1 /* 2 * SMP related functions 3 * 4 * Copyright IBM Corp. 1999, 2012 5 * Author(s): Denis Joseph Barrow, 6 * Martin Schwidefsky <schwidefsky@de.ibm.com>, 7 * Heiko Carstens <heiko.carstens@de.ibm.com>, 8 * 9 * based on other smp stuff by 10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net> 11 * (c) 1998 Ingo Molnar 12 * 13 * The code outside of smp.c uses logical cpu numbers, only smp.c does 14 * the translation of logical to physical cpu ids. All new code that 15 * operates on physical cpu numbers needs to go into smp.c. 16 */ 17 18 #define KMSG_COMPONENT "cpu" 19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 20 21 #include <linux/workqueue.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 #include <linux/mm.h> 25 #include <linux/err.h> 26 #include <linux/spinlock.h> 27 #include <linux/kernel_stat.h> 28 #include <linux/delay.h> 29 #include <linux/interrupt.h> 30 #include <linux/irqflags.h> 31 #include <linux/cpu.h> 32 #include <linux/slab.h> 33 #include <linux/crash_dump.h> 34 #include <asm/asm-offsets.h> 35 #include <asm/switch_to.h> 36 #include <asm/facility.h> 37 #include <asm/ipl.h> 38 #include <asm/setup.h> 39 #include <asm/irq.h> 40 #include <asm/tlbflush.h> 41 #include <asm/vtimer.h> 42 #include <asm/lowcore.h> 43 #include <asm/sclp.h> 44 #include <asm/vdso.h> 45 #include <asm/debug.h> 46 #include <asm/os_info.h> 47 #include <asm/sigp.h> 48 #include "entry.h" 49 50 enum { 51 ec_schedule = 0, 52 ec_call_function_single, 53 ec_stop_cpu, 54 }; 55 56 enum { 57 CPU_STATE_STANDBY, 58 CPU_STATE_CONFIGURED, 59 }; 60 61 struct pcpu { 62 struct cpu *cpu; 63 struct _lowcore *lowcore; /* lowcore page(s) for the cpu */ 64 unsigned long async_stack; /* async stack for the cpu */ 65 unsigned long panic_stack; /* panic stack for the cpu */ 66 unsigned long ec_mask; /* bit mask for ec_xxx functions */ 67 int state; /* physical cpu state */ 68 int polarization; /* physical polarization */ 69 u16 address; /* physical cpu address */ 70 }; 71 72 static u8 boot_cpu_type; 73 static u16 boot_cpu_address; 74 static struct pcpu pcpu_devices[NR_CPUS]; 75 76 /* 77 * The smp_cpu_state_mutex must be held when changing the state or polarization 78 * member of a pcpu data structure within the pcpu_devices arreay. 79 */ 80 DEFINE_MUTEX(smp_cpu_state_mutex); 81 82 /* 83 * Signal processor helper functions. 84 */ 85 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status) 86 { 87 int cc; 88 89 while (1) { 90 cc = __pcpu_sigp(addr, order, parm, NULL); 91 if (cc != SIGP_CC_BUSY) 92 return cc; 93 cpu_relax(); 94 } 95 } 96 97 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm) 98 { 99 int cc, retry; 100 101 for (retry = 0; ; retry++) { 102 cc = __pcpu_sigp(pcpu->address, order, parm, NULL); 103 if (cc != SIGP_CC_BUSY) 104 break; 105 if (retry >= 3) 106 udelay(10); 107 } 108 return cc; 109 } 110 111 static inline int pcpu_stopped(struct pcpu *pcpu) 112 { 113 u32 uninitialized_var(status); 114 115 if (__pcpu_sigp(pcpu->address, SIGP_SENSE, 116 0, &status) != SIGP_CC_STATUS_STORED) 117 return 0; 118 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED)); 119 } 120 121 static inline int pcpu_running(struct pcpu *pcpu) 122 { 123 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING, 124 0, NULL) != SIGP_CC_STATUS_STORED) 125 return 1; 126 /* Status stored condition code is equivalent to cpu not running. */ 127 return 0; 128 } 129 130 /* 131 * Find struct pcpu by cpu address. 