1 /* 2 * SMP related functions 3 * 4 * Copyright IBM Corp. 1999,2012 5 * Author(s): Denis Joseph Barrow, 6 * Martin Schwidefsky <schwidefsky@de.ibm.com>, 7 * Heiko Carstens <heiko.carstens@de.ibm.com>, 8 * 9 * based on other smp stuff by 10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net> 11 * (c) 1998 Ingo Molnar 12 * 13 * The code outside of smp.c uses logical cpu numbers, only smp.c does 14 * the translation of logical to physical cpu ids. All new code that 15 * operates on physical cpu numbers needs to go into smp.c. 16 */ 17 18 #define KMSG_COMPONENT "cpu" 19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 20 21 #include <linux/workqueue.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 #include <linux/mm.h> 25 #include <linux/err.h> 26 #include <linux/spinlock.h> 27 #include <linux/kernel_stat.h> 28 #include <linux/delay.h> 29 #include <linux/interrupt.h> 30 #include <linux/irqflags.h> 31 #include <linux/cpu.h> 32 #include <linux/slab.h> 33 #include <linux/crash_dump.h> 34 #include <asm/asm-offsets.h> 35 #include <asm/ipl.h> 36 #include <asm/setup.h> 37 #include <asm/irq.h> 38 #include <asm/tlbflush.h> 39 #include <asm/timer.h> 40 #include <asm/lowcore.h> 41 #include <asm/sclp.h> 42 #include <asm/vdso.h> 43 #include <asm/debug.h> 44 #include <asm/os_info.h> 45 #include "entry.h" 46 47 enum { 48 sigp_sense = 1, 49 sigp_external_call = 2, 50 sigp_emergency_signal = 3, 51 sigp_start = 4, 52 sigp_stop = 5, 53 sigp_restart = 6, 54 sigp_stop_and_store_status = 9, 55 sigp_initial_cpu_reset = 11, 56 sigp_cpu_reset = 12, 57 sigp_set_prefix = 13, 58 sigp_store_status_at_address = 14, 59 sigp_store_extended_status_at_address = 15, 60 sigp_set_architecture = 18, 61 sigp_conditional_emergency_signal = 19, 62 sigp_sense_running = 21, 63 }; 64 65 enum { 66 sigp_order_code_accepted = 0, 67 sigp_status_stored = 1, 68 sigp_busy = 2, 69 sigp_not_operational = 3, 70 }; 71 72 enum { 73 ec_schedule = 0, 74 ec_call_function, 75 ec_call_function_single, 76 ec_stop_cpu, 77 }; 78 79 enum { 80 CPU_STATE_STANDBY, 81 CPU_STATE_CONFIGURED, 82 }; 83 84 struct pcpu { 85 struct cpu cpu; 86 struct task_struct *idle; /* idle process for the cpu */ 87 struct _lowcore *lowcore; /* lowcore page(s) for the cpu */ 88 unsigned long async_stack; /* async stack for the cpu */ 89 unsigned long panic_stack; /* panic stack for the cpu */ 90 unsigned long ec_mask; /* bit mask for ec_xxx functions */ 91 int state; /* physical cpu state */ 92 u32 status; /* last status received via sigp */ 93 u16 address; /* physical cpu address */ 94 }; 95 96 static u8 boot_cpu_type; 97 static u16 boot_cpu_address; 98 static struct pcpu pcpu_devices[NR_CPUS]; 99 100 DEFINE_MUTEX(smp_cpu_state_mutex); 101 102 /* 103 * Signal processor helper functions. 104 */ 105 static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status) 106 { 107 register unsigned int reg1 asm ("1") = parm; 108 int cc; 109 110 asm volatile( 111 " sigp %1,%2,0(%3)\n" 112 " ipm %0\n" 113 " srl %0,28\n" 114 : "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc"); 115 if (status && cc == 1) 116 *status = reg1; 117 return cc; 118 } 119 120 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status) 121 { 122 int cc; 123 124 while (1) { 125 cc = __pcpu_sigp(addr, order, parm, status); 126 if (cc != sigp_busy) 127 return cc; 128 cpu_relax(); 129 } 130 } 131 132 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm) 133 { 134 int cc, retry; 135 136 for (retry = 0; ; retry++) { 137 cc = __pcpu_sigp(pcpu->address, order, parm, &pcpu->status); 138 if (cc != sigp_busy) 139 break; 140 if (retry >= 3) 141 udelay(10); 142 } 143 return cc; 144 } 145 146 static inline int pcpu_stopped(struct pcpu *pcpu) 147 { 148 if (__pcpu_sigp(pcpu->address, sigp_sense, 149 0, &pcpu->status) != sigp_status_stored) 150 return 0; 151 /* Check for stopped and check stop state */ 152 return !!