_fn);
493 static struct timer_list stp_timer;
494 
495 static int __init early_parse_stp(char *p)
496 {
497 	return kstrtobool(p, &stp_online);
498 }
499 early_param("stp", early_parse_stp);
500 
501 /*
502  * Reset STP attachment.
503  */
504 static void __init stp_reset(void)
505 {
506 	int rc;
507 
508 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
509 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
510 	if (rc == 0)
511 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
512 	else if (stp_online) {
513 		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
514 		free_page((unsigned long) stp_page);
515 		stp_page = NULL;
516 		stp_online = 0;
517 	}
518 }
519 
520 static void stp_timeout(unsigned long dummy)
521 {
522 	queue_work(time_sync_wq, &stp_work);
523 }
524 
525 static int __init stp_init(void)
526 {
527 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
528 		return 0;
529 	setup_timer(&stp_timer, stp_timeout, 0UL);
530 	time_init_wq();
531 	if (!stp_online)
532 		return 0;
533 	queue_work(time_sync_wq, &stp_work);
534 	return 0;
535 }
536 
537 arch_initcall(stp_init);
538 
539 /*
540  * STP timing alert. There are three causes:
541  * 1) timing status change
542  * 2) link availability change
543  * 3) time control parameter change
544  * In all three cases we are only interested in the clock source state.
545  * If a STP clock source is now available use it.
546  */
547 static void stp_timing_alert(struct stp_irq_parm *intparm)
548 {
549 	if (intparm->tsc || intparm->lac || intparm->tcpc)
550 		queue_work(time_sync_wq, &stp_work);
551 }
552 
553 /*
554  * STP sync check machine check. This is called when the timing state
555  * changes from the synchronized state to the unsynchronized state.
556  * After a STP sync check the clock is not in sync. The machine check
557  * is broadcasted to all cpus at the same time.
558  */
559 int stp_sync_check(void)
560 {
561 	disable_sync_clock(NULL);
562 	return 1;
563 }
564 
565 /*
566  * STP island condition machine check. This is called when an attached
567  * server  attempts to communicate over an STP link and the servers
568  * have matching CTN ids and have a valid stratum-1 configuration
569  * but the configurations do not match.
570  */
571 int stp_island_check(void)
572 {
573 	disable_sync_clock(NULL);
574 	return 1;
575 }
576 
577 void stp_queue_work(void)
578 {
579 	queue_work(time_sync_wq, &stp_work);
580 }
581 
582 static int stp_sync_clock(void *data)
583 {
584 	static int first;
585 	unsigned long long old_clock, delta, new_clock, clock_delta;
586 	struct clock_sync_data *stp_sync;
587 	struct ptff_qto qto;
588 	int rc;
589 
590 	stp_sync = data;
591 
592 	if (xchg(&first, 1) == 1) {
593 		/* Slave */
594 		clock_sync_cpu(stp_sync);
595 		return 0;
596 	}
597 
598 	/* Wait until all other cpus entered the sync function. */
599 	while (atomic_read(&stp_sync->cpus) != 0)
600 		cpu_relax();
601 
602 	enable_sync_clock();
603 
604 	rc = 0;
605 	if (stp_info.todoff[0] || stp_info.todoff[1] ||
606 	    stp_info.todoff[2] || stp_info.todoff[3] ||
607 	    stp_info.tmd != 2) {
608 		old_clock = get_tod_clock();
609 		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, &clock_delta);
610 		if (rc == 0) {
611 			new_clock = old_clock + clock_delta;
612 			delta = adjust_time(old_clock, new_clock, 0);
613 			if (ptff_query(PTFF_QTO) &&
614 			    ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
615 				/* Update LPAR offset */
616 				lpar_offset = qto.tod_epoch_difference;
617 			atomic_notifier_call_chain(&s390_epoch_delta_notifier,
618 						   0, &clock_delta);
619 			fixup_clock_comparator(delta);
620 			rc = chsc_sstpi(stp_page, &stp_info,
621 					sizeof(struct stp_sstpi));
622 			if (rc == 0 && stp_info.tmd != 2)
623 				rc = -EAGAIN;
624 		}
625 	}
626 	if (rc) {
627 		disable_sync_clock(NULL);
628 		stp_sync->in_sync = -EAGAIN;
629 	} else
630 		stp_sync->in_sync = 1;
631 	xchg(&first, 0);
632 	return 0;
633 }
634 
635 /*
636  * STP work. Check for the STP state and take over the clock
637  * synchronization if the STP clock source is usable.
638  */
639 static void stp_work_fn(struct work_struct *work)
640 {
641 	struct clock_sync_data stp_sync;
642 	int rc;
643 
644 	/* prevent multiple execution. */
645 	mutex_lock(&stp_work_mutex);
646 
647 	if (!stp_online) {
648 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
649 		del_timer_sync(&stp_timer);
650 		goto out_unlock;
651 	}
652 
653 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL);
654 	if (rc)
655 		goto out_unlock;
656 
657 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
658 	if (rc || stp_info.c == 0)
659 		goto out_unlock;
660 
661 	/* Skip synchronization if the clock is already in sync. */
662 	if (check_sync_clock())
663 		goto out_unlock;
664 
665 	memset(&stp_sync, 0, sizeof(stp_sync));
666 	get_online_cpus();
667 	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
668 	stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
669 	put_online_cpus();
670 
671 	if (!check_sync_clock())
672 		/*
673 		 * There is a usable clock but the synchonization failed.
674 		 * Retry after a second.
