xref: /linux/arch/s390/kernel/smp.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999,2007
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *		 Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *		 Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22 
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/spinlock.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/delay.h>
33 #include <linux/cache.h>
34 #include <linux/interrupt.h>
35 #include <linux/cpu.h>
36 #include <linux/timex.h>
37 #include <linux/bootmem.h>
38 #include <asm/ipl.h>
39 #include <asm/setup.h>
40 #include <asm/sigp.h>
41 #include <asm/pgalloc.h>
42 #include <asm/irq.h>
43 #include <asm/s390_ext.h>
44 #include <asm/cpcmd.h>
45 #include <asm/tlbflush.h>
46 #include <asm/timer.h>
47 #include <asm/lowcore.h>
48 #include <asm/sclp.h>
49 #include <asm/cpu.h>
50 #include <asm/vdso.h>
51 #include "entry.h"
52 
53 /*
54  * An array with a pointer the lowcore of every CPU.
55  */
56 struct _lowcore *lowcore_ptr[NR_CPUS];
57 EXPORT_SYMBOL(lowcore_ptr);
58 
59 static struct task_struct *current_set[NR_CPUS];
60 
61 static u8 smp_cpu_type;
62 static int smp_use_sigp_detection;
63 
64 enum s390_cpu_state {
65 	CPU_STATE_STANDBY,
66 	CPU_STATE_CONFIGURED,
67 };
68 
69 DEFINE_MUTEX(smp_cpu_state_mutex);
70 int smp_cpu_polarization[NR_CPUS];
71 static int smp_cpu_state[NR_CPUS];
72 static int cpu_management;
73 
74 static DEFINE_PER_CPU(struct cpu, cpu_devices);
75 
76 static void smp_ext_bitcall(int, ec_bit_sig);
77 
78 void smp_send_stop(void)
79 {
80 	int cpu, rc;
81 
82 	/* Disable all interrupts/machine checks */
83 	__load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
84 
85 	/* write magic number to zero page (absolute 0) */
86 	lowcore_ptr[smp_processor_id()]->panic_magic = __PANIC_MAGIC;
87 
88 	/* stop all processors */
89 	for_each_online_cpu(cpu) {
90 		if (cpu == smp_processor_id())
91 			continue;
92 		do {
93 			rc = signal_processor(cpu, sigp_stop);
94 		} while (rc == sigp_busy);
95 
96 		while (!smp_cpu_not_running(cpu))
97 			cpu_relax();
98 	}
99 }
100 
101 /*
102  * This is the main routine where commands issued by other
103  * cpus are handled.
104  */
105 
106 static void do_ext_call_interrupt(__u16 code)
107 {
108 	unsigned long bits;
109 
110 	/*
111 	 * handle bit signal external calls
112 	 *
113 	 * For the ec_schedule signal we have to do nothing. All the work
114 	 * is done automatically when we return from the interrupt.
115 	 */
116 	bits = xchg(&S390_lowcore.ext_call_fast, 0);
117 
118 	if (test_bit(ec_call_function, &bits))
119 		generic_smp_call_function_interrupt();
120 
121 	if (test_bit(ec_call_function_single, &bits))
122 		generic_smp_call_function_single_interrupt();
123 }
124 
125 /*
126  * Send an external call sigp to another cpu and return without waiting
127  * for its completion.
128  */
129 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
130 {
131 	/*
132 	 * Set signaling bit in lowcore of target cpu and kick it
133 	 */
134 	set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
135 	while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
136 		udelay(10);
137 }
138 
139 void arch_send_call_function_ipi(cpumask_t mask)
140 {
141 	int cpu;
142 
143 	for_each_cpu_mask(cpu, mask)
144 		smp_ext_bitcall(cpu, ec_call_function);
145 }
146 
147 void arch_send_call_function_single_ipi(int cpu)
148 {
149 	smp_ext_bitcall(cpu, ec_call_function_single);
150 }
151 
152 #ifndef CONFIG_64BIT
153 /*
154  * this function sends a 'purge tlb' signal to another CPU.