(pcpu->status & 0x50); 153 } 154 155 static inline int pcpu_running(struct pcpu *pcpu) 156 { 157 if (__pcpu_sigp(pcpu->address, sigp_sense_running, 158 0, &pcpu->status) != sigp_status_stored) 159 return 1; 160 /* Check for running status */ 161 return !(pcpu->status & 0x400); 162 } 163 164 /* 165 * Find struct pcpu by cpu address. 166 */ 167 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address) 168 { 169 int cpu; 170 171 for_each_cpu(cpu, mask) 172 if (pcpu_devices[cpu].address == address) 173 return pcpu_devices + cpu; 174 return NULL; 175 } 176 177 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit) 178 { 179 int order; 180 181 set_bit(ec_bit, &pcpu->ec_mask); 182 order = pcpu_running(pcpu) ? 183 sigp_external_call : sigp_emergency_signal; 184 pcpu_sigp_retry(pcpu, order, 0); 185 } 186 187 static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu) 188 { 189 struct _lowcore *lc; 190 191 if (pcpu != &pcpu_devices[0]) { 192 pcpu->lowcore = (struct _lowcore *) 193 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER); 194 pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER); 195 pcpu->panic_stack = __get_free_page(GFP_KERNEL); 196 if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack) 197 goto out; 198 } 199 lc = pcpu->lowcore; 200 memcpy(lc, &S390_lowcore, 512); 201 memset((char *) lc + 512, 0, sizeof(*lc) - 512); 202 lc->async_stack = pcpu->async_stack + ASYNC_SIZE; 203 lc->panic_stack = pcpu->panic_stack + PAGE_SIZE; 204 lc->cpu_nr = cpu; 205 #ifndef CONFIG_64BIT 206 if (MACHINE_HAS_IEEE) { 207 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL); 208 if (!lc->extended_save_area_addr) 209 goto out; 210 } 211 #else 212 if (vdso_alloc_per_cpu(lc)) 213 goto out; 214 #endif 215 lowcore_ptr[cpu] = lc; 216 pcpu_sigp_retry(pcpu, sigp_set_prefix, (u32)(unsigned long) lc); 217 return 0; 218 out: 219 if (pcpu != &pcpu_devices[0]) { 220 free_page(pcpu->panic_stack); 221 free_pages(pcpu->async_stack, ASYNC_ORDER); 222 free_pages((unsigned long) pcpu->lowcore, LC_ORDER); 223 } 224 return -ENOMEM; 225 } 226 227 static void pcpu_free_lowcore(struct pcpu *pcpu) 228 { 229 pcpu_sigp_retry(pcpu, sigp_set_prefix, 0); 230 lowcore_ptr[pcpu - pcpu_devices] = NULL; 231 #ifndef CONFIG_64BIT 232 if (MACHINE_HAS_IEEE) { 233 struct _lowcore *lc = pcpu->lowcore; 234 235 free_page((unsigned long) lc->extended_save_area_addr); 236 lc->extended_save_area_addr = 0; 237 } 238 #else 239 vdso_free_per_cpu(pcpu->lowcore); 240 #endif 241 if (pcpu != &pcpu_devices[0]) { 242 free_page(pcpu->panic_stack); 243 free_pages(pcpu->async_stack, ASYNC_ORDER); 244 free_pages((unsigned long) pcpu->lowcore, LC_ORDER); 245 } 246 } 247 248 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu) 249 { 250 struct _lowcore *lc = pcpu->lowcore; 251 252 atomic_inc(&init_mm.context.attach_count); 253 lc->cpu_nr = cpu; 254 lc->percpu_offset = __per_cpu_offset[cpu]; 255 lc->kernel_asce = S390_lowcore.kernel_asce; 256 lc->machine_flags = S390_lowcore.machine_flags; 257 lc->ftrace_func = S390_lowcore.ftrace_func; 258 lc->user_timer = lc->system_timer = lc->steal_timer = 0; 259 __ctl_store(lc->cregs_save_area, 0, 15); 260 save_access_regs((unsigned int *) lc->access_regs_save_area); 261 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list, 262 MAX_FACILITY_BIT/8); 263 } 264 265 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk) 266 { 267 struct _lowcore *lc = pcpu->lowcore; 268 struct thread_info *ti = task_thread_info(tsk); 269 270 lc->kernel_stack = (unsigned long) task_stack_page(tsk) + THREAD_SIZE; 271 lc->thread_info = (unsigned long) task_thread_info(tsk); 272 lc->current_task = (unsigned long) tsk; 273 lc->user_timer = ti->user_timer; 274 lc->system_timer = ti->system_timer; 275 lc->steal_timer = 0; 276 } 277 278 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data) 279 { 280 struct _lowcore *lc = pcpu->lowcore; 281 282 lc->restart_stack = lc->kernel_stack; 283 lc->restart_fn = (unsigned long) func; 