xref: /linux/arch/s390/kernel/smp.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999,2007
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *		 Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *		 Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/cache.h>
31 #include <linux/interrupt.h>
32 #include <linux/cpu.h>
33 #include <linux/timex.h>
34 #include <linux/bootmem.h>
35 #include <asm/ipl.h>
36 #include <asm/setup.h>
37 #include <asm/sigp.h>
38 #include <asm/pgalloc.h>
39 #include <asm/irq.h>
40 #include <asm/s390_ext.h>
41 #include <asm/cpcmd.h>
42 #include <asm/tlbflush.h>
43 #include <asm/timer.h>
44 #include <asm/lowcore.h>
45 #include <asm/cpu.h>
46 
47 /*
48  * An array with a pointer the lowcore of every CPU.
49  */
50 struct _lowcore *lowcore_ptr[NR_CPUS];
51 EXPORT_SYMBOL(lowcore_ptr);
52 
53 cpumask_t cpu_online_map = CPU_MASK_NONE;
54 EXPORT_SYMBOL(cpu_online_map);
55 
56 cpumask_t cpu_possible_map = CPU_MASK_NONE;
57 EXPORT_SYMBOL(cpu_possible_map);
58 
59 static struct task_struct *current_set[NR_CPUS];
60 
61 static void smp_ext_bitcall(int, ec_bit_sig);
62 
63 /*
64  * Structure and data for __smp_call_function_map(). This is designed to
65  * minimise static memory requirements. It also looks cleaner.
66  */
67 static DEFINE_SPINLOCK(call_lock);
68 
69 struct call_data_struct {
70 	void (*func) (void *info);
71 	void *info;
72 	cpumask_t started;
73 	cpumask_t finished;
74 	int wait;
75 };
76 
77 static struct call_data_struct *call_data;
78 
79 /*
80  * 'Call function' interrupt callback
81  */
82 static void do_call_function(void)
83 {
84 	void (*func) (void *info) = call_data->func;
85 	void *info = call_data->info;
86 	int wait = call_data->wait;
87 
88 	cpu_set(smp_processor_id(), call_data->started);
89 	(*func)(info);
90 	if (wait)
91 		cpu_set(smp_processor_id(), call_data->finished);;
92 }
93 
94 static void __smp_call_function_map(void (*func) (void *info), void *info,
95 				    int nonatomic, int wait, cpumask_t map)
96 {
97 	struct call_data_struct data;
98 	int cpu, local = 0;
99 
100 	/*
101 	 * Can deadlock when interrupts are disabled or if in wrong context.
102 	 */
103 	WARN_ON(irqs_disabled() || in_irq());
104 
105 	/*
106 	 * Check for local function call. We have to have the same call order
107 	 * as in on_each_cpu() because of machine_restart_smp().
108 	 */
109 	if (cpu_isset(smp_processor_id(), map)) {
110 		local = 1;
111 		cpu_clear(smp_processor_id(), map);
112 	}
113 
114 	cpus_and(map, map, cpu_online_map);
115 	if (cpus_empty(map))
116 		goto out;
117 
118 	data.func = func;
119 	data.info = info;
120 	data.started = CPU_MASK_NONE;
121 	data.wait = wait;
122 	if (wait)
123 		data.finished = CPU_MASK_NONE;
124 
125 	spin_lock(&call_lock);
126 	call_data = &data;
127 
128 	for_each_cpu_mask(cpu, map)
129 		smp_ext_bitcall(cpu, ec_call_function);
130 
131 	/* Wait for response */
132 	while (!cpus_equal(map, data.started))
133 		cpu_relax();
134 	if (wait)
135 		while (!cpus_equal(map, data.finished))
136 			cpu_relax();
137 	spin_unlock(&call_lock);
138 out:
139 	if (local) {
140 		local_irq_disable();
141 		func(info);
142 		local_irq_enable();
143 	}
144 }
145 
146 /*
147  * smp_call_function:
148  * @func: the function to run; this must be fast and non-blocking
149  * @info: an arbitrary pointer to pass to the function
150  * @nonatomic: unused
151  * @wait: if true, wait (atomically) until function has completed on other CPUs
152  *
153  * Run a function on all other CPUs.