155  */
156 static void smp_ptlb_callback(void *info)
157 {
158 	__tlb_flush_local();
159 }
160 
161 void smp_ptlb_all(void)
162 {
163 	on_each_cpu(smp_ptlb_callback, NULL, 1);
164 }
165 EXPORT_SYMBOL(smp_ptlb_all);
166 #endif /* ! CONFIG_64BIT */
167 
168 /*
169  * this function sends a 'reschedule' IPI to another CPU.
170  * it goes straight through and wastes no time serializing
171  * anything. Worst case is that we lose a reschedule ...
172  */
173 void smp_send_reschedule(int cpu)
174 {
175 	smp_ext_bitcall(cpu, ec_schedule);
176 }
177 
178 /*
179  * parameter area for the set/clear control bit callbacks
180  */
181 struct ec_creg_mask_parms {
182 	unsigned long orvals[16];
183 	unsigned long andvals[16];
184 };
185 
186 /*
187  * callback for setting/clearing control bits
188  */
189 static void smp_ctl_bit_callback(void *info)
190 {
191 	struct ec_creg_mask_parms *pp = info;
192 	unsigned long cregs[16];
193 	int i;
194 
195 	__ctl_store(cregs, 0, 15);
196 	for (i = 0; i <= 15; i++)
197 		cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
198 	__ctl_load(cregs, 0, 15);
199 }
200 
201 /*
202  * Set a bit in a control register of all cpus
203  */
204 void smp_ctl_set_bit(int cr, int bit)
205 {
206 	struct ec_creg_mask_parms parms;
207 
208 	memset(&parms.orvals, 0, sizeof(parms.orvals));
209 	memset(&parms.andvals, 0xff, sizeof(parms.andvals));
210 	parms.orvals[cr] = 1 << bit;
211 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
212 }
213 EXPORT_SYMBOL(smp_ctl_set_bit);
214 
215 /*
216  * Clear a bit in a control register of all cpus
217  */
218 void smp_ctl_clear_bit(int cr, int bit)
219 {
220 	struct ec_creg_mask_parms parms;
221 
222 	memset(&parms.orvals, 0, sizeof(parms.orvals));
223 	memset(&parms.andvals, 0xff, sizeof(parms.andvals));
224 	parms.andvals[cr] = ~(1L << bit);
225 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
226 }
227 EXPORT_SYMBOL(smp_ctl_clear_bit);
228 
229 /*
230  * In early ipl state a temp. logically cpu number is needed, so the sigp
231  * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
232  * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
233  */
234 #define CPU_INIT_NO	1
235 
236 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE)
237 
238 /*
239  * zfcpdump_prefix_array holds prefix registers for the following scenario:
240  * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
241  * save its prefix registers, since they get lost, when switching from 31 bit
242  * to 64 bit.
243  */
244 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
245 	__attribute__((__section__(".data")));
246 
247 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
248 {
249 	if (ipl_info.type != IPL_TYPE_FCP_DUMP)
250 		return;
251 	if (cpu >= NR_CPUS) {
252 		pr_warning("CPU %i exceeds the maximum %i and is excluded from "
253 			   "the dump\n", cpu, NR_CPUS - 1);
254 		return;
255 	}
256 	zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
257 	__cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
258 	while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
259 	       sigp_busy)
260 		cpu_relax();
261 	memcpy(zfcpdump_save_areas[cpu],
262 	       (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
263 	       SAVE_AREA_SIZE);
264 #ifdef CONFIG_64BIT
265 	/* copy original prefix register */
266 	zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
267 #endif
268 }
269 
270 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
271 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
272 
273 #else
274 
275 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
276 
277 #endif /* CONFIG_ZFCPDUMP || CONFIG_ZFCPDUMP_MODULE */
278 
279 static int cpu_stopped(int cpu)
280 {
281 	__u32 status;
282 
283 	/* Check for stopped state */
284 	if (signal_processor_ps(&status, 0, cpu, sigp_sense) ==
285 	    sigp_status_stored) {
286 		if (status & 0x40)
287 			return 1;