284 lc->restart_data = (unsigned long) data; 285 lc->restart_source = -1UL; 286 pcpu_sigp_retry(pcpu, sigp_restart, 0); 287 } 288 289 /* 290 * Call function via PSW restart on pcpu and stop the current cpu. 291 */ 292 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *), 293 void *data, unsigned long stack) 294 { 295 struct _lowcore *lc = pcpu->lowcore; 296 unsigned short this_cpu; 297 298 __load_psw_mask(psw_kernel_bits); 299 this_cpu = stap(); 300 if (pcpu->address == this_cpu) 301 func(data); /* should not return */ 302 /* Stop target cpu (if func returns this stops the current cpu). */ 303 pcpu_sigp_retry(pcpu, sigp_stop, 0); 304 /* Restart func on the target cpu and stop the current cpu. */ 305 lc->restart_stack = stack; 306 lc->restart_fn = (unsigned long) func; 307 lc->restart_data = (unsigned long) data; 308 lc->restart_source = (unsigned long) this_cpu; 309 asm volatile( 310 "0: sigp 0,%0,6 # sigp restart to target cpu\n" 311 " brc 2,0b # busy, try again\n" 312 "1: sigp 0,%1,5 # sigp stop to current cpu\n" 313 " brc 2,1b # busy, try again\n" 314 : : "d" (pcpu->address), "d" (this_cpu) : "0", "1", "cc"); 315 for (;;) ; 316 } 317 318 /* 319 * Call function on an online CPU. 320 */ 321 void smp_call_online_cpu(void (*func)(void *), void *data) 322 { 323 struct pcpu *pcpu; 324 325 /* Use the current cpu if it is online. */ 326 pcpu = pcpu_find_address(cpu_online_mask, stap()); 327 if (!pcpu) 328 /* Use the first online cpu. */ 329 pcpu = pcpu_devices + cpumask_first(cpu_online_mask); 330 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack); 331 } 332 333 /* 334 * Call function on the ipl CPU. 335 */ 336 void smp_call_ipl_cpu(void (*func)(void *), void *data) 337 { 338 pcpu_delegate(&pcpu_devices[0], func, data, 339 pcpu_devices->panic_stack + PAGE_SIZE); 340 } 341 342 int smp_find_processor_id(u16 address) 343 { 344 int cpu; 345 346 for_each_present_cpu(cpu) 347 if (pcpu_devices[cpu].address == address) 348 return cpu; 349 return -1; 350 } 351 352 int smp_vcpu_scheduled(int cpu) 353 { 354 return pcpu_running(pcpu_devices + cpu); 355 } 356 357 void smp_yield(void) 358 { 359 if (MACHINE_HAS_DIAG44) 360 asm volatile("diag 0,0,0x44"); 361 } 362 363 void smp_yield_cpu(int cpu) 364 { 365 if (MACHINE_HAS_DIAG9C) 366 asm volatile("diag %0,0,0x9c" 367 : : "d" (pcpu_devices[cpu].address)); 368 else if (MACHINE_HAS_DIAG44) 369 asm volatile("diag 0,0,0x44"); 370 } 371 372 /* 373 * Send cpus emergency shutdown signal. This gives the cpus the 374 * opportunity to complete outstanding interrupts. 375 */ 376 void smp_emergency_stop(cpumask_t *cpumask) 377 { 378 u64 end; 379 int cpu; 380 381 end = get_clock() + (1000000UL << 12); 382 for_each_cpu(cpu, cpumask) { 383 struct pcpu *pcpu = pcpu_devices + cpu; 384 set_bit(ec_stop_cpu, &pcpu->ec_mask); 385 while (__pcpu_sigp(pcpu->address, sigp_emergency_signal, 386 0, NULL) == sigp_busy && 387 get_clock() < end) 388 cpu_relax(); 389 } 390 while (get_clock() < end) { 391 for_each_cpu(cpu, cpumask) 392 if (pcpu_stopped(pcpu_devices + cpu)) 393 cpumask_clear_cpu(cpu, cpumask); 394 if (cpumask_empty(cpumask)) 395 break; 396 cpu_relax(); 397 } 398 } 399 400 /* 401 * Stop all cpus but the current one. 402 */ 403 void smp_send_stop(void) 404 { 405 cpumask_t cpumask; 406 int cpu; 407 408 /* Disable all interrupts/machine checks */ 409 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT); 410 trace_hardirqs_off(); 411 412 debug_set_critical(); 413 cpumask_copy(&cpumask, cpu_online_mask); 414 cpumask_clear_cpu(smp_processor_id(), &cpumask); 415 416 if (oops_in_progress) 417 smp_emergency_stop(&cpumask); 418 419 /* stop all processors */ 420 for_each_cpu(cpu, &cpumask) { 421 struct pcpu *pcpu = pcpu_devices + cpu; 422 pcpu_sigp_retry(pcpu, sigp_stop, 0); 423 while (!pcpu_stopped(pcpu)) 424 cpu_relax(); 425 } 426 } 427 428 /* 429 * Stop the current cpu. 430 */ 431 void smp_stop_cpu(void) 432 { 433 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0); 434 for (;;) ; 435 } 436 437 /* 438 * This is the main routine where commands issued by other 439 * cpus are handled. 