1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SMP related functions 4 * 5 * Copyright IBM Corp. 1999, 2012 6 * Author(s): Denis Joseph Barrow, 7 * Martin Schwidefsky <schwidefsky@de.ibm.com>, 8 * 9 * based on other smp stuff by 10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net> 11 * (c) 1998 Ingo Molnar 12 * 13 * The code outside of smp.c uses logical cpu numbers, only smp.c does 14 * the translation of logical to physical cpu ids. All new code that 15 * operates on physical cpu numbers needs to go into smp.c. 16 */ 17 18 #define KMSG_COMPONENT "cpu" 19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 20 21 #include <linux/workqueue.h> 22 #include <linux/memblock.h> 23 #include <linux/export.h> 24 #include <linux/init.h> 25 #include <linux/mm.h> 26 #include <linux/err.h> 27 #include <linux/spinlock.h> 28 #include <linux/kernel_stat.h> 29 #include <linux/delay.h> 30 #include <linux/interrupt.h> 31 #include <linux/irqflags.h> 32 #include <linux/irq_work.h> 33 #include <linux/cpu.h> 34 #include <linux/slab.h> 35 #include <linux/sched/hotplug.h> 36 #include <linux/sched/task_stack.h> 37 #include <linux/crash_dump.h> 38 #include <linux/kprobes.h> 39 #include <asm/asm-offsets.h> 40 #include <asm/pfault.h> 41 #include <asm/diag.h> 42 #include <asm/switch_to.h> 43 #include <asm/facility.h> 44 #include <asm/ipl.h> 45 #include <asm/setup.h> 46 #include <asm/irq.h> 47 #include <asm/tlbflush.h> 48 #include <asm/vtimer.h> 49 #include <asm/abs_lowcore.h> 50 #include <asm/sclp.h> 51 #include <asm/debug.h> 52 #include <asm/os_info.h> 53 #include <asm/sigp.h> 54 #include <asm/idle.h> 55 #include <asm/nmi.h> 56 #include <asm/stacktrace.h> 57 #include <asm/topology.h> 58 #include <asm/vdso.h> 59 #include <asm/maccess.h> 60 #include "entry.h" 61 62 enum { 63 ec_schedule = 0, 64 ec_call_function_single, 65 ec_stop_cpu, 66 ec_mcck_pending, 67 ec_irq_work, 68 }; 69 70 enum { 71 CPU_STATE_STANDBY, 72 CPU_STATE_CONFIGURED, 73 }; 74 75 static DEFINE_PER_CPU(struct cpu *, cpu_device); 76 77 struct pcpu { 78 unsigned long ec_mask; /* bit mask for ec_xxx functions */ 79 unsigned long ec_clk; /* sigp timestamp for ec_xxx */ 80 signed char state; /* physical cpu state */ 81 signed char polarization; /* physical polarization */ 82 u16 address; /* physical cpu address */ 83 }; 84 85 static u8 boot_core_type; 86 static struct pcpu pcpu_devices[NR_CPUS]; 87 88 unsigned int smp_cpu_mt_shift; 89 EXPORT_SYMBOL(smp_cpu_mt_shift); 90 91 unsigned int smp_cpu_mtid; 92 EXPORT_SYMBOL(smp_cpu_mtid); 93 94 #ifdef CONFIG_CRASH_DUMP 95 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS]; 96 #endif 97 98 static unsigned int smp_max_threads __initdata = -1U; 99 cpumask_t cpu_setup_mask; 100 101 static int __init early_nosmt(char *s) 102 { 103 smp_max_threads = 1; 104 return 0; 105 } 106 early_param("nosmt", early_nosmt); 107 108 static int __init early_smt(char *s) 109 { 110 get_option(&s, &smp_max_threads); 111 return 0; 112 } 113 early_param("smt", early_smt); 114 115 /* 116 * The smp_cpu_state_mutex must be held when changing the state or polarization 117 * member of a pcpu data structure within the pcpu_devices array. 118 */ 119 DEFINE_MUTEX(smp_cpu_state_mutex); 120 121 /* 122 * Signal processor helper functions. 