154  *
155  * You must not call this function with disabled interrupts, from a
156  * hardware interrupt handler or from a bottom half.
157  */
158 int smp_call_function(void (*func) (void *info), void *info, int nonatomic,
159 		      int wait)
160 {
161 	cpumask_t map;
162 
163 	preempt_disable();
164 	map = cpu_online_map;
165 	cpu_clear(smp_processor_id(), map);
166 	__smp_call_function_map(func, info, nonatomic, wait, map);
167 	preempt_enable();
168 	return 0;
169 }
170 EXPORT_SYMBOL(smp_call_function);
171 
172 /*
173  * smp_call_function_single:
174  * @cpu: the CPU where func should run
175  * @func: the function to run; this must be fast and non-blocking
176  * @info: an arbitrary pointer to pass to the function
177  * @nonatomic: unused
178  * @wait: if true, wait (atomically) until function has completed on other CPUs
179  *
180  * Run a function on one processor.
181  *
182  * You must not call this function with disabled interrupts, from a
183  * hardware interrupt handler or from a bottom half.
184  */
185 int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
186 			     int nonatomic, int wait)
187 {
188 	preempt_disable();
189 	__smp_call_function_map(func, info, nonatomic, wait,
190 				cpumask_of_cpu(cpu));
191 	preempt_enable();
192 	return 0;
193 }
194 EXPORT_SYMBOL(smp_call_function_single);
195 
196 static void do_send_stop(void)
197 {
198 	int cpu, rc;
199 
200 	/* stop all processors */
201 	for_each_online_cpu(cpu) {
202 		if (cpu == smp_processor_id())
203 			continue;
204 		do {
205 			rc = signal_processor(cpu, sigp_stop);
206 		} while (rc == sigp_busy);
207 	}
208 }
209 
210 static void do_store_status(void)
211 {
212 	int cpu, rc;
213 
214 	/* store status of all processors in their lowcores (real 0) */
215 	for_each_online_cpu(cpu) {
216 		if (cpu == smp_processor_id())
217 			continue;
218 		do {
219 			rc = signal_processor_p(
220 				(__u32)(unsigned long) lowcore_ptr[cpu], cpu,
221 				sigp_store_status_at_address);
222 		} while (rc == sigp_busy);
223 	}
224 }
225 
226 static void do_wait_for_stop(void)
227 {
228 	int cpu;
229 
230 	/* Wait for all other cpus to enter stopped state */
231 	for_each_online_cpu(cpu) {
232 		if (cpu == smp_processor_id())
233 			continue;
234 		while (!smp_cpu_not_running(cpu))
235 			cpu_relax();
236 	}
237 }
238 
239 /*
240  * this function sends a 'stop' sigp to all other CPUs in the system.
241  * it goes straight through.
242  */
243 void smp_send_stop(void)
244 {
245 	/* Disable all interrupts/machine checks */
246 	__load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
247 
248 	/* write magic number to zero page (absolute 0) */
249 	lowcore_ptr[smp_processor_id()]->panic_magic = __PANIC_MAGIC;
250 
251 	/* stop other processors. */
252 	do_send_stop();
253 
254 	/* wait until other processors are stopped */
255 	do_wait_for_stop();
256 
257 	/* store status of other processors. */
258 	do_store_status();
259 }
260 
261 /*
262  * Reboot, halt and power_off routines for SMP.
263  */
264 void machine_restart_smp(char *__unused)
265 {
266 	smp_send_stop();
267 	do_reipl();
268 }
269 
270 void machine_halt_smp(void)
271 {
272 	smp_send_stop();
273 	if (MACHINE_IS_VM && strlen(vmhalt_cmd) > 0)
274 		__cpcmd(vmhalt_cmd, NULL, 0, NULL);
275 	signal_processor(smp_processor_id(), sigp_stop_and_store_status);
276 	for (;;);
277 }
278 
279 void machine_power_off_smp(void)
280 {
281 	smp_send_stop();
282 	if (MACHINE_IS_VM && strlen(vmpoff_cmd) > 0)
283 		__cpcmd(vmpoff_cmd, NULL, 0, NULL);
284 	signal_processor(smp_processor_id(), sigp_stop_and_store_status);
285 	for (;;);
286 }
287 
288 /*
289  * This is the main routine where commands issued by other
290  * cpus are handled.