440 */ 441 static void do_ext_call_interrupt(struct ext_code ext_code, 442 unsigned int param32, unsigned long param64) 443 { 444 unsigned long bits; 445 int cpu; 446 447 cpu = smp_processor_id(); 448 if (ext_code.code == 0x1202) 449 kstat_cpu(cpu).irqs[EXTINT_EXC]++; 450 else 451 kstat_cpu(cpu).irqs[EXTINT_EMS]++; 452 /* 453 * handle bit signal external calls 454 */ 455 bits = xchg(&pcpu_devices[cpu].ec_mask, 0); 456 457 if (test_bit(ec_stop_cpu, &bits)) 458 smp_stop_cpu(); 459 460 if (test_bit(ec_schedule, &bits)) 461 scheduler_ipi(); 462 463 if (test_bit(ec_call_function, &bits)) 464 generic_smp_call_function_interrupt(); 465 466 if (test_bit(ec_call_function_single, &bits)) 467 generic_smp_call_function_single_interrupt(); 468 469 } 470 471 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 472 { 473 int cpu; 474 475 for_each_cpu(cpu, mask) 476 pcpu_ec_call(pcpu_devices + cpu, ec_call_function); 477 } 478 479 void arch_send_call_function_single_ipi(int cpu) 480 { 481 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); 482 } 483 484 #ifndef CONFIG_64BIT 485 /* 486 * this function sends a 'purge tlb' signal to another CPU. 487 */ 488 static void smp_ptlb_callback(void *info) 489 { 490 __tlb_flush_local(); 491 } 492 493 void smp_ptlb_all(void) 494 { 495 on_each_cpu(smp_ptlb_callback, NULL, 1); 496 } 497 EXPORT_SYMBOL(smp_ptlb_all); 498 #endif /* ! CONFIG_64BIT */ 499 500 /* 501 * this function sends a 'reschedule' IPI to another CPU. 502 * it goes straight through and wastes no time serializing 503 * anything. Worst case is that we lose a reschedule ... 504 */ 505 void smp_send_reschedule(int cpu) 506 { 507 pcpu_ec_call(pcpu_devices + cpu, ec_schedule); 508 } 509 510 /* 511 * parameter area for the set/clear control bit callbacks 512 */ 513 struct ec_creg_mask_parms { 514 unsigned long orval; 515 unsigned long andval; 516 int cr; 517 }; 518 519 /* 520 * callback for setting/clearing control bits 521 */ 522 static void smp_ctl_bit_callback(void *info) 523 { 524 struct ec_creg_mask_parms *pp = info; 525 unsigned long cregs[16]; 526 527 __ctl_store(cregs, 0, 15); 528 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval; 529 __ctl_load(cregs, 0, 15); 530 } 531 532 /* 533 * Set a bit in a control register of all cpus 534 */ 535 void smp_ctl_set_bit(int cr, int bit) 536 { 537 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr }; 538 539 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 540 } 541 EXPORT_SYMBOL(smp_ctl_set_bit); 542 543 /* 544 * Clear a bit in a control register of all cpus 545 */ 546 void smp_ctl_clear_bit(int cr, int bit) 547 { 548 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr }; 549 550 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 551 } 552 EXPORT_SYMBOL(smp_ctl_clear_bit); 553 554 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP) 555 556 struct save_area *zfcpdump_save_areas[NR_CPUS + 1]; 557 EXPORT_SYMBOL_GPL(zfcpdump_save_areas); 558 559 static void __init smp_get_save_area(int cpu, u16 address) 560 { 561 void *lc = pcpu_devices[0].lowcore; 562 struct save_area *save_area; 563 564 if (is_kdump_kernel()) 565 return; 566 if (!OLDMEM_BASE && (address == boot_cpu_address || 567 ipl_info.type != IPL_TYPE_FCP_DUMP)) 568 return; 569 if (cpu >= NR_CPUS) { 570 pr_warning("CPU %i exceeds the maximum %i and is excluded " 571 "from the dump\n", cpu, NR_CPUS - 1); 572 return; 573 } 574 save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL); 575 if (!save_area) 576 panic("could not allocate memory for save area\n"); 577 zfcpdump_save_areas[cpu] = save_area; 578 #ifdef CONFIG_CRASH_DUMP 579 if (address == boot_cpu_address) { 580 /* Copy the registers of the boot cpu. */ 581 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area), 