132 */ 133 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address) 134 { 135 int cpu; 136 137 for_each_cpu(cpu, mask) 138 if (pcpu_devices[cpu].address == address) 139 return pcpu_devices + cpu; 140 return NULL; 141 } 142 143 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit) 144 { 145 int order; 146 147 if (test_and_set_bit(ec_bit, &pcpu->ec_mask)) 148 return; 149 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL; 150 pcpu_sigp_retry(pcpu, order, 0); 151 } 152 153 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu) 154 { 155 struct _lowcore *lc; 156 157 if (pcpu != &pcpu_devices[0]) { 158 pcpu->lowcore = (struct _lowcore *) 159 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER); 160 pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER); 161 pcpu->panic_stack = __get_free_page(GFP_KERNEL); 162 if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack) 163 goto out; 164 } 165 lc = pcpu->lowcore; 166 memcpy(lc, &S390_lowcore, 512); 167 memset((char *) lc + 512, 0, sizeof(*lc) - 512); 168 lc->async_stack = pcpu->async_stack + ASYNC_SIZE 169 - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs); 170 lc->panic_stack = pcpu->panic_stack + PAGE_SIZE 171 - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs); 172 lc->cpu_nr = cpu; 173 lc->spinlock_lockval = arch_spin_lockval(cpu); 174 #ifndef CONFIG_64BIT 175 if (MACHINE_HAS_IEEE) { 176 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL); 177 if (!lc->extended_save_area_addr) 178 goto out; 179 } 180 #else 181 if (vdso_alloc_per_cpu(lc)) 182 goto out; 183 #endif 184 lowcore_ptr[cpu] = lc; 185 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc); 186 return 0; 187 out: 188 if (pcpu != &pcpu_devices[0]) { 189 free_page(pcpu->panic_stack); 190 free_pages(pcpu->async_stack, ASYNC_ORDER); 191 free_pages((unsigned long) pcpu->lowcore, LC_ORDER); 192 } 193 return -ENOMEM; 194 } 195 196 #ifdef CONFIG_HOTPLUG_CPU 197 198 static void pcpu_free_lowcore(struct pcpu *pcpu) 199 { 200 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0); 201 lowcore_ptr[pcpu - pcpu_devices] = NULL; 202 #ifndef CONFIG_64BIT 203 if (MACHINE_HAS_IEEE) { 204 struct _lowcore *lc = pcpu->lowcore; 205 206 free_page((unsigned long) lc->extended_save_area_addr); 207 lc->extended_save_area_addr = 0; 208 } 209 #else 210 vdso_free_per_cpu(pcpu->lowcore); 211 #endif 212 if (pcpu != &pcpu_devices[0]) { 213 free_page(pcpu->panic_stack); 214 free_pages(pcpu->async_stack, ASYNC_ORDER); 215 free_pages((unsigned long) pcpu->lowcore, LC_ORDER); 216 } 217 } 218 219 #endif /* CONFIG_HOTPLUG_CPU */ 220 221 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu) 222 { 223 struct _lowcore *lc = pcpu->lowcore; 224 225 if (MACHINE_HAS_TLB_LC) 226 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask); 227 cpumask_set_cpu(cpu, mm_cpumask(&init_mm)); 228 atomic_inc(&init_mm.context.attach_count); 229 lc->cpu_nr = cpu; 230 lc->spinlock_lockval = arch_spin_lockval(cpu); 231 lc->percpu_offset = __per_cpu_offset[cpu]; 232 lc->kernel_asce = S390_lowcore.kernel_asce; 233 lc->machine_flags = S390_lowcore.machine_flags; 234 lc->ftrace_func = S390_lowcore.ftrace_func; 235 lc->user_timer = lc->system_timer = lc->steal_timer = 0; 236 __ctl_store(lc->cregs_save_area, 0, 15); 237 save_access_regs((unsigned int *) lc->access_regs_save_area); 238 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list, 239 MAX_FACILITY_BIT/8); 240 } 241 242 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk) 243 { 244 struct _lowcore *lc = pcpu->lowcore; 245 struct thread_info *ti = task_thread_info(tsk); 246 247 lc->kernel_stack = (unsigned long) task_stack_page(tsk) 248 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs); 249 lc->thread_info = (unsigned long) task_thread_info(tsk); 250 lc->current_task = (unsigned long) tsk; 251 lc->user_timer = ti->user_timer; 252 lc->system_timer = ti->system_timer; 253 lc->steal_timer = 0; 254 } 255 256 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data) 257 { 258 struct _lowcore *lc = pcpu->lowcore; 259 260 lc->restart_stack = lc->kernel_stack; 261 lc->restart_fn = (unsigned long) func; 262 lc->restart_data = (unsigned long) data; 263 lc->restart_source = -1UL; 264 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0); 265 } 266 267 /* 268 * Call function via PSW restart on pcpu and stop the current cpu. 269 */ 270 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *), 271 void *data, unsigned long stack) 272 { 273 struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices]; 274 unsigned long source_cpu = stap(); 275 276 __load_psw_mask(PSW_KERNEL_BITS); 277 if (pcpu->address == source_cpu) 278 func(data); /* should not return */ 279 /* Stop target cpu (if func returns this stops the current cpu). */ 280 pcpu_sigp_retry(pcpu, SIGP_STOP, 0); 281 /* Restart func on the target cpu and stop the current cpu. */ 282 mem_assign_absolute(lc->restart_stack, stack); 283 mem_assign_absolute(lc->restart_fn, (unsigned long) func); 284 mem_assign_absolute(lc->restart_data, (unsigned long) data); 285 mem_assign_absolute(lc->restart_source, source_cpu); 286 asm volatile( 287 "0: sigp 0,%0,%2 # sigp restart to target cpu\n" 288 " brc 2,0b # busy, try again\n" 289 "1: sigp 0,%1,%3 # sigp stop to current cpu\n" 290 " brc 2,1b # busy, try again\n" 291 : : "d" (pcpu->address), "d" (source_cpu), 292 "K" (SIGP_RESTART), "K" (SIGP_STOP) 293 : "0", "1", "cc"); 294 for (;;) ; 295 } 296 297 /* 298 * Call function on an online CPU. 299 */ 300 void smp_call_online_cpu(void (*func)(void *), void *data) 301 { 302 struct pcpu *pcpu; 303 304 /* Use the current cpu if it is online. */ 305 pcpu = pcpu_find_address(cpu_online_mask, stap()); 306 if (!pcpu) 307 /* Use the first online cpu. */ 308 pcpu = pcpu_devices + cpumask_first(cpu_online_mask); 309 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack); 310 } 311 312 /* 313 * Call function on the ipl CPU. 314 */ 315 void smp_call_ipl_cpu(void (*func)(void *), void *data) 316 { 317 pcpu_delegate(&pcpu_devices[0], func, data, 318 pcpu_devices->panic_stack + PAGE_SIZE); 319 } 320 321 int smp_find_processor_id(u16 address) 322 { 323 int cpu; 324 325 for_each_present_cpu(cpu) 326 if (pcpu_devices[cpu].address == address) 327 return cpu; 328 return -1; 329 } 330 331 int smp_vcpu_scheduled(int cpu) 332 { 333 return pcpu_running(pcpu_devices + cpu); 334 } 335 336 void smp_yield(void) 337 { 338 if (MACHINE_HAS_DIAG44) 339 asm volatile("diag 0,0,0x44"); 340 } 341 342 void smp_yield_cpu(int cpu) 343 { 344 if (MACHINE_HAS_DIAG9C) 345 asm volatile("diag %0,0,0x9c" 346 : : "d" (pcpu_devices[cpu].address)); 347 else if (MACHINE_HAS_DIAG44) 348 asm volatile("diag 0,0,0x44"); 349 } 350 351 /* 352 * Send cpus emergency shutdown signal. This gives the cpus the 353 * opportunity to complete outstanding interrupts. 354 */ 355 static void smp_emergency_stop(cpumask_t *cpumask) 356 { 357 u64 end; 358 int cpu; 359 360 end = get_tod_clock() + (1000000UL << 12); 361 for_each_cpu(cpu, cpumask) { 362 struct pcpu *pcpu = pcpu_devices + cpu; 363 set_bit(ec_stop_cpu, &pcpu->ec_mask); 364 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL, 365 0, NULL) == SIGP_CC_BUSY && 366 get_tod_clock() < end) 367 cpu_relax(); 368 } 369 while (get_tod_clock() < end) { 370 for_each_cpu(cpu, cpumask) 371 if (pcpu_stopped(pcpu_devices + cpu)) 372 cpumask_clear_cpu(cpu, cpumask); 373 if (cpumask_empty(cpumask)) 374 break; 375 cpu_relax(); 376 } 377 } 378 379 /* 380 * Stop all cpus but the current one. 381 */ 382 void smp_send_stop(void) 383 { 384 cpumask_t cpumask; 385 int cpu; 386 387 /* Disable all interrupts/machine checks */ 388 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT); 389 trace_hardirqs_off(); 390 391 debug_set_critical(); 392 cpumask_copy(&cpumask, cpu_online_mask); 393 cpumask_clear_cpu(smp_processor_id(), &cpumask); 394 395 if (oops_in_progress) 396 smp_emergency_stop(&cpumask); 397 398 /* stop all processors */ 399 for_each_cpu(cpu, &cpumask) { 400 struct pcpu *pcpu = pcpu_devices + cpu; 401 pcpu_sigp_retry(pcpu, SIGP_STOP, 0); 402 while (!pcpu_stopped(pcpu)) 403 cpu_relax(); 404 } 405 } 406 407 /* 408 * This is the main routine where commands issued by other 409 * cpus are handled. 