291  */
292 
293 static void do_ext_call_interrupt(__u16 code)
294 {
295 	unsigned long bits;
296 
297 	/*
298 	 * handle bit signal external calls
299 	 *
300 	 * For the ec_schedule signal we have to do nothing. All the work
301 	 * is done automatically when we return from the interrupt.
302 	 */
303 	bits = xchg(&S390_lowcore.ext_call_fast, 0);
304 
305 	if (test_bit(ec_call_function, &bits))
306 		do_call_function();
307 }
308 
309 /*
310  * Send an external call sigp to another cpu and return without waiting
311  * for its completion.
312  */
313 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
314 {
315 	/*
316 	 * Set signaling bit in lowcore of target cpu and kick it
317 	 */
318 	set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
319 	while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
320 		udelay(10);
321 }
322 
323 #ifndef CONFIG_64BIT
324 /*
325  * this function sends a 'purge tlb' signal to another CPU.
326  */
327 void smp_ptlb_callback(void *info)
328 {
329 	__tlb_flush_local();
330 }
331 
332 void smp_ptlb_all(void)
333 {
334 	on_each_cpu(smp_ptlb_callback, NULL, 0, 1);
335 }
336 EXPORT_SYMBOL(smp_ptlb_all);
337 #endif /* ! CONFIG_64BIT */
338 
339 /*
340  * this function sends a 'reschedule' IPI to another CPU.
341  * it goes straight through and wastes no time serializing
342  * anything. Worst case is that we lose a reschedule ...
343  */
344 void smp_send_reschedule(int cpu)
345 {
346 	smp_ext_bitcall(cpu, ec_schedule);
347 }
348 
349 /*
350  * parameter area for the set/clear control bit callbacks
351  */
352 struct ec_creg_mask_parms {
353 	unsigned long orvals[16];
354 	unsigned long andvals[16];
355 };
356 
357 /*
358  * callback for setting/clearing control bits
359  */
360 static void smp_ctl_bit_callback(void *info)
361 {
362 	struct ec_creg_mask_parms *pp = info;
363 	unsigned long cregs[16];
364 	int i;
365 
366 	__ctl_store(cregs, 0, 15);
367 	for (i = 0; i <= 15; i++)
368 		cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
369 	__ctl_load(cregs, 0, 15);
370 }
371 
372 /*
373  * Set a bit in a control register of all cpus
374  */
375 void smp_ctl_set_bit(int cr, int bit)
376 {
377 	struct ec_creg_mask_parms parms;
378 
379 	memset(&parms.orvals, 0, sizeof(parms.orvals));
380 	memset(&parms.andvals, 0xff, sizeof(parms.andvals));
381 	parms.orvals[cr] = 1 << bit;
382 	on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1);
383 }
384 EXPORT_SYMBOL(smp_ctl_set_bit);
385 
386 /*
387  * Clear a bit in a control register of all cpus
388  */
389 void smp_ctl_clear_bit(int cr, int bit)
390 {
391 	struct ec_creg_mask_parms parms;
392 
393 	memset(&parms.orvals, 0, sizeof(parms.orvals));
394 	memset(&parms.andvals, 0xff, sizeof(parms.andvals));
395 	parms.andvals[cr] = ~(1L << bit);
396 	on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1);
397 }
398 EXPORT_SYMBOL(smp_ctl_clear_bit);
399 
400 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE)
401 
402 /*
403  * zfcpdump_prefix_array holds prefix registers for the following scenario:
404  * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
405  * save its prefix registers, since they get lost, when switching from 31 bit
406  * to 64 bit.