123 */ 124 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm) 125 { 126 int cc; 127 128 while (1) { 129 cc = __pcpu_sigp(addr, order, parm, NULL); 130 if (cc != SIGP_CC_BUSY) 131 return cc; 132 cpu_relax(); 133 } 134 } 135 136 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm) 137 { 138 int cc, retry; 139 140 for (retry = 0; ; retry++) { 141 cc = __pcpu_sigp(pcpu->address, order, parm, NULL); 142 if (cc != SIGP_CC_BUSY) 143 break; 144 if (retry >= 3) 145 udelay(10); 146 } 147 return cc; 148 } 149 150 static inline int pcpu_stopped(struct pcpu *pcpu) 151 { 152 u32 status; 153 154 if (__pcpu_sigp(pcpu->address, SIGP_SENSE, 155 0, &status) != SIGP_CC_STATUS_STORED) 156 return 0; 157 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED)); 158 } 159 160 static inline int pcpu_running(struct pcpu *pcpu) 161 { 162 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING, 163 0, NULL) != SIGP_CC_STATUS_STORED) 164 return 1; 165 /* Status stored condition code is equivalent to cpu not running. */ 166 return 0; 167 } 168 169 /* 170 * Find struct pcpu by cpu address. 171 */ 172 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address) 173 { 174 int cpu; 175 176 for_each_cpu(cpu, mask) 177 if (pcpu_devices[cpu].address == address) 178 return pcpu_devices + cpu; 179 return NULL; 180 } 181 182 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit) 183 { 184 int order; 185 186 if (test_and_set_bit(ec_bit, &pcpu->ec_mask)) 187 return; 188 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL; 189 pcpu->ec_clk = get_tod_clock_fast(); 190 pcpu_sigp_retry(pcpu, order, 0); 191 } 192 193 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu) 194 { 195 unsigned long async_stack, nodat_stack, mcck_stack; 196 struct lowcore *lc; 197 198 lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER); 199 nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER); 200 async_stack = stack_alloc(); 201 mcck_stack = stack_alloc(); 202 if (!lc || !nodat_stack || !async_stack || !mcck_stack) 203 goto out; 204 memcpy(lc, &S390_lowcore, 512); 205 memset((char *) lc + 512, 0, sizeof(*lc) - 512); 206 lc->async_stack = async_stack + STACK_INIT_OFFSET; 207 lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET; 208 lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET; 209 lc->cpu_nr = cpu; 210 lc->spinlock_lockval = arch_spin_lockval(cpu); 211 lc->spinlock_index = 0; 212 lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW); 213 lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW); 214 lc->preempt_count = PREEMPT_DISABLED; 215 if (nmi_alloc_mcesa(&lc->mcesad)) 216 goto out; 217 if (abs_lowcore_map(cpu, lc, true)) 218 goto out_mcesa; 219 lowcore_ptr[cpu] = lc; 220 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc)); 221 return 0; 222 223 out_mcesa: 224 nmi_free_mcesa(&lc->mcesad); 225 out: 226 stack_free(mcck_stack); 227 stack_free(async_stack); 228 free_pages(nodat_stack, THREAD_SIZE_ORDER); 229 free_pages((unsigned long) lc, LC_ORDER); 230 return -ENOMEM; 231 } 232 233 static void pcpu_free_lowcore(struct pcpu *pcpu) 234 { 235 unsigned long async_stack, nodat_stack, mcck_stack; 236 struct lowcore *lc; 237 int cpu; 238 239 cpu = pcpu - pcpu_devices; 240 lc = lowcore_ptr[cpu]; 241 nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET; 242 async_stack = lc->async_stack - STACK_INIT_OFFSET; 243 mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET; 244 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0); 245 lowcore_ptr[cpu] = NULL; 246 abs_lowcore_unmap(cpu); 247 nmi_free_mcesa(&lc->mcesad); 248 stack_free(async_stack); 249 stack_free(mcck_stack); 250 free_pages(nodat_stack, THREAD_SIZE_ORDER); 251 free_pages((unsigned long) lc, LC_ORDER); 252 } 253 254 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu) 255 { 256 struct lowcore *lc, *abs_lc; 257 258 lc = lowcore_ptr[cpu]; 259 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask); 260 cpumask_set_cpu(cpu, mm_cpumask(&init_mm)); 261 lc->cpu_nr = cpu; 262 lc->restart_flags = RESTART_FLAG_CTLREGS; 263 lc->spinlock_lockval = arch_spin_lockval(cpu); 264 lc->spinlock_index = 0; 265 lc->percpu_offset = __per_cpu_offset[cpu]; 266 lc->kernel_asce = S390_lowcore.kernel_asce; 267 lc->user_asce = s390_invalid_asce; 268 lc->machine_flags = S390_lowcore.machine_flags; 269 lc->user_timer = lc->system_timer = 270 lc->steal_timer = lc->avg_steal_timer = 0; 271 abs_lc = get_abs_lowcore(); 272 memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area)); 273 put_abs_lowcore(abs_lc); 274 lc->cregs_save_area[1] = lc->kernel_asce; 275 lc->cregs_save_area[7] = lc->user_asce; 276 save_access_regs((unsigned int *) lc->access_regs_save_area); 277 arch_spin_lock_setup(cpu); 278 } 279 280 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk) 281 { 282 struct lowcore *lc; 283 int cpu; 284 285 cpu = pcpu - pcpu_devices; 286 lc = lowcore_ptr[cpu]; 287 lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET; 288 lc->current_task = (unsigned long)tsk; 289 lc->lpp = LPP_MAGIC; 290 lc->current_pid = tsk->pid; 291 lc->user_timer = tsk->thread.user_timer; 292 lc->guest_timer = tsk->thread.guest_timer; 293 lc->system_timer = tsk->thread.system_timer; 294 lc->hardirq_timer = tsk->thread.hardirq_timer; 295 lc->softirq_timer = tsk->thread.softirq_timer; 296 lc->steal_timer = 0; 297 } 298 299 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data) 300 { 301 struct lowcore *lc; 302 int cpu; 303 304 cpu = pcpu - pcpu_devices; 305 lc = lowcore_ptr[cpu]; 306 lc->restart_stack = lc->kernel_stack; 307 lc->restart_fn = (unsigned long) func; 308 lc->restart_data = (unsigned long) data; 309 lc->restart_source = -1U; 310 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0); 311 } 312 313 typedef void (pcpu_delegate_fn)(void *); 314 315 /* 316 * Call function via PSW restart on pcpu and stop the current cpu. 317 */ 318 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data) 319 { 320 func(data); /* should not return */ 321 } 322 323 static void pcpu_delegate(struct pcpu *pcpu, 324 pcpu_delegate_fn *func, 325 void *data, unsigned long stack) 326 { 327 struct lowcore *lc, *abs_lc; 328 unsigned int source_cpu; 329 330 lc = lowcore_ptr[pcpu - pcpu_devices]; 331 source_cpu = stap(); 332 333 if (pcpu->address == source_cpu) { 334 call_on_stack(2, stack, void, __pcpu_delegate, 335 pcpu_delegate_fn *, func, void *, data); 336 } 337 /* Stop target cpu (if func returns this stops the current cpu). */ 338 pcpu_sigp_retry(pcpu, SIGP_STOP, 0); 339 pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0); 340 /* Restart func on the target cpu and stop the