288 	}
289 	return 0;
290 }
291 
292 static int cpu_known(int cpu_id)
293 {
294 	int cpu;
295 
296 	for_each_present_cpu(cpu) {
297 		if (__cpu_logical_map[cpu] == cpu_id)
298 			return 1;
299 	}
300 	return 0;
301 }
302 
303 static int smp_rescan_cpus_sigp(cpumask_t avail)
304 {
305 	int cpu_id, logical_cpu;
306 
307 	logical_cpu = first_cpu(avail);
308 	if (logical_cpu == NR_CPUS)
309 		return 0;
310 	for (cpu_id = 0; cpu_id <= 65535; cpu_id++) {
311 		if (cpu_known(cpu_id))
312 			continue;
313 		__cpu_logical_map[logical_cpu] = cpu_id;
314 		smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
315 		if (!cpu_stopped(logical_cpu))
316 			continue;
317 		cpu_set(logical_cpu, cpu_present_map);
318 		smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
319 		logical_cpu = next_cpu(logical_cpu, avail);
320 		if (logical_cpu == NR_CPUS)
321 			break;
322 	}
323 	return 0;
324 }
325 
326 static int smp_rescan_cpus_sclp(cpumask_t avail)
327 {
328 	struct sclp_cpu_info *info;
329 	int cpu_id, logical_cpu, cpu;
330 	int rc;
331 
332 	logical_cpu = first_cpu(avail);
333 	if (logical_cpu == NR_CPUS)
334 		return 0;
335 	info = kmalloc(sizeof(*info), GFP_KERNEL);
336 	if (!info)
337 		return -ENOMEM;
338 	rc = sclp_get_cpu_info(info);
339 	if (rc)
340 		goto out;
341 	for (cpu = 0; cpu < info->combined; cpu++) {
342 		if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
343 			continue;
344 		cpu_id = info->cpu[cpu].address;
345 		if (cpu_known(cpu_id))
346 			continue;
347 		__cpu_logical_map[logical_cpu] = cpu_id;
348 		smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
349 		cpu_set(logical_cpu, cpu_present_map);
350 		if (cpu >= info->configured)
351 			smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
352 		else
353 			smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
354 		logical_cpu = next_cpu(logical_cpu, avail);
355 		if (logical_cpu == NR_CPUS)
356 			break;
357 	}
358 out:
359 	kfree(info);
360 	return rc;
361 }
362 
363 static int __smp_rescan_cpus(void)
364 {
365 	cpumask_t avail;
366 
367 	cpus_xor(avail, cpu_possible_map, cpu_present_map);
368 	if (smp_use_sigp_detection)
369 		return smp_rescan_cpus_sigp(avail);
370 	else
371 		return smp_rescan_cpus_sclp(avail);
372 }
373 
374 static void __init smp_detect_cpus(void)
375 {
376 	unsigned int cpu, c_cpus, s_cpus;
377 	struct sclp_cpu_info *info;
378 	u16 boot_cpu_addr, cpu_addr;
379 
380 	c_cpus = 1;
381 	s_cpus = 0;
382 	boot_cpu_addr = S390_lowcore.cpu_data.cpu_addr;
383 	info = kmalloc(sizeof(*info), GFP_KERNEL);
384 	if (!info)
385 		panic("smp_detect_cpus failed to allocate memory\n");
386 	/* Use sigp detection algorithm if sclp doesn't work. */
387 	if (sclp_get_cpu_info(info)) {
388 		smp_use_sigp_detection = 1;
389 		for (cpu = 0; cpu <= 65535; cpu++) {
390 			if (cpu == boot_cpu_addr)
391 				continue;
392 			__cpu_logical_map[CPU_INIT_NO] = cpu;
393 			if (!cpu_stopped(CPU_INIT_NO))
394 				continue;
395 			smp_get_save_area(c_cpus, cpu);
396 			c_cpus++;
397 		}
398 		goto out;
399 	}
400 
401 	if (info->has_cpu_type) {
402 		for (cpu = 0; cpu < info->combined; cpu++) {
403 			if (info->cpu[cpu].address == boot_cpu_addr) {
404 				smp_cpu_type = info->cpu[cpu].type;
405 				break;
406 			}
407 		}
408 	}
409 
410 	for (cpu = 0; cpu < info->combined; cpu++) {
411 		if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
412 			continue;
413 		cpu_addr = info->cpu[cpu].address;
414 		if (cpu_addr == boot_cpu_addr)
415 			continue;
416 		__cpu_logical_map[CPU_INIT_NO] = cpu_addr;
417 		if (!cpu_stopped(CPU_INIT_NO)) {
418 			s_cpus++;
419 			continue;
420 		}
421 		smp_get_save_area(c_cpus, cpu_addr);
422 		c_cpus++;
423 	}
424 out:
425 	kfree(info);
426 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
427 	get_online_cpus();
428 	__smp_rescan_cpus();
429 	put_online_cpus();
430 }
431 
432 /*
433  *	Activate a secondary processor.