407  */
408 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
409 	__attribute__((__section__(".data")));
410 
411 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
412 {
413 	if (ipl_info.type != IPL_TYPE_FCP_DUMP)
414 		return;
415 	if (cpu >= NR_CPUS) {
416 		printk(KERN_WARNING "Registers for cpu %i not saved since dump "
417 		       "kernel was compiled with NR_CPUS=%i\n", cpu, NR_CPUS);
418 		return;
419 	}
420 	zfcpdump_save_areas[cpu] = alloc_bootmem(sizeof(union save_area));
421 	__cpu_logical_map[1] = (__u16) phy_cpu;
422 	while (signal_processor(1, sigp_stop_and_store_status) == sigp_busy)
423 		cpu_relax();
424 	memcpy(zfcpdump_save_areas[cpu],
425 	       (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
426 	       SAVE_AREA_SIZE);
427 #ifdef CONFIG_64BIT
428 	/* copy original prefix register */
429 	zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
430 #endif
431 }
432 
433 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
434 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
435 
436 #else
437 
438 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
439 
440 #endif /* CONFIG_ZFCPDUMP || CONFIG_ZFCPDUMP_MODULE */
441 
442 /*
443  * Lets check how many CPUs we have.
444  */
445 static unsigned int __init smp_count_cpus(void)
446 {
447 	unsigned int cpu, num_cpus;
448 	__u16 boot_cpu_addr;
449 
450 	/*
451 	 * cpu 0 is the boot cpu. See smp_prepare_boot_cpu.
452 	 */
453 	boot_cpu_addr = S390_lowcore.cpu_data.cpu_addr;
454 	current_thread_info()->cpu = 0;
455 	num_cpus = 1;
456 	for (cpu = 0; cpu <= 65535; cpu++) {
457 		if ((__u16) cpu == boot_cpu_addr)
458 			continue;
459 		__cpu_logical_map[1] = (__u16) cpu;
460 		if (signal_processor(1, sigp_sense) == sigp_not_operational)
461 			continue;
462 		smp_get_save_area(num_cpus, cpu);
463 		num_cpus++;
464 	}
465 	printk("Detected %d CPU's\n", (int) num_cpus);
466 	printk("Boot cpu address %2X\n", boot_cpu_addr);
467 	return num_cpus;
468 }
469 
470 /*
471  *	Activate a secondary processor.
472  */
473 int __cpuinit start_secondary(void *cpuvoid)
474 {
475 	/* Setup the cpu */
476 	cpu_init();
477 	preempt_disable();
478 	/* Enable TOD clock interrupts on the secondary cpu. */
479 	init_cpu_timer();
480 #ifdef CONFIG_VIRT_TIMER
481 	/* Enable cpu timer interrupts on the secondary cpu. */
482 	init_cpu_vtimer();
483 #endif
484 	/* Enable pfault pseudo page faults on this cpu. */
485 	pfault_init();
486 
487 	/* Mark this cpu as online */
488 	cpu_set(smp_processor_id(), cpu_online_map);
489 	/* Switch on interrupts */
490 	local_irq_enable();
491 	/* Print info about this processor */
492 	print_cpu_info(&S390_lowcore.cpu_data);
493 	/* cpu_idle will call schedule for us */
494 	cpu_idle();
495 	return 0;
496 }
497 
498 DEFINE_PER_CPU(struct s390_idle_data, s390_idle);
499 
500 static void __init smp_create_idle(unsigned int cpu)
501 {
502 	struct task_struct *p;
503 
504 	/*
505 	 *  don't care about the psw and regs settings since we'll never
506 	 *  reschedule the forked task.