582 SAVE_AREA_BASE - PAGE_SIZE, 0); 583 return; 584 } 585 #endif 586 /* Get the registers of a non-boot cpu. */ 587 __pcpu_sigp_relax(address, sigp_stop_and_store_status, 0, NULL); 588 memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area)); 589 } 590 591 int smp_store_status(int cpu) 592 { 593 struct pcpu *pcpu; 594 595 pcpu = pcpu_devices + cpu; 596 if (__pcpu_sigp_relax(pcpu->address, sigp_stop_and_store_status, 597 0, NULL) != sigp_order_code_accepted) 598 return -EIO; 599 return 0; 600 } 601 602 #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */ 603 604 static inline void smp_get_save_area(int cpu, u16 address) { } 605 606 #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */ 607 608 static struct sclp_cpu_info *smp_get_cpu_info(void) 609 { 610 static int use_sigp_detection; 611 struct sclp_cpu_info *info; 612 int address; 613 614 info = kzalloc(sizeof(*info), GFP_KERNEL); 615 if (info && (use_sigp_detection || sclp_get_cpu_info(info))) { 616 use_sigp_detection = 1; 617 for (address = 0; address <= MAX_CPU_ADDRESS; address++) { 618 if (__pcpu_sigp_relax(address, sigp_sense, 0, NULL) == 619 sigp_not_operational) 620 continue; 621 info->cpu[info->configured].address = address; 622 info->configured++; 623 } 624 info->combined = info->configured; 625 } 626 return info; 627 } 628 629 static int __devinit smp_add_present_cpu(int cpu); 630 631 static int __devinit __smp_rescan_cpus(struct sclp_cpu_info *info, 632 int sysfs_add) 633 { 634 struct pcpu *pcpu; 635 cpumask_t avail; 636 int cpu, nr, i; 637 638 nr = 0; 639 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask); 640 cpu = cpumask_first(&avail); 641 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) { 642 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type) 643 continue; 644 if (pcpu_find_address(cpu_present_mask, info->cpu[i].address)) 645 continue; 646 pcpu = pcpu_devices + cpu; 647 pcpu->address = info->cpu[i].address; 648 pcpu->state = (cpu >= info->configured) ? 649 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED; 650 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 651 set_cpu_present(cpu, true); 652 if (sysfs_add && smp_add_present_cpu(cpu) != 0) 653 set_cpu_present(cpu, false); 654 else 655 nr++; 656 cpu = cpumask_next(cpu, &avail); 657 } 658 return nr; 659 } 660 661 static void __init smp_detect_cpus(void) 662 { 663 unsigned int cpu, c_cpus, s_cpus; 664 struct sclp_cpu_info *info; 665 666 info = smp_get_cpu_info(); 667 if (!info) 668 panic("smp_detect_cpus failed to allocate memory\n"); 669 if (info->has_cpu_type) { 670 for (cpu = 0; cpu < info->combined; cpu++) { 671 if (info->cpu[cpu].address != boot_cpu_address) 672 continue; 673 /* The boot cpu dictates the cpu type. */ 674 boot_cpu_type = info->cpu[cpu].type; 675 break; 676 } 677 } 678 c_cpus = s_cpus = 0; 679 for (cpu = 0; cpu < info->combined; cpu++) { 680 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type) 681 continue; 682 if (cpu < info->configured) { 683 smp_get_save_area(c_cpus, info->cpu[cpu].address); 684 c_cpus++; 685 } else 686 s_cpus++; 687 } 688 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus); 689 get_online_cpus(); 690 __smp_rescan_cpus(info, 0); 691 put_online_cpus(); 692 kfree(info); 693 } 694 695 /* 696 * Activate a secondary processor. 697 */ 698 static void __cpuinit smp_start_secondary(void *cpuvoid) 699 { 700 S390_lowcore.last_update_clock = get_clock(); 701 S390_lowcore.restart_stack = (unsigned long) restart_stack; 702 S390_lowcore.restart_fn = (unsigned long) do_restart; 703 S390_lowcore.restart_data = 0; 704 S390_lowcore.restart_source = -1UL; 705 restore_access_regs(S390_lowcore.access_regs_save_area); 706 __ctl_load(S390_lowcore.cregs_save_area, 0, 15); 707 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT); 708 cpu_init(); 709 preempt_disable(); 710 init_cpu_timer(); 711 init_cpu_vtimer(); 712 pfault_init(); 713 