410 */ 411 static void smp_handle_ext_call(void) 412 { 413 unsigned long bits; 414 415 /* handle bit signal external calls */ 416 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0); 417 if (test_bit(ec_stop_cpu, &bits)) 418 smp_stop_cpu(); 419 if (test_bit(ec_schedule, &bits)) 420 scheduler_ipi(); 421 if (test_bit(ec_call_function_single, &bits)) 422 generic_smp_call_function_single_interrupt(); 423 } 424 425 static void do_ext_call_interrupt(struct ext_code ext_code, 426 unsigned int param32, unsigned long param64) 427 { 428 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS); 429 smp_handle_ext_call(); 430 } 431 432 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 433 { 434 int cpu; 435 436 for_each_cpu(cpu, mask) 437 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); 438 } 439 440 void arch_send_call_function_single_ipi(int cpu) 441 { 442 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); 443 } 444 445 #ifndef CONFIG_64BIT 446 /* 447 * this function sends a 'purge tlb' signal to another CPU. 448 */ 449 static void smp_ptlb_callback(void *info) 450 { 451 __tlb_flush_local(); 452 } 453 454 void smp_ptlb_all(void) 455 { 456 on_each_cpu(smp_ptlb_callback, NULL, 1); 457 } 458 EXPORT_SYMBOL(smp_ptlb_all); 459 #endif /* ! CONFIG_64BIT */ 460 461 /* 462 * this function sends a 'reschedule' IPI to another CPU. 463 * it goes straight through and wastes no time serializing 464 * anything. Worst case is that we lose a reschedule ... 465 */ 466 void smp_send_reschedule(int cpu) 467 { 468 pcpu_ec_call(pcpu_devices + cpu, ec_schedule); 469 } 470 471 /* 472 * parameter area for the set/clear control bit callbacks 473 */ 474 struct ec_creg_mask_parms { 475 unsigned long orval; 476 unsigned long andval; 477 int cr; 478 }; 479 480 /* 481 * callback for setting/clearing control bits 482 */ 483 static void smp_ctl_bit_callback(void *info) 484 { 485 struct ec_creg_mask_parms *pp = info; 486 unsigned long cregs[16]; 487 488 __ctl_store(cregs, 0, 15); 489 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval; 490 __ctl_load(cregs, 0, 15); 491 } 492 493 /* 494 * Set a bit in a control register of all cpus 495 */ 496 void smp_ctl_set_bit(int cr, int bit) 497 { 498 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr }; 499 500 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 501 } 502 EXPORT_SYMBOL(smp_ctl_set_bit); 503 504 /* 505 * Clear a bit in a control register of all cpus 506 */ 507 void smp_ctl_clear_bit(int cr, int bit) 508 { 509 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr }; 510 511 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 512 } 513 EXPORT_SYMBOL(smp_ctl_clear_bit); 514 515 #ifdef CONFIG_CRASH_DUMP 516 517 static void __init smp_get_save_area(int cpu, u16 address) 518 { 519 void *lc = pcpu_devices[0].lowcore; 520 struct save_area *save_area; 521 522 if (is_kdump_kernel()) 523 return; 524 if (!OLDMEM_BASE && (address == boot_cpu_address || 525 ipl_info.type != IPL_TYPE_FCP_DUMP)) 526 return; 527 save_area = dump_save_area_create(cpu); 528 if (!save_area) 529 panic("could not allocate memory for save area\n"); 530 if (address == boot_cpu_address) { 531 /* Copy the registers of the boot cpu. */ 532 