current cpu. */ 341 if (lc) { 342 lc->restart_stack = stack; 343 lc->restart_fn = (unsigned long)func; 344 lc->restart_data = (unsigned long)data; 345 lc->restart_source = source_cpu; 346 } else { 347 abs_lc = get_abs_lowcore(); 348 abs_lc->restart_stack = stack; 349 abs_lc->restart_fn = (unsigned long)func; 350 abs_lc->restart_data = (unsigned long)data; 351 abs_lc->restart_source = source_cpu; 352 put_abs_lowcore(abs_lc); 353 } 354 asm volatile( 355 "0: sigp 0,%0,%2 # sigp restart to target cpu\n" 356 " brc 2,0b # busy, try again\n" 357 "1: sigp 0,%1,%3 # sigp stop to current cpu\n" 358 " brc 2,1b # busy, try again\n" 359 : : "d" (pcpu->address), "d" (source_cpu), 360 "K" (SIGP_RESTART), "K" (SIGP_STOP) 361 : "0", "1", "cc"); 362 for (;;) ; 363 } 364 365 /* 366 * Enable additional logical cpus for multi-threading. 367 */ 368 static int pcpu_set_smt(unsigned int mtid) 369 { 370 int cc; 371 372 if (smp_cpu_mtid == mtid) 373 return 0; 374 cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL); 375 if (cc == 0) { 376 smp_cpu_mtid = mtid; 377 smp_cpu_mt_shift = 0; 378 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift)) 379 smp_cpu_mt_shift++; 380 pcpu_devices[0].address = stap(); 381 } 382 return cc; 383 } 384 385 /* 386 * Call function on an online CPU. 387 */ 388 void smp_call_online_cpu(void (*func)(void *), void *data) 389 { 390 struct pcpu *pcpu; 391 392 /* Use the current cpu if it is online. */ 393 pcpu = pcpu_find_address(cpu_online_mask, stap()); 394 if (!pcpu) 395 /* Use the first online cpu. */ 396 pcpu = pcpu_devices + cpumask_first(cpu_online_mask); 397 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack); 398 } 399 400 /* 401 * Call function on the ipl CPU. 402 */ 403 void smp_call_ipl_cpu(void (*func)(void *), void *data) 404 { 405 struct lowcore *lc = lowcore_ptr[0]; 406 407 if (pcpu_devices[0].address == stap()) 408 lc = &S390_lowcore; 409 410 pcpu_delegate(&pcpu_devices[0], func, data, 411 lc->nodat_stack); 412 } 413 414 int smp_find_processor_id(u16 address) 415 { 416 int cpu; 417 418 for_each_present_cpu(cpu) 419 if (pcpu_devices[cpu].address == address) 420 return cpu; 421 return -1; 422 } 423 424 void schedule_mcck_handler(void) 425 { 426 pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending); 427 } 428 429 bool notrace arch_vcpu_is_preempted(int cpu) 430 { 431 if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu)) 432 return false; 433 if (pcpu_running(pcpu_devices + cpu)) 434 return false; 435 return true; 436 } 437 EXPORT_SYMBOL(arch_vcpu_is_preempted); 438 439 void notrace smp_yield_cpu(int cpu) 440 { 441 if (!MACHINE_HAS_DIAG9C) 442 return; 443 diag_stat_inc_norecursion(DIAG_STAT_X09C); 444 asm volatile("diag %0,0,0x9c" 445 : : "d" (pcpu_devices[cpu].address)); 446 } 447 EXPORT_SYMBOL_GPL(smp_yield_cpu); 448 449 /* 450 * Send cpus emergency shutdown signal. This gives the cpus the 451 * opportunity to complete outstanding interrupts. 