notify_cpu_starting(smp_processor_id()); 714 ipi_call_lock(); 715 set_cpu_online(smp_processor_id(), true); 716 ipi_call_unlock(); 717 local_irq_enable(); 718 /* cpu_idle will call schedule for us */ 719 cpu_idle(); 720 } 721 722 struct create_idle { 723 struct work_struct work; 724 struct task_struct *idle; 725 struct completion done; 726 int cpu; 727 }; 728 729 static void __cpuinit smp_fork_idle(struct work_struct *work) 730 { 731 struct create_idle *c_idle; 732 733 c_idle = container_of(work, struct create_idle, work); 734 c_idle->idle = fork_idle(c_idle->cpu); 735 complete(&c_idle->done); 736 } 737 738 /* Upping and downing of CPUs */ 739 int __cpuinit __cpu_up(unsigned int cpu) 740 { 741 struct create_idle c_idle; 742 struct pcpu *pcpu; 743 int rc; 744 745 pcpu = pcpu_devices + cpu; 746 if (pcpu->state != CPU_STATE_CONFIGURED) 747 return -EIO; 748 if (pcpu_sigp_retry(pcpu, sigp_initial_cpu_reset, 0) != 749 sigp_order_code_accepted) 750 return -EIO; 751 if (!pcpu->idle) { 752 c_idle.done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done); 753 INIT_WORK_ONSTACK(&c_idle.work, smp_fork_idle); 754 c_idle.cpu = cpu; 755 schedule_work(&c_idle.work); 756 wait_for_completion(&c_idle.done); 757 if (IS_ERR(c_idle.idle)) 758 return PTR_ERR(c_idle.idle); 759 pcpu->idle = c_idle.idle; 760 } 761 init_idle(pcpu->idle, cpu); 762 rc = pcpu_alloc_lowcore(pcpu, cpu); 763 if (rc) 764 return rc; 765 pcpu_prepare_secondary(pcpu, cpu); 766 pcpu_attach_task(pcpu, pcpu->idle); 767 pcpu_start_fn(pcpu, smp_start_secondary, NULL); 768 while (!cpu_online(cpu)) 769 cpu_relax(); 770 return 0; 771 } 772 773 static int __init setup_possible_cpus(char *s) 774 { 775 int max, cpu; 776 777 if (kstrtoint(s, 0, &max) < 0) 778 return 0; 779 init_cpu_possible(cpumask_of(0)); 780 for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++) 781 set_cpu_possible(cpu, true); 782 return 0; 783 } 784 early_param("possible_cpus", setup_possible_cpus); 785 786 #ifdef CONFIG_HOTPLUG_CPU 787 788 int __cpu_disable(void) 789 { 790 unsigned long cregs[16]; 791 792 set_cpu_online(smp_processor_id(), false); 793 /* Disable pseudo page faults on this cpu. */ 794 pfault_fini(); 795 /* Disable interrupt sources via control register. */ 796 __ctl_store(cregs, 0, 15); 797 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */ 798 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */ 799 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */ 800 __ctl_load(cregs, 0, 15); 801 return 0; 802 } 803 804 void __cpu_die(unsigned int cpu) 805 { 806 struct pcpu *pcpu; 807 808 /* Wait until target cpu is down */ 809 pcpu = pcpu_devices + cpu; 810 while (!pcpu_stopped(pcpu)) 811 cpu_relax(); 812 pcpu_free_lowcore(pcpu); 813 atomic_dec(&init_mm.context.attach_count); 814 } 815 816 void __noreturn cpu_die(void) 817 { 818 idle_task_exit(); 819 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0); 820 for (;;) ; 821 } 822 823 #endif /* CONFIG_HOTPLUG_CPU */ 824 825 static void smp_call_os_info_init_fn(void) 826 { 827 int (*init_fn)(void); 828 unsigned long size; 829 830 init_fn = os_info_old_entry(OS_INFO_INIT_FN, &size); 831 if (!init_fn) 832 return; 833 init_fn(); 834 } 835 836 void __init smp_prepare_cpus(unsigned int max_cpus) 837 { 838 /* request the 0x1201 emergency signal external interrupt */ 839 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0) 840 panic("Couldn't request external interrupt 0x1201"); 841 /* request the 0x1202 external call external interrupt */ 842 if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0) 843 panic("Couldn't request external interrupt 0x1202"); 844 smp_call_os_info_init_fn(); 845 smp_detect_cpus(); 846 } 847 848 void __init smp_prepare_boot_cpu(void) 849 { 850 struct pcpu *pcpu = pcpu_devices; 851 852 boot_cpu_address = stap(); 853 pcpu->idle = current; 854 pcpu->state = CPU_STATE_CONFIGURED; 855 pcpu->address = boot_cpu_address; 856 pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix(); 