434  */
435 int __cpuinit start_secondary(void *cpuvoid)
436 {
437 	/* Setup the cpu */
438 	cpu_init();
439 	preempt_disable();
440 	/* Enable TOD clock interrupts on the secondary cpu. */
441 	init_cpu_timer();
442 	/* Enable cpu timer interrupts on the secondary cpu. */
443 	init_cpu_vtimer();
444 	/* Enable pfault pseudo page faults on this cpu. */
445 	pfault_init();
446 
447 	/* call cpu notifiers */
448 	notify_cpu_starting(smp_processor_id());
449 	/* Mark this cpu as online */
450 	ipi_call_lock();
451 	cpu_set(smp_processor_id(), cpu_online_map);
452 	ipi_call_unlock();
453 	/* Switch on interrupts */
454 	local_irq_enable();
455 	/* Print info about this processor */
456 	print_cpu_info(&S390_lowcore.cpu_data);
457 	/* cpu_idle will call schedule for us */
458 	cpu_idle();
459 	return 0;
460 }
461 
462 static void __init smp_create_idle(unsigned int cpu)
463 {
464 	struct task_struct *p;
465 
466 	/*
467 	 *  don't care about the psw and regs settings since we'll never
468 	 *  reschedule the forked task.
469 	 */
470 	p = fork_idle(cpu);
471 	if (IS_ERR(p))
472 		panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
473 	current_set[cpu] = p;
474 }
475 
476 static int __cpuinit smp_alloc_lowcore(int cpu)
477 {
478 	unsigned long async_stack, panic_stack;
479 	struct _lowcore *lowcore;
480 	int lc_order;
481 
482 	lc_order = sizeof(long) == 8 ? 1 : 0;
483 	lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
484 	if (!lowcore)
485 		return -ENOMEM;
486 	async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
487 	panic_stack = __get_free_page(GFP_KERNEL);
488 	if (!panic_stack || !async_stack)
489 		goto out;
490 	memcpy(lowcore, &S390_lowcore, 512);
491 	memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
492 	lowcore->async_stack = async_stack + ASYNC_SIZE;
493 	lowcore->panic_stack = panic_stack + PAGE_SIZE;
494 
495 #ifndef CONFIG_64BIT
496 	if (MACHINE_HAS_IEEE) {
497 		unsigned long save_area;
498 
499 		save_area = get_zeroed_page(GFP_KERNEL);
500 		if (!save_area)
501 			goto out;
502 		lowcore->extended_save_area_addr = (u32) save_area;
503 	}
504 #else
505 	if (vdso_alloc_per_cpu(cpu, lowcore))
506 		goto out;
507 #endif
508 	lowcore_ptr[cpu] = lowcore;
509 	return 0;
510 
511 out:
512 	free_page(panic_stack);
513 	free_pages(async_stack, ASYNC_ORDER);
514 	free_pages((unsigned long) lowcore, lc_order);
515 	return -ENOMEM;
516 }
517 
518 #ifdef CONFIG_HOTPLUG_CPU
519 static void smp_free_lowcore(int cpu)
520 {
521 	struct _lowcore *lowcore;
522 	int lc_order;
523 
524 	lc_order = sizeof(long) == 8 ? 1 : 0;
525 	lowcore = lowcore_ptr[cpu];
526 #ifndef CONFIG_64BIT
527 	if (MACHINE_HAS_IEEE)
528 		free_page((unsigned long) lowcore->extended_save_area_addr);
529 #else
530 	vdso_free_per_cpu(cpu, lowcore);
531 #endif
532 	free_page(lowcore->panic_stack - PAGE_SIZE);
533 	free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
534 	free_pages((unsigned long) lowcore, lc_order);
535 	lowcore_ptr[cpu] = NULL;
536 }
537 #endif /* CONFIG_HOTPLUG_CPU */
538 
539 /* Upping and downing of CPUs */
540 int __cpuinit __cpu_up(unsigned int cpu)
541 {
542 	struct task_struct *idle;
543 	struct _lowcore *cpu_lowcore;
544 	struct stack_frame *sf;
545 	sigp_ccode ccode;
546 
547 	if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
548 		return -EIO;
549 	if (smp_alloc_lowcore(cpu))
550 		return -ENOMEM;
551 
552 	ccode = signal_processor_p((__u32)(unsigned long)(lowcore_ptr[cpu]),
553 				   cpu, sigp_set_prefix);
554 	if (ccode)
555 		return -EIO;