675 		 */
676 		mod_timer(&stp_timer, jiffies + HZ);
677 
678 out_unlock:
679 	mutex_unlock(&stp_work_mutex);
680 }
681 
682 /*
683  * STP subsys sysfs interface functions
684  */
685 static struct bus_type stp_subsys = {
686 	.name		= "stp",
687 	.dev_name	= "stp",
688 };
689 
690 static ssize_t stp_ctn_id_show(struct device *dev,
691 				struct device_attribute *attr,
692 				char *buf)
693 {
694 	if (!stp_online)
695 		return -ENODATA;
696 	return sprintf(buf, "%016llx\n",
697 		       *(unsigned long long *) stp_info.ctnid);
698 }
699 
700 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
701 
702 static ssize_t stp_ctn_type_show(struct device *dev,
703 				struct device_attribute *attr,
704 				char *buf)
705 {
706 	if (!stp_online)
707 		return -ENODATA;
708 	return sprintf(buf, "%i\n", stp_info.ctn);
709 }
710 
711 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
712 
713 static ssize_t stp_dst_offset_show(struct device *dev,
714 				   struct device_attribute *attr,
715 				   char *buf)
716 {
717 	if (!stp_online || !(stp_info.vbits & 0x2000))
718 		return -ENODATA;
719 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
720 }
721 
722 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
723 
724 static ssize_t stp_leap_seconds_show(struct device *dev,
725 					struct device_attribute *attr,
726 					char *buf)
727 {
728 	if (!stp_online || !(stp_info.vbits & 0x8000))
729 		return -ENODATA;
730 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
731 }
732 
733 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
734 
735 static ssize_t stp_stratum_show(struct device *dev,
736 				struct device_attribute *attr,
737 				char *buf)
738 {
739 	if (!stp_online)
740 		return -ENODATA;
741 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
742 }
743 
744 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
745 
746 static ssize_t stp_time_offset_show(struct device *dev,
747 				struct device_attribute *attr,
748 				char *buf)
749 {
750 	if (!stp_online || !(stp_info.vbits & 0x0800))
751 		return -ENODATA;
752 	return sprintf(buf, "%i\n", (int) stp_info.tto);
753 }
754 
755 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
756 
757 static ssize_t stp_time_zone_offset_show(struct device *dev,
758 				struct device_attribute *attr,
759 				char *buf)
760 {
761 	if (!stp_online || !(stp_info.vbits & 0x4000))
762 		return -ENODATA;
763 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
764 }
765 
766 static DEVICE_ATTR(time_zone_offset, 0400,
767 			 stp_time_zone_offset_show, NULL);
768 
769 static ssize_t stp_timing_mode_show(struct device *dev,
770 				struct device_attribute *attr,
771 				char *buf)
772 {
773 	if (!stp_online)
774 		return -ENODATA;
775 	return sprintf(buf, "%i\n", stp_info.tmd);
776 }
777 
778 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
779 
780 static ssize_t stp_timing_state_show(struct device *dev,
781 				struct device_attribute *attr,
782 				char *buf)
783 {
784 	if (!stp_online)
785 		return -ENODATA;
786 	return sprintf(buf, "%i\n", stp_info.tst);
787 }
788 
789 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
790 
791 static ssize_t stp_online_show(struct device *dev,
792 				struct device_attribute *attr,
793 				char *buf)
794 {
795 	return sprintf(buf, "%i\n", stp_online);
796 }
797 
798 static ssize_t stp_online_store(struct device *dev,
799 				struct device_attribute *attr,
800 				const char *buf, size_t count)
801 {
802 	unsigned int value;
803 
804 	value = simple_strtoul(buf, NULL, 0);
805 	if (value != 0 && value != 1)
806 		return -EINVAL;
807 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
808 		return -EOPNOTSUPP;
809 	mutex_lock(&clock_sync_mutex);
810 	stp_online = value;
811 	if (stp_online)
812 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
813 	else
814 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
815 	queue_work(time_sync_wq, &stp_work);
816 	mutex_unlock(&clock_sync_mutex);
817 	return count;
818 }
819 
820 /*
821  * Can't use DEVICE_ATTR because the attribute should be named
822  * stp/online but dev_attr_online already exists in this file ..
823  */
824 static struct device_attribute dev_attr_stp_online = {
825 	.attr = { .name = "online", .mode = 0600 },
826 	.show	= stp_online_show,
827 	.store	= stp_online_store,
828 };
829 
830 static struct device_attribute *stp_attributes[] = {
831 	&dev_attr_ctn_id,
832 	&dev_attr_ctn_type,
833 	&dev_attr_dst_offset,
834 	&dev_attr_leap_seconds,
835 	&dev_attr_stp_online,
836 	&dev_attr_stratum,
837 	&dev_attr_time_offset,
838 	&dev_attr_time_zone_offset,
839 	&dev_attr_timing_mode,
840 	&dev_attr_timing_state,
841 	NULL
842 };
843 
844 static int __init stp_init_sysfs(void)
845 {
846 	struct device_attribute **attr;
847 	int rc;
848 
849 	rc = subsys_system_register(&stp_subsys, NULL);
850 	if (rc)
851 		goto out;
852 	for (attr = stp_attributes; *attr; attr++) {
853 		rc = device_create_file(stp_subsys.dev_root, *attr);
854 		if (rc)
855 			goto out_unreg;
856 	}
857 	return 0;
858 out_unreg:
859 	for (; attr >= stp_attributes; attr--)
860 		device_remove_file(stp_subsys.dev_root, *attr);
861 	bus_unregister(&stp_subsys);
862 out:
863 	return rc;
864 }
865 
866 device_initcall(stp_init_sysfs);
867