857 pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE; 858 pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE; 859 S390_lowcore.percpu_offset = __per_cpu_offset[0]; 860 cpu_set_polarization(0, POLARIZATION_UNKNOWN); 861 set_cpu_present(0, true); 862 set_cpu_online(0, true); 863 } 864 865 void __init smp_cpus_done(unsigned int max_cpus) 866 { 867 } 868 869 void __init smp_setup_processor_id(void) 870 { 871 S390_lowcore.cpu_nr = 0; 872 } 873 874 /* 875 * the frequency of the profiling timer can be changed 876 * by writing a multiplier value into /proc/profile. 877 * 878 * usually you want to run this on all CPUs ;) 879 */ 880 int setup_profiling_timer(unsigned int multiplier) 881 { 882 return 0; 883 } 884 885 #ifdef CONFIG_HOTPLUG_CPU 886 static ssize_t cpu_configure_show(struct device *dev, 887 struct device_attribute *attr, char *buf) 888 { 889 ssize_t count; 890 891 mutex_lock(&smp_cpu_state_mutex); 892 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state); 893 mutex_unlock(&smp_cpu_state_mutex); 894 return count; 895 } 896 897 static ssize_t cpu_configure_store(struct device *dev, 898 struct device_attribute *attr, 899 const char *buf, size_t count) 900 { 901 struct pcpu *pcpu; 902 int cpu, val, rc; 903 char delim; 904 905 if (sscanf(buf, "%d %c", &val, &delim) != 1) 906 return -EINVAL; 907 if (val != 0 && val != 1) 908 return -EINVAL; 909 get_online_cpus(); 910 mutex_lock(&smp_cpu_state_mutex); 911 rc = -EBUSY; 912 /* disallow configuration changes of online cpus and cpu 0 */ 913 cpu = dev->id; 914 if (cpu_online(cpu) || cpu == 0) 915 goto out; 916 pcpu = pcpu_devices + cpu; 917 rc = 0; 918 switch (val) { 919 case 0: 920 if (pcpu->state != CPU_STATE_CONFIGURED) 921 break; 922 rc = sclp_cpu_deconfigure(pcpu->address); 923 if (rc) 924 break; 925 pcpu->state = CPU_STATE_STANDBY; 926 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 927 topology_expect_change(); 928 break; 929 case 1: 930 if (pcpu->state != CPU_STATE_STANDBY) 931 break; 932 rc = sclp_cpu_configure(pcpu->address); 933 if (rc) 934 break; 935 pcpu->state = CPU_STATE_CONFIGURED; 936 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 937 topology_expect_change(); 938 break; 939 default: 940 break; 941 } 942 out: 943 mutex_unlock(&smp_cpu_state_mutex); 944 put_online_cpus(); 945 return rc ? rc : count; 946 } 947 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store); 948 #endif /* CONFIG_HOTPLUG_CPU */ 949 950 static ssize_t show_cpu_address(struct device *dev, 951 struct device_attribute *attr, char *buf) 952 { 953 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address); 954 } 955 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL); 956 957 static struct attribute *cpu_common_attrs[] = { 958 #ifdef CONFIG_HOTPLUG_CPU 959 &dev_attr_configure.attr, 960 #endif 961 &dev_attr_address.attr, 962 NULL, 963 }; 964 965 static struct attribute_group cpu_common_attr_group = { 966 .attrs = cpu_common_attrs, 967 }; 968 969 static ssize_t show_capability(struct device *dev, 970 struct device_attribute *attr, char *buf) 971 { 972 unsigned int capability; 973 int rc; 974 975 rc = get_cpu_capability(&capability); 976 if (rc) 977 return rc; 978 return sprintf(buf, "%u\n", capability); 979 } 980 static DEVICE_ATTR(capability, 0444, show_capability, NULL); 981 982 static ssize_t show_idle_count(struct device *dev, 983 struct device_attribute *attr, char *buf) 984 { 985 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id); 986 unsigned long long idle_count; 987 unsigned int sequence; 988 989 do { 990 sequence = ACCESS_ONCE(idle->sequence); 991 idle_count = ACCESS_ONCE(idle->idle_count); 992 if (ACCESS_ONCE(idle->idle_enter)) 993 idle_count++; 994 } while ((sequence & 1) || (idle->sequence != sequence)); 995 return sprintf(buf, "%llu\n", idle_count); 996 } 997 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL); 998 999 static ssize_t