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area), 533 SAVE_AREA_BASE - PAGE_SIZE, 0); 534 return; 535 } 536 /* Get the registers of a non-boot cpu. */ 537 __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL); 538 memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area)); 539 } 540 541 int smp_store_status(int cpu) 542 { 543 struct pcpu *pcpu; 544 545 pcpu = pcpu_devices + cpu; 546 if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS, 547 0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED) 548 return -EIO; 549 return 0; 550 } 551 552 #else /* CONFIG_CRASH_DUMP */ 553 554 static inline void smp_get_save_area(int cpu, u16 address) { } 555 556 #endif /* CONFIG_CRASH_DUMP */ 557 558 void smp_cpu_set_polarization(int cpu, int val) 559 { 560 pcpu_devices[cpu].polarization = val; 561 } 562 563 int smp_cpu_get_polarization(int cpu) 564 { 565 return pcpu_devices[cpu].polarization; 566 } 567 568 static struct sclp_cpu_info *smp_get_cpu_info(void) 569 { 570 static int use_sigp_detection; 571 struct sclp_cpu_info *info; 572 int address; 573 574 info = kzalloc(sizeof(*info), GFP_KERNEL); 575 if (info && (use_sigp_detection || sclp_get_cpu_info(info))) { 576 use_sigp_detection = 1; 577 for (address = 0; address <= MAX_CPU_ADDRESS; address++) { 578 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) == 579 SIGP_CC_NOT_OPERATIONAL) 580 continue; 581 info->cpu[info->configured].address = address; 582 info->configured++; 583 } 584 info->combined = info->configured; 585 } 586 return info; 587 } 588 589 static int smp_add_present_cpu(int cpu); 590 591 static int __smp_rescan_cpus(struct sclp_cpu_info *info, int sysfs_add) 592 { 593 struct pcpu *pcpu; 594 cpumask_t avail; 595 int cpu, nr, i; 596 597 nr = 0; 598 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask); 599 cpu = cpumask_first(&avail); 600 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) { 601 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type) 602 continue; 603 if (pcpu_find_address(cpu_present_mask, info->cpu[i].address)) 604 continue; 605 pcpu = pcpu_devices + cpu; 606 pcpu->address = info->cpu[i].address; 607 pcpu->state = (i >= info->configured) ? 608 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED; 609 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 610 set_cpu_present(cpu, true); 611 if (sysfs_add && smp_add_present_cpu(cpu) != 0) 612 set_cpu_present(cpu, false); 613 else 614 nr++; 615 cpu = cpumask_next(cpu, &avail); 616 } 617 return nr; 618 } 619 620 static void __init smp_detect_cpus(void) 621 { 622 unsigned int cpu, c_cpus, s_cpus; 623 struct sclp_cpu_info *info; 624 625 info = smp_get_cpu_info(); 626 if (!info) 627 panic("smp_detect_cpus failed to allocate memory\n"); 628 if (info->has_cpu_type) { 629 for (cpu = 0; cpu < info->combined; cpu++) { 630 if (info->cpu[cpu].address != boot_cpu_address) 631 continue; 632 /* The boot cpu dictates the cpu type. */ 633 boot_cpu_type = info->cpu[cpu].type; 634 break; 635 } 636 } 637 c_cpus = s_cpus = 0; 638 for (cpu = 0; cpu < info->combined; cpu++) { 639 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type) 640 continue; 641 if (cpu < info->configured) { 642 smp_get_save_area(c_cpus, info->cpu[cpu].address); 643 c_cpus++; 644 } else 645 s_cpus++; 646 } 647 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus); 648 get_online_cpus(); 649 __smp_rescan_cpus(info, 0); 650 put_online_cpus(); 651 kfree(info); 652 } 653 654 /* 655 * Activate a secondary processor. 