507 	 */
508 	p = fork_idle(cpu);
509 	if (IS_ERR(p))
510 		panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
511 	current_set[cpu] = p;
512 	spin_lock_init(&(&per_cpu(s390_idle, cpu))->lock);
513 }
514 
515 static int cpu_stopped(int cpu)
516 {
517 	__u32 status;
518 
519 	/* Check for stopped state */
520 	if (signal_processor_ps(&status, 0, cpu, sigp_sense) ==
521 	    sigp_status_stored) {
522 		if (status & 0x40)
523 			return 1;
524 	}
525 	return 0;
526 }
527 
528 /* Upping and downing of CPUs */
529 
530 int __cpu_up(unsigned int cpu)
531 {
532 	struct task_struct *idle;
533 	struct _lowcore *cpu_lowcore;
534 	struct stack_frame *sf;
535 	sigp_ccode ccode;
536 	int curr_cpu;
537 
538 	for (curr_cpu = 0; curr_cpu <= 65535; curr_cpu++) {
539 		__cpu_logical_map[cpu] = (__u16) curr_cpu;
540 		if (cpu_stopped(cpu))
541 			break;
542 	}
543 
544 	if (!cpu_stopped(cpu))
545 		return -ENODEV;
546 
547 	ccode = signal_processor_p((__u32)(unsigned long)(lowcore_ptr[cpu]),
548 				   cpu, sigp_set_prefix);
549 	if (ccode) {
550 		printk("sigp_set_prefix failed for cpu %d "
551 		       "with condition code %d\n",
552 		       (int) cpu, (int) ccode);
553 		return -EIO;
554 	}
555 
556 	idle = current_set[cpu];
557 	cpu_lowcore = lowcore_ptr[cpu];
558 	cpu_lowcore->kernel_stack = (unsigned long)
559 		task_stack_page(idle) + THREAD_SIZE;
560 	sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
561 				     - sizeof(struct pt_regs)
562 				     - sizeof(struct stack_frame));
563 	memset(sf, 0, sizeof(struct stack_frame));
564 	sf->gprs[9] = (unsigned long) sf;
565 	cpu_lowcore->save_area[15] = (unsigned long) sf;
566 	__ctl_store(cpu_lowcore->cregs_save_area[0], 0, 15);
567 	asm volatile(
568 		"	stam	0,15,0(%0)"
569 		: : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
570 	cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
571 	cpu_lowcore->current_task = (unsigned long) idle;
572 	cpu_lowcore->cpu_data.cpu_nr = cpu;
573 	eieio();
574 
575 	while (signal_processor(cpu, sigp_restart) == sigp_busy)
576 		udelay(10);
577 
578 	while (!cpu_online(cpu))
579 		cpu_relax();
580 	return 0;
581 }
582 
583 static unsigned int __initdata additional_cpus;
584 static unsigned int __initdata possible_cpus;
585 
586 void __init smp_setup_cpu_possible_map(void)
587 {
588 	unsigned int phy_cpus, pos_cpus, cpu;
589 
590 	phy_cpus = smp_count_cpus();
591 	pos_cpus = min(phy_cpus + additional_cpus, (unsigned int) NR_CPUS);
592 
593 	if (possible_cpus)
594 		pos_cpus = min(possible_cpus, (unsigned int) NR_CPUS);
595 
596 	for (cpu = 0; cpu < pos_cpus; cpu++)
597 		cpu_set(cpu, cpu_possible_map);
598 
599 	phy_cpus = min(phy_cpus, pos_cpus);
600 
601 	for (cpu = 0; cpu < phy_cpus; cpu++)
602 		cpu_set(cpu, cpu_present_map);
603 }
604 
605 #ifdef CONFIG_HOTPLUG_CPU
606 
607 static int __init setup_additional_cpus(char *s)
608 {
609 	additional_cpus = simple_strtoul(s, NULL, 0);
610 	return 0;
611 }
612 early_param("additional_cpus", setup_additional_cpus);
613 
614 static int __init setup_possible_cpus(char *s)
615 {
616 	possible_cpus = simple_strtoul(s, NULL, 0);
617 	return 0;
618 }
619 early_param("possible_cpus", setup_possible_cpus);
620 
621 int __cpu_disable(void)
622 {
623 	struct ec_creg_mask_parms cr_parms;
624 	int cpu = smp_processor_id();
625 
626 	cpu_clear(cpu, cpu_online_map);
627 
628 	/* Disable pfault pseudo page faults on this cpu. */
629 	pfault_fini();
630 
631 	memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
632 	memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
633 
634 	/* disable all external interrupts */
635 	cr_parms.orvals[0] = 0;
636 	cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
637 				1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
638 	/* disable all I/O interrupts */
639 	cr_parms.orvals[6] = 0;
640 	cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
641 				1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
642 	/* disable most machine checks */
643 	cr_parms.orvals[14] = 0;
644 	cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
645 				 1 << 25 | 1 << 24);
646 
647 	smp_ctl_bit_callback(&cr_parms);
648 
649 	return 0;
650 }
651 
652 void __cpu_die(unsigned int cpu)
653 {
654 	/* Wait until target cpu is down */
655 	while (!smp_cpu_not_running(cpu))
656 		cpu_relax();
657 	printk("Processor %d spun down\n", cpu);
658 }
659 
660 void cpu_die(void)
661 {
662 	idle_task_exit();
663 	signal_processor(smp_processor_id(), sigp_stop);
664 	BUG();
665 	for (;;);
666 }
667 
668 #endif /* CONFIG_HOTPLUG_CPU */
669 
670 /*
671  *	Cycle through the processors and setup structures.