show_idle_time(struct device *dev, 1000 struct device_attribute *attr, char *buf) 1001 { 1002 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id); 1003 unsigned long long now, idle_time, idle_enter, idle_exit; 1004 unsigned int sequence; 1005 1006 do { 1007 now = get_clock(); 1008 sequence = ACCESS_ONCE(idle->sequence); 1009 idle_time = ACCESS_ONCE(idle->idle_time); 1010 idle_enter = ACCESS_ONCE(idle->idle_enter); 1011 idle_exit = ACCESS_ONCE(idle->idle_exit); 1012 } while ((sequence & 1) || (idle->sequence != sequence)); 1013 idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0; 1014 return sprintf(buf, "%llu\n", idle_time >> 12); 1015 } 1016 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL); 1017 1018 static struct attribute *cpu_online_attrs[] = { 1019 &dev_attr_capability.attr, 1020 &dev_attr_idle_count.attr, 1021 &dev_attr_idle_time_us.attr, 1022 NULL, 1023 }; 1024 1025 static struct attribute_group cpu_online_attr_group = { 1026 .attrs = cpu_online_attrs, 1027 }; 1028 1029 static int __cpuinit smp_cpu_notify(struct notifier_block *self, 1030 unsigned long action, void *hcpu) 1031 { 1032 unsigned int cpu = (unsigned int)(long)hcpu; 1033 struct cpu *c = &pcpu_devices[cpu].cpu; 1034 struct device *s = &c->dev; 1035 struct s390_idle_data *idle; 1036 int err = 0; 1037 1038 switch (action) { 1039 case CPU_ONLINE: 1040 case CPU_ONLINE_FROZEN: 1041 idle = &per_cpu(s390_idle, cpu); 1042 memset(idle, 0, sizeof(struct s390_idle_data)); 1043 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group); 1044 break; 1045 case CPU_DEAD: 1046 case CPU_DEAD_FROZEN: 1047 sysfs_remove_group(&s->kobj, &cpu_online_attr_group); 1048 break; 1049 } 1050 return notifier_from_errno(err); 1051 } 1052 1053 static struct notifier_block __cpuinitdata smp_cpu_nb = { 1054 .notifier_call = smp_cpu_notify, 1055 }; 1056 1057 static int __devinit smp_add_present_cpu(int cpu) 1058 { 1059 struct cpu *c = &pcpu_devices[cpu].cpu; 1060 struct device *s = &c->dev; 1061 int rc; 1062 1063 c->hotpluggable = 1; 1064 rc = register_cpu(c, cpu); 1065 if (rc) 1066 goto out; 1067 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group); 1068 if (rc) 1069 goto out_cpu; 1070 if (cpu_online(cpu)) { 1071 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group); 1072 if (rc) 1073 goto out_online; 1074 } 1075 rc = topology_cpu_init(c); 1076 if (rc) 1077 goto out_topology; 1078 return 0; 1079 1080 out_topology: 1081 if (cpu_online(cpu)) 1082 sysfs_remove_group(&s->kobj, &cpu_online_attr_group); 1083 out_online: 1084 sysfs_remove_group(&s->kobj, &cpu_common_attr_group); 1085 out_cpu: 1086 #ifdef CONFIG_HOTPLUG_CPU 1087 unregister_cpu(c); 1088 #endif 1089 out: 1090 return rc; 1091 } 1092 1093 #ifdef CONFIG_HOTPLUG_CPU 1094 1095 int __ref smp_rescan_cpus(void) 1096 { 1097 struct sclp_cpu_info *info; 1098 int nr; 1099 1100 info = smp_get_cpu_info(); 1101 if (!info) 1102 return -ENOMEM; 1103 get_online_cpus(); 1104 mutex_lock(&smp_cpu_state_mutex); 1105 nr = __smp_rescan_cpus(info, 1); 1106 mutex_unlock(&smp_cpu_state_mutex); 1107 put_online_cpus(); 1108 kfree(info); 1109 if (nr) 1110 topology_schedule_update(); 1111 return 0; 1112 } 1113 1114 static ssize_t __ref rescan_store(struct device *dev, 1115 struct device_attribute *attr, 1116 const char *buf, 1117 size_t count) 1118 { 1119 int rc; 1120 1121 rc = smp_rescan_cpus(); 1122 return rc ? rc : count; 1123 } 1124 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store); 1125 #endif /* CONFIG_HOTPLUG_CPU */ 1126 1127 static int __init s390_smp_init(void) 1128 { 1129 int cpu, rc; 1130 1131 register_cpu_notifier(&smp_cpu_nb); 1132 #ifdef CONFIG_HOTPLUG_CPU 1133 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan); 1134 if (rc) 1135 return rc; 1136 #endif 1137 for_each_present_cpu(cpu) { 1138 rc = smp_add_present_cpu(cpu); 1139 if (rc) 1140 return rc; 1141 } 1142 return 0; 1143 } 1144 subsys_initcall(s390_smp_init); 1145