556 
557 	idle = current_set[cpu];
558 	cpu_lowcore = lowcore_ptr[cpu];
559 	cpu_lowcore->kernel_stack = (unsigned long)
560 		task_stack_page(idle) + THREAD_SIZE;
561 	cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
562 	sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
563 				     - sizeof(struct pt_regs)
564 				     - sizeof(struct stack_frame));
565 	memset(sf, 0, sizeof(struct stack_frame));
566 	sf->gprs[9] = (unsigned long) sf;
567 	cpu_lowcore->save_area[15] = (unsigned long) sf;
568 	__ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
569 	asm volatile(
570 		"	stam	0,15,0(%0)"
571 		: : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
572 	cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
573 	cpu_lowcore->current_task = (unsigned long) idle;
574 	cpu_lowcore->cpu_data.cpu_nr = cpu;
575 	cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
576 	cpu_lowcore->ipl_device = S390_lowcore.ipl_device;
577 	eieio();
578 
579 	while (signal_processor(cpu, sigp_restart) == sigp_busy)
580 		udelay(10);
581 
582 	while (!cpu_online(cpu))
583 		cpu_relax();
584 	return 0;
585 }
586 
587 static int __init setup_possible_cpus(char *s)
588 {
589 	int pcpus, cpu;
590 
591 	pcpus = simple_strtoul(s, NULL, 0);
592 	cpu_possible_map = cpumask_of_cpu(0);
593 	for (cpu = 1; cpu < pcpus && cpu < NR_CPUS; cpu++)
594 		cpu_set(cpu, cpu_possible_map);
595 	return 0;
596 }
597 early_param("possible_cpus", setup_possible_cpus);
598 
599 #ifdef CONFIG_HOTPLUG_CPU
600 
601 int __cpu_disable(void)
602 {
603 	struct ec_creg_mask_parms cr_parms;
604 	int cpu = smp_processor_id();
605 
606 	cpu_clear(cpu, cpu_online_map);
607 
608 	/* Disable pfault pseudo page faults on this cpu. */
609 	pfault_fini();
610 
611 	memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
612 	memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
613 
614 	/* disable all external interrupts */
615 	cr_parms.orvals[0] = 0;
616 	cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
617 				1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
618 	/* disable all I/O interrupts */
619 	cr_parms.orvals[6] = 0;
620 	cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
621 				1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
622 	/* disable most machine checks */
623 	cr_parms.orvals[14] = 0;
624 	cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
625 				 1 << 25 | 1 << 24);
626 
627 	smp_ctl_bit_callback(&cr_parms);
628 
629 	return 0;
630 }
631 
632 void __cpu_die(unsigned int cpu)
633 {
634 	/* Wait until target cpu is down */
635 	while (!smp_cpu_not_running(cpu))
636 		cpu_relax();
637 	smp_free_lowcore(cpu);
638 	pr_info("Processor %d stopped\n", cpu);
639 }
640 
641 void cpu_die(void)
642 {
643 	idle_task_exit();
644 	signal_processor(smp_processor_id(), sigp_stop);
645 	BUG();
646 	for (;;);
647 }
648 
649 #endif /* CONFIG_HOTPLUG_CPU */
650 
651 void __init smp_prepare_cpus(unsigned int max_cpus)
652 {
653 #ifndef CONFIG_64BIT
654 	unsigned long save_area = 0;
655 #endif
656 	unsigned long async_stack, panic_stack;
657 	struct _lowcore *lowcore;
658 	unsigned int cpu;
659 	int lc_order;
660 
661 	smp_detect_cpus();
662 
663 	/* request the 0x1201 emergency signal external interrupt */
664 	if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
665 		panic("Couldn't request external interrupt 0x1201");
666 	print_cpu_info(&S390_lowcore.cpu_data);
667 
668 	/* Reallocate current lowcore, but keep its contents. */
669 	lc_order = sizeof(long) == 8 ? 1 : 0;