672  */
673 
674 void __init smp_prepare_cpus(unsigned int max_cpus)
675 {
676 	unsigned long stack;
677 	unsigned int cpu;
678 	int i;
679 
680 	/* request the 0x1201 emergency signal external interrupt */
681 	if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
682 		panic("Couldn't request external interrupt 0x1201");
683 	memset(lowcore_ptr, 0, sizeof(lowcore_ptr));
684 	/*
685 	 *  Initialize prefix pages and stacks for all possible cpus
686 	 */
687 	print_cpu_info(&S390_lowcore.cpu_data);
688 
689 	for_each_possible_cpu(i) {
690 		lowcore_ptr[i] = (struct _lowcore *)
691 			__get_free_pages(GFP_KERNEL | GFP_DMA,
692 					 sizeof(void*) == 8 ? 1 : 0);
693 		stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
694 		if (!lowcore_ptr[i] || !stack)
695 			panic("smp_boot_cpus failed to allocate memory\n");
696 
697 		*(lowcore_ptr[i]) = S390_lowcore;
698 		lowcore_ptr[i]->async_stack = stack + ASYNC_SIZE;
699 		stack = __get_free_pages(GFP_KERNEL, 0);
700 		if (!stack)
701 			panic("smp_boot_cpus failed to allocate memory\n");
702 		lowcore_ptr[i]->panic_stack = stack + PAGE_SIZE;
703 #ifndef CONFIG_64BIT
704 		if (MACHINE_HAS_IEEE) {
705 			lowcore_ptr[i]->extended_save_area_addr =
706 				(__u32) __get_free_pages(GFP_KERNEL, 0);
707 			if (!lowcore_ptr[i]->extended_save_area_addr)
708 				panic("smp_boot_cpus failed to "
709 				      "allocate memory\n");
710 		}
711 #endif
712 	}
713 #ifndef CONFIG_64BIT
714 	if (MACHINE_HAS_IEEE)
715 		ctl_set_bit(14, 29); /* enable extended save area */
716 #endif
717 	set_prefix((u32)(unsigned long) lowcore_ptr[smp_processor_id()]);
718 
719 	for_each_possible_cpu(cpu)
720 		if (cpu != smp_processor_id())
721 			smp_create_idle(cpu);
722 }
723 
724 void __init smp_prepare_boot_cpu(void)
725 {
726 	BUG_ON(smp_processor_id() != 0);
727 
728 	cpu_set(0, cpu_online_map);
729 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
730 	current_set[0] = current;
731 	spin_lock_init(&(&__get_cpu_var(s390_idle))->lock);
732 }
733 
734 void __init smp_cpus_done(unsigned int max_cpus)
735 {
736 	cpu_present_map = cpu_possible_map;
737 }
738 
739 /*
740  * the frequency of the profiling timer can be changed
741  * by writing a multiplier value into /proc/profile.