656 */ 657 static void smp_start_secondary(void *cpuvoid) 658 { 659 S390_lowcore.last_update_clock = get_tod_clock(); 660 S390_lowcore.restart_stack = (unsigned long) restart_stack; 661 S390_lowcore.restart_fn = (unsigned long) do_restart; 662 S390_lowcore.restart_data = 0; 663 S390_lowcore.restart_source = -1UL; 664 restore_access_regs(S390_lowcore.access_regs_save_area); 665 __ctl_load(S390_lowcore.cregs_save_area, 0, 15); 666 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT); 667 cpu_init(); 668 preempt_disable(); 669 init_cpu_timer(); 670 init_cpu_vtimer(); 671 pfault_init(); 672 notify_cpu_starting(smp_processor_id()); 673 set_cpu_online(smp_processor_id(), true); 674 inc_irq_stat(CPU_RST); 675 local_irq_enable(); 676 cpu_startup_entry(CPUHP_ONLINE); 677 } 678 679 /* Upping and downing of CPUs */ 680 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 681 { 682 struct pcpu *pcpu; 683 int rc; 684 685 pcpu = pcpu_devices + cpu; 686 if (pcpu->state != CPU_STATE_CONFIGURED) 687 return -EIO; 688 if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) != 689 SIGP_CC_ORDER_CODE_ACCEPTED) 690 return -EIO; 691 692 rc = pcpu_alloc_lowcore(pcpu, cpu); 693 if (rc) 694 return rc; 695 pcpu_prepare_secondary(pcpu, cpu); 696 pcpu_attach_task(pcpu, tidle); 697 pcpu_start_fn(pcpu, smp_start_secondary, NULL); 698 while (!cpu_online(cpu)) 699 cpu_relax(); 700 return 0; 701 } 702 703 static unsigned int setup_possible_cpus __initdata; 704 705 static int __init _setup_possible_cpus(char *s) 706 { 707 get_option(&s, &setup_possible_cpus); 708 return 0; 709 } 710 early_param("possible_cpus", _setup_possible_cpus); 711 712 #ifdef CONFIG_HOTPLUG_CPU 713 714 int __cpu_disable(void) 715 { 716 unsigned long cregs[16]; 717 718 /* Handle possible pending IPIs */ 719 smp_handle_ext_call(); 720 set_cpu_online(smp_processor_id(), false); 721 /* Disable pseudo page faults on this cpu. */ 722 pfault_fini(); 723 /* Disable interrupt sources via control register. */ 724 __ctl_store(cregs, 0, 15); 725 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */ 726 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */ 727 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */ 728 __ctl_load(cregs, 0, 15); 729 return 0; 730 } 731 732 void __cpu_die(unsigned int cpu) 733 { 734 struct pcpu *pcpu; 735 736 /* Wait until target cpu is down */ 737 pcpu = pcpu_devices + cpu; 738 while (!pcpu_stopped(pcpu)) 739 cpu_relax(); 740 pcpu_free_lowcore(pcpu); 741 atomic_dec(&init_mm.context.attach_count); 742 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm)); 743 if (MACHINE_HAS_TLB_LC) 744 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask); 745 } 746 747 void __noreturn cpu_die(void) 748 { 749 idle_task_exit(); 750 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0); 751 for (;;) ; 752 } 753 754 #endif /* CONFIG_HOTPLUG_CPU */ 755 756 void __init smp_fill_possible_mask(void) 757 { 758 unsigned int possible, sclp, cpu; 759 760 sclp = sclp_get_max_cpu() ?: nr_cpu_ids; 761 possible = setup_possible_cpus ?: nr_cpu_ids; 762 possible = min(possible, sclp); 763 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++) 764 set_cpu_possible(cpu, true); 765 } 766 767 void __init smp_prepare_cpus(unsigned int max_cpus) 768 { 769 /* request the 0x1201 emergency signal external interrupt */ 770 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt)) 771 panic("Couldn't request external interrupt 0x1201"); 772 /* request the 0x1202 external call external interrupt */ 773 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt)) 774 panic("Couldn't request external interrupt 0x1202"); 775 smp_detect_cpus(); 776 } 777 778 void __init smp_prepare_boot_cpu(void) 779 { 780 struct pcpu *pcpu = pcpu_devices; 781 782 boot_cpu_address = stap(); 783 pcpu->state = CPU_STATE_CONFIGURED; 784 pcpu->address = boot_cpu_address; 785 pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix(); 786 pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE 787 + STACK_FRAME_OVERHEAD + sizeof(struct pt_regs); 788 pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE 789 + STACK_FRAME_OVERHEAD + sizeof(struct pt_regs); 790 S390_lowcore.percpu_offset = __per_cpu_offset[0]; 791 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN); 792 set_cpu_present(0, true); 793 set_cpu_online(0, true); 794 } 795 796 void __init smp_cpus_done(unsigned int max_cpus) 797 { 798 } 799 800 void __init smp_setup_processor_id(void) 801 { 802 S390_lowcore.cpu_nr = 0; 803 S390_lowcore.spinlock_lockval = arch_spin_lockval(0); 804 } 805 806 /* 807 * the frequency of the profiling timer can be changed 808 * by writing a multiplier value into /proc/profile. 809 * 810 * usually you want to run this on all CPUs ;) 811 */ 812 int setup_profiling_timer(unsigned int multiplier) 813 { 814 return 0; 815 } 816 817 #ifdef CONFIG_HOTPLUG_CPU 818 static ssize_t cpu_configure_show(struct device *dev, 819 struct device_attribute *attr, char *buf) 820 { 821 ssize_t count; 822 823 mutex_lock(&smp_cpu_state_mutex); 824 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state); 825 mutex_unlock(&smp_cpu_state_mutex); 826 return count; 827 } 828 829 static ssize_t cpu_configure_store(struct device *dev, 830 struct device_attribute *attr, 831 const char *buf, size_t count) 832 { 833 struct pcpu *pcpu; 834 int cpu, val, rc; 835 char delim; 836 837 if (sscanf(buf, "%d %c", &val, &delim) != 1) 838 return -EINVAL; 839 if (val != 0 && val != 1) 840 return -EINVAL; 841 get_online_cpus(); 842 mutex_lock(&smp_cpu_state_mutex); 843 rc = -EBUSY; 844 /* disallow configuration changes of online cpus and cpu 0 */ 845 cpu = dev->id; 846 if (cpu_online(cpu) || cpu == 0) 847 goto out; 848 pcpu = pcpu_devices + cpu; 849 rc = 0; 850 switch (val) { 851 case 0: 852 if (pcpu->state != CPU_STATE_CONFIGURED) 853 break; 854 rc = sclp_cpu_deconfigure(pcpu->address); 855 if (rc) 856 break; 857 pcpu->state = CPU_STATE_STANDBY; 858 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 859 topology_expect_change(); 860 break; 861 case 1: 862 if (pcpu->state != CPU_STATE_STANDBY) 863 break; 864 rc = sclp_cpu_configure(pcpu->address); 865 if (rc) 866 break; 867 pcpu->state = CPU_STATE_CONFIGURED; 868 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 869 topology_expect_change(); 870 break; 871 default: 872 break; 873 } 874 out: 875 mutex_unlock(&smp_cpu_state_mutex); 876 put_online_cpus(); 877 return rc ? rc : count; 878 } 879 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store); 880 #endif /* CONFIG_HOTPLUG_CPU */ 881 882 static ssize_t show_cpu_address(struct device *dev, 883 struct device_attribute *attr, char *buf) 884 { 885 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address); 886 } 887 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL); 888 889 static struct attribute *cpu_common_attrs[] = { 890 #ifdef CONFIG_HOTPLUG_CPU 891 &dev_attr_configure.attr, 892 #endif 893 &dev_attr_address.attr, 894 NULL, 895 }; 896 897 static struct attribute_group cpu_common_attr_group = { 898 .attrs = cpu_common_attrs, 899 }; 900 901 static ssize_t show_idle_count(struct device *dev, 902 struct device_attribute *attr, char *buf) 903 { 904 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id); 905 unsigned long long idle_count; 906 unsigned int sequence; 907 908 do { 909 sequence = ACCESS_ONCE(idle->sequence); 910 idle_count = ACCESS_ONCE(idle->idle_count); 911 if (ACCESS_ONCE(idle->clock_idle_enter)) 912 idle_count++; 913 } while ((sequence & 1) || (ACCESS_ONCE(idle->sequence) != sequence)); 914 return sprintf(buf, "%llu\n", idle_count); 915 } 916 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL); 917 918 static ssize_t