670 	lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
671 	panic_stack = __get_free_page(GFP_KERNEL);
672 	async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
673 	BUG_ON(!lowcore || !panic_stack || !async_stack);
674 #ifndef CONFIG_64BIT
675 	if (MACHINE_HAS_IEEE)
676 		save_area = get_zeroed_page(GFP_KERNEL);
677 #endif
678 	local_irq_disable();
679 	local_mcck_disable();
680 	lowcore_ptr[smp_processor_id()] = lowcore;
681 	*lowcore = S390_lowcore;
682 	lowcore->panic_stack = panic_stack + PAGE_SIZE;
683 	lowcore->async_stack = async_stack + ASYNC_SIZE;
684 #ifndef CONFIG_64BIT
685 	if (MACHINE_HAS_IEEE)
686 		lowcore->extended_save_area_addr = (u32) save_area;
687 #else
688 	if (vdso_alloc_per_cpu(smp_processor_id(), lowcore))
689 		BUG();
690 #endif
691 	set_prefix((u32)(unsigned long) lowcore);
692 	local_mcck_enable();
693 	local_irq_enable();
694 	for_each_possible_cpu(cpu)
695 		if (cpu != smp_processor_id())
696 			smp_create_idle(cpu);
697 }
698 
699 void __init smp_prepare_boot_cpu(void)
700 {
701 	BUG_ON(smp_processor_id() != 0);
702 
703 	current_thread_info()->cpu = 0;
704 	cpu_set(0, cpu_present_map);
705 	cpu_set(0, cpu_online_map);
706 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
707 	current_set[0] = current;
708 	smp_cpu_state[0] = CPU_STATE_CONFIGURED;
709 	smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
710 }
711 
712 void __init smp_cpus_done(unsigned int max_cpus)
713 {
714 }
715 
716 /*
717  * the frequency of the profiling timer can be changed
718  * by writing a multiplier value into /proc/profile.
719  *
720  * usually you want to run this on all CPUs ;)
721  */
722 int setup_profiling_timer(unsigned int multiplier)
723 {
724 	return 0;
725 }
726 
727 #ifdef CONFIG_HOTPLUG_CPU
728 static ssize_t cpu_configure_show(struct sys_device *dev,
729 				struct sysdev_attribute *attr, char *buf)
730 {
731 	ssize_t count;
732 
733 	mutex_lock(&smp_cpu_state_mutex);
734 	count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
735 	mutex_unlock(&smp_cpu_state_mutex);
736 	return count;
737 }
738 
739 static ssize_t cpu_configure_store(struct sys_device *dev,
740 				  struct sysdev_attribute *attr,
741 				  const char *buf, size_t count)
742 {
743 	int cpu = dev->id;
744 	int val, rc;
745 	char delim;
746 
747 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
748 		return -EINVAL;
749 	if (val != 0 && val != 1)
750 		return -EINVAL;
751 
752 	get_online_cpus();
753 	mutex_lock(&smp_cpu_state_mutex);
754 	rc = -EBUSY;
755 	if (cpu_online(cpu))
756 		goto out;
757 	rc = 0;
758 	switch (val) {
759 	case 0:
760 		if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
761 			rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
762 			if (!rc) {
763 				smp_cpu_state[cpu] = CPU_STATE_STANDBY;
764 				smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
765 			}
766 		}
767 		break;
768 	case 1:
769 		if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
770 			rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
771 			if (!rc) {
772 				smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
773 				smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
774 			}
775 		}
776 		break;
777 	default:
778 		break;
779 	}
780 out:
781 	mutex_unlock(&smp_cpu_state_mutex);
782 	put_online_cpus();
783 	return rc ? rc : count;
784 }
785 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
786 #endif /* CONFIG_HOTPLUG_CPU */
787 
788 static ssize_t cpu_polarization_show(struct sys_device *dev,