742  *
743  * usually you want to run this on all CPUs ;)
744  */
745 int setup_profiling_timer(unsigned int multiplier)
746 {
747 	return 0;
748 }
749 
750 static DEFINE_PER_CPU(struct cpu, cpu_devices);
751 
752 static ssize_t show_capability(struct sys_device *dev, char *buf)
753 {
754 	unsigned int capability;
755 	int rc;
756 
757 	rc = get_cpu_capability(&capability);
758 	if (rc)
759 		return rc;
760 	return sprintf(buf, "%u\n", capability);
761 }
762 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
763 
764 static ssize_t show_idle_count(struct sys_device *dev, char *buf)
765 {
766 	struct s390_idle_data *idle;
767 	unsigned long long idle_count;
768 
769 	idle = &per_cpu(s390_idle, dev->id);
770 	spin_lock_irq(&idle->lock);
771 	idle_count = idle->idle_count;
772 	spin_unlock_irq(&idle->lock);
773 	return sprintf(buf, "%llu\n", idle_count);
774 }
775 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
776 
777 static ssize_t show_idle_time(struct sys_device *dev, char *buf)
778 {
779 	struct s390_idle_data *idle;
780 	unsigned long long new_time;
781 
782 	idle = &per_cpu(s390_idle, dev->id);
783 	spin_lock_irq(&idle->lock);
784 	if (idle->in_idle) {
785 		new_time = get_clock();
786 		idle->idle_time += new_time - idle->idle_enter;
787 		idle->idle_enter = new_time;
788 	}
789 	new_time = idle->idle_time;
790 	spin_unlock_irq(&idle->lock);
791 	return sprintf(buf, "%llu\n", new_time >> 12);
792 }
793 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
794 
795 static struct attribute *cpu_attrs[] = {
796 	&attr_capability.attr,
797 	&attr_idle_count.attr,
798 	&attr_idle_time_us.attr,
799 	NULL,
800 };
801 
802 static struct attribute_group cpu_attr_group = {
803 	.attrs = cpu_attrs,
804 };
805 
806 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
807 				    unsigned long action, void *hcpu)
808 {
809 	unsigned int cpu = (unsigned int)(long)hcpu;
810 	struct cpu *c = &per_cpu(cpu_devices, cpu);
811 	struct sys_device *s = &c->sysdev;
812 	struct s390_idle_data *idle;
813 
814 	switch (action) {
815 	case CPU_ONLINE:
816 	case CPU_ONLINE_FROZEN:
817 		idle = &per_cpu(s390_idle, cpu);
818 		spin_lock_irq(&idle->lock);
819 		idle->idle_enter = 0;
820 		idle->idle_time = 0;
821 		idle->idle_count = 0;
822 		spin_unlock_irq(&idle->lock);
823 		if (sysfs_create_group(&s->kobj, &cpu_attr_group))
824 			return NOTIFY_BAD;
825 		break;
826 	case CPU_DEAD:
827 	case CPU_DEAD_FROZEN:
828 		sysfs_remove_group(&s->kobj, &cpu_attr_group);
829 		break;
830 	}
831 	return NOTIFY_OK;
832 }
833 
834 static struct notifier_block __cpuinitdata smp_cpu_nb = {
835 	.notifier_call = smp_cpu_notify,
836 };
837 
838 static int __init topology_init(void)
839 {
840 	int cpu;
841 	int rc;
842 
843 	register_cpu_notifier(&smp_cpu_nb);
844 
845 	for_each_possible_cpu(cpu) {
846 		struct cpu *c = &per_cpu(cpu_devices, cpu);
847 		struct sys_device *s = &c->sysdev;
848 
849 		c->hotpluggable = 1;
850 		register_cpu(c, cpu);
851 		if (!cpu_online(cpu))
852 			continue;
853 		s = &c->sysdev;
854 		rc = sysfs_create_group(&s->kobj, &cpu_attr_group);
855 		if (rc)
856 			return rc;
857 	}
858 	return 0;
859 }
860 subsys_initcall(topology_init);
861