show_idle_time(struct device *dev, 919 struct device_attribute *attr, char *buf) 920 { 921 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id); 922 unsigned long long now, idle_time, idle_enter, idle_exit; 923 unsigned int sequence; 924 925 do { 926 now = get_tod_clock(); 927 sequence = ACCESS_ONCE(idle->sequence); 928 idle_time = ACCESS_ONCE(idle->idle_time); 929 idle_enter = ACCESS_ONCE(idle->clock_idle_enter); 930 idle_exit = ACCESS_ONCE(idle->clock_idle_exit); 931 } while ((sequence & 1) || (ACCESS_ONCE(idle->sequence) != sequence)); 932 idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0; 933 return sprintf(buf, "%llu\n", idle_time >> 12); 934 } 935 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL); 936 937 static struct attribute *cpu_online_attrs[] = { 938 &dev_attr_idle_count.attr, 939 &dev_attr_idle_time_us.attr, 940 NULL, 941 }; 942 943 static struct attribute_group cpu_online_attr_group = { 944 .attrs = cpu_online_attrs, 945 }; 946 947 static int smp_cpu_notify(struct notifier_block *self, unsigned long action, 948 void *hcpu) 949 { 950 unsigned int cpu = (unsigned int)(long)hcpu; 951 struct cpu *c = pcpu_devices[cpu].cpu; 952 struct device *s = &c->dev; 953 int err = 0; 954 955 switch (action & ~CPU_TASKS_FROZEN) { 956 case CPU_ONLINE: 957 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group); 958 break; 959 case CPU_DEAD: 960 sysfs_remove_group(&s->kobj, &cpu_online_attr_group); 961 break; 962 } 963 return notifier_from_errno(err); 964 } 965 966 static int smp_add_present_cpu(int cpu) 967 { 968 struct device *s; 969 struct cpu *c; 970 int rc; 971 972 c = kzalloc(sizeof(*c), GFP_KERNEL); 973 if (!c) 974 return -ENOMEM; 975 pcpu_devices[cpu].cpu = c; 976 s = &c->dev; 977 c->hotpluggable = 1; 978 rc = register_cpu(c, cpu); 979 if (rc) 980 goto out; 981 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group); 982 if (rc) 983 goto out_cpu; 984 if (cpu_online(cpu)) { 985 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group); 986 if (rc) 987 goto out_online; 988 } 989 rc = topology_cpu_init(c); 990 if (rc) 991 goto out_topology; 992 return 0; 993 994 out_topology: 995 if (cpu_online(cpu)) 996 sysfs_remove_group(&s->kobj, &cpu_online_attr_group); 997 out_online: 998 sysfs_remove_group(&s->kobj, &cpu_common_attr_group); 999 out_cpu: 1000 #ifdef CONFIG_HOTPLUG_CPU 1001 unregister_cpu(c); 1002 #endif 1003 out: 1004 return rc; 1005 } 1006 1007 #ifdef CONFIG_HOTPLUG_CPU 1008 1009 int __ref smp_rescan_cpus(void) 1010 { 1011 struct sclp_cpu_info *info; 1012 int nr; 1013 1014 info = smp_get_cpu_info(); 1015 if (!info) 1016 return -ENOMEM; 1017 get_online_cpus(); 1018 mutex_lock(&smp_cpu_state_mutex); 1019 nr = __smp_rescan_cpus(info, 1); 1020 mutex_unlock(&smp_cpu_state_mutex); 1021 put_online_cpus(); 1022 kfree(info); 1023 if (nr) 1024 topology_schedule_update(); 1025 return 0; 1026 } 1027 1028 static ssize_t __ref rescan_store(struct device *dev, 1029 struct device_attribute *attr, 1030 const char *buf, 1031 size_t count) 1032 { 1033 int rc; 1034 1035 rc = smp_rescan_cpus(); 1036 return rc ? rc : count; 1037 } 1038 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store); 1039 #endif /* CONFIG_HOTPLUG_CPU */ 1040 1041 static int __init s390_smp_init(void) 1042 { 1043 int cpu, rc = 0; 1044 1045 #ifdef CONFIG_HOTPLUG_CPU 1046 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan); 1047 if (rc) 1048 return rc; 1049 #endif 1050 cpu_notifier_register_begin(); 1051 for_each_present_cpu(cpu) { 1052 rc = smp_add_present_cpu(cpu); 1053 if (rc) 1054 goto out; 1055 } 1056 1057 __hotcpu_notifier(smp_cpu_notify, 0); 1058 1059 out: 1060 cpu_notifier_register_done(); 1061 return rc; 1062 } 1063 subsys_initcall(s390_smp_init); 1064