789 				     struct sysdev_attribute *attr, char *buf)
790 {
791 	int cpu = dev->id;
792 	ssize_t count;
793 
794 	mutex_lock(&smp_cpu_state_mutex);
795 	switch (smp_cpu_polarization[cpu]) {
796 	case POLARIZATION_HRZ:
797 		count = sprintf(buf, "horizontal\n");
798 		break;
799 	case POLARIZATION_VL:
800 		count = sprintf(buf, "vertical:low\n");
801 		break;
802 	case POLARIZATION_VM:
803 		count = sprintf(buf, "vertical:medium\n");
804 		break;
805 	case POLARIZATION_VH:
806 		count = sprintf(buf, "vertical:high\n");
807 		break;
808 	default:
809 		count = sprintf(buf, "unknown\n");
810 		break;
811 	}
812 	mutex_unlock(&smp_cpu_state_mutex);
813 	return count;
814 }
815 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
816 
817 static ssize_t show_cpu_address(struct sys_device *dev,
818 				struct sysdev_attribute *attr, char *buf)
819 {
820 	return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
821 }
822 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
823 
824 
825 static struct attribute *cpu_common_attrs[] = {
826 #ifdef CONFIG_HOTPLUG_CPU
827 	&attr_configure.attr,
828 #endif
829 	&attr_address.attr,
830 	&attr_polarization.attr,
831 	NULL,
832 };
833 
834 static struct attribute_group cpu_common_attr_group = {
835 	.attrs = cpu_common_attrs,
836 };
837 
838 static ssize_t show_capability(struct sys_device *dev,
839 				struct sysdev_attribute *attr, char *buf)
840 {
841 	unsigned int capability;
842 	int rc;
843 
844 	rc = get_cpu_capability(&capability);
845 	if (rc)
846 		return rc;
847 	return sprintf(buf, "%u\n", capability);
848 }
849 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
850 
851 static ssize_t show_idle_count(struct sys_device *dev,
852 				struct sysdev_attribute *attr, char *buf)
853 {
854 	struct s390_idle_data *idle;
855 	unsigned long long idle_count;
856 
857 	idle = &per_cpu(s390_idle, dev->id);
858 	spin_lock(&idle->lock);
859 	idle_count = idle->idle_count;
860 	if (idle->idle_enter)
861 		idle_count++;
862 	spin_unlock(&idle->lock);
863 	return sprintf(buf, "%llu\n", idle_count);
864 }
865 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
866 
867 static ssize_t show_idle_time(struct sys_device *dev,
868 				struct sysdev_attribute *attr, char *buf)
869 {
870 	struct s390_idle_data *idle;
871 	unsigned long long now, idle_time, idle_enter;
872 
873 	idle = &per_cpu(s390_idle, dev->id);
874 	spin_lock(&idle->lock);
875 	now = get_clock();
876 	idle_time = idle->idle_time;
877 	idle_enter = idle->idle_enter;
878 	if (idle_enter != 0ULL && idle_enter < now)
879 		idle_time += now - idle_enter;
880 	spin_unlock(&idle->lock);
881 	return sprintf(buf, "%llu\n", idle_time >> 12);
882 }
883 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
884 
885 static struct attribute *cpu_online_attrs[] = {
886 	&attr_capability.attr,
887 	&attr_idle_count.attr,
888 	&attr_idle_time_us.attr,
889 	NULL,
890 };
891 
892 static struct attribute_group cpu_online_attr_group = {
893 	.attrs = cpu_online_attrs,
894 };
895 
896 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
897 				    unsigned long action, void *hcpu)
898 {
899 	unsigned int cpu = (unsigned int)(long)hcpu;
900 	struct cpu *c = &per_cpu(cpu_devices, cpu);
901 	struct sys_device *s = &c->sysdev;
902 	struct s390_idle_data *idle;
903 
904 	switch (action) {
905 	case CPU_ONLINE:
906 	case CPU_ONLINE_FROZEN:
907 		idle = &per_cpu(s390_idle, cpu);
908 		spin_lock_irq(&idle->lock);
909 		idle->idle_enter = 0;
910 		idle->idle_time = 0;
911 		idle->idle_count = 0;
912 		spin_unlock_irq(&idle->lock);
913 		if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
914 			return NOTIFY_BAD;
915 		break;
916 	case CPU_DEAD:
917 	case CPU_DEAD_FROZEN:
918 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
919 		break;
920 	}
921 	return NOTIFY_OK;
922 }
923 
924 static struct notifier_block __cpuinitdata smp_cpu_nb = {
925 	.notifier_call = smp_cpu_notify,
926 };
927 
928 static int __devinit smp_add_present_cpu(int cpu)
929 {
930 	struct cpu *c = &per_cpu(cpu_devices, cpu);
931 	struct sys_device *s = &c->sysdev;
932 	int rc;
933 
934 	c->hotpluggable = 1;
935 	rc = register_cpu(c, cpu);
936 	if (rc)
937 		goto out;
938 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
939 	if (rc)
940 		goto out_cpu;
941 	if (!cpu_online(cpu))
942 		goto out;
943 	rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
944 	if (!rc)
945 		return 0;
946 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
947 out_cpu:
948 #ifdef CONFIG_HOTPLUG_CPU
949 	unregister_cpu(c);
950 #endif
951 out:
952 	return rc;
953 }
954 
955 #ifdef CONFIG_HOTPLUG_CPU
956 
957 int __ref smp_rescan_cpus(void)
958 {
959 	cpumask_t newcpus;
960 	int cpu;
961 	int rc;
962 
963 	get_online_cpus();
964 	mutex_lock(&smp_cpu_state_mutex);
965 	newcpus = cpu_present_map;
966 	rc = __smp_rescan_cpus();
967 	if (rc)
968 		goto out;
969 	cpus_andnot(newcpus, cpu_present_map, newcpus);
970 	for_each_cpu_mask(cpu, newcpus) {
971 		rc = smp_add_present_cpu(cpu);
972 		if (rc)
973 			cpu_clear(cpu, cpu_present_map);
974 	}
975 	rc = 0;
976 out:
977 	mutex_unlock(&smp_cpu_state_mutex);
978 	put_online_cpus();
979 	if (!cpus_empty(newcpus))
980 		topology_schedule_update();
981 	return rc;
982 }
983 
984 static ssize_t __ref rescan_store(struct sysdev_class *class, const char *buf,
985 				  size_t count)
986 {
987 	int rc;
988 
989 	rc = smp_rescan_cpus();
990 	return rc ? rc : count;
991 }
992 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
993 #endif /* CONFIG_HOTPLUG_CPU */
994 
995 static ssize_t dispatching_show(struct sysdev_class *class, char *buf)
996 {
997 	ssize_t count;
998 
999 	mutex_lock(&smp_cpu_state_mutex);
1000 	count = sprintf(buf, "%d\n", cpu_management);
1001 	mutex_unlock(&smp_cpu_state_mutex);
1002 	return count;
1003 }
1004 
1005 static ssize_t dispatching_store(struct sysdev_class *dev, const char *buf,
1006 				 size_t count)
1007 {
1008 	int val, rc;
1009 	char delim;
1010 
1011 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1012 		return -EINVAL;
1013 	if (val != 0 && val != 1)
1014 		return -EINVAL;
1015 	rc = 0;
1016 	get_online_cpus();
1017 	mutex_lock(&smp_cpu_state_mutex);
1018 	if (cpu_management == val)
1019 		goto out;
1020 	rc = topology_set_cpu_management(val);
1021 	if (!rc)
1022 		cpu_management = val;
1023 out:
1024 	mutex_unlock(&smp_cpu_state_mutex);
1025 	put_online_cpus();
1026 	return rc ? rc : count;
1027 }
1028 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1029 			 dispatching_store);
1030 
1031 static int __init topology_init(void)
1032 {
1033 	int cpu;
1034 	int rc;
1035 
1036 	register_cpu_notifier(&smp_cpu_nb);
1037 
1038 #ifdef CONFIG_HOTPLUG_CPU
1039 	rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1040 	if (rc)
1041 		return rc;
1042 #endif
1043 	rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1044 	if (rc)
1045 		return rc;
1046 	for_each_present_cpu(cpu) {
1047 		rc = smp_add_present_cpu(cpu);
1048 		if (rc)
1049 			return rc;
1050 	}
1051 	return 0;
1052 }
1053 subsys_initcall(topology_init);
1054