452 */ 453 void notrace smp_emergency_stop(void) 454 { 455 static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED; 456 static cpumask_t cpumask; 457 u64 end; 458 int cpu; 459 460 arch_spin_lock(&lock); 461 cpumask_copy(&cpumask, cpu_online_mask); 462 cpumask_clear_cpu(smp_processor_id(), &cpumask); 463 464 end = get_tod_clock() + (1000000UL << 12); 465 for_each_cpu(cpu, &cpumask) { 466 struct pcpu *pcpu = pcpu_devices + cpu; 467 set_bit(ec_stop_cpu, &pcpu->ec_mask); 468 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL, 469 0, NULL) == SIGP_CC_BUSY && 470 get_tod_clock() < end) 471 cpu_relax(); 472 } 473 while (get_tod_clock() < end) { 474 for_each_cpu(cpu, &cpumask) 475 if (pcpu_stopped(pcpu_devices + cpu)) 476 cpumask_clear_cpu(cpu, &cpumask); 477 if (cpumask_empty(&cpumask)) 478 break; 479 cpu_relax(); 480 } 481 arch_spin_unlock(&lock); 482 } 483 NOKPROBE_SYMBOL(smp_emergency_stop); 484 485 /* 486 * Stop all cpus but the current one. 487 */ 488 void smp_send_stop(void) 489 { 490 int cpu; 491 492 /* Disable all interrupts/machine checks */ 493 __load_psw_mask(PSW_KERNEL_BITS); 494 trace_hardirqs_off(); 495 496 debug_set_critical(); 497 498 if (oops_in_progress) 499 smp_emergency_stop(); 500 501 /* stop all processors */ 502 for_each_online_cpu(cpu) { 503 if (cpu == smp_processor_id()) 504 continue; 505 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0); 506 while (!pcpu_stopped(pcpu_devices + cpu)) 507 cpu_relax(); 508 } 509 } 510 511 /* 512 * This is the main routine where commands issued by other 513 * cpus are handled. 514 */ 515 static void smp_handle_ext_call(void) 516 { 517 unsigned long bits; 518 519 /* handle bit signal external calls */ 520 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0); 521 if (test_bit(ec_stop_cpu, &bits)) 522 smp_stop_cpu(); 523 if (test_bit(ec_schedule, &bits)) 524 scheduler_ipi(); 525 if (test_bit(ec_call_function_single, &bits)) 526 generic_smp_call_function_single_interrupt(); 527 if (test_bit(ec_mcck_pending, &bits)) 528 s390_handle_mcck(); 529 if (test_bit(ec_irq_work, &bits)) 530 irq_work_run(); 531 } 532 533 static void do_ext_call_interrupt(struct ext_code ext_code, 534 unsigned int param32, unsigned long param64) 535 { 536 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS); 537 smp_handle_ext_call(); 538 } 539 540 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 541 { 542 int cpu; 543 544 for_each_cpu(cpu, mask) 545 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); 546 } 547 548 void arch_send_call_function_single_ipi(int cpu) 549 { 550 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); 551 } 552 553 /* 554 * this function sends a 'reschedule' IPI to another CPU. 555 * it goes straight through and wastes no time serializing 556 * anything. Worst case is that we lose a reschedule ... 557 */ 558 void arch_smp_send_reschedule(int cpu) 559 { 560 pcpu_ec_call(pcpu_devices + cpu, ec_schedule); 561 } 562 563 #ifdef CONFIG_IRQ_WORK 564 void arch_irq_work_raise(void) 565 { 566 pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work); 567 } 568 #endif 569 570 /* 571 * parameter area for the set/clear control bit callbacks 572 */ 573 struct ec_creg_mask_parms { 574 unsigned long orval; 575 unsigned long andval; 576 int cr; 577 }; 578 579 /* 580 * callback for setting/clearing control bits 581 */ 582 static void smp_ctl_bit_callback(void *info) 583 { 584 struct ec_creg_mask_parms *pp = info; 585 unsigned long cregs[16]; 586 587 __ctl_store(cregs, 0, 15); 588 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval; 589 __ctl_load(cregs, 0, 15); 590 } 591 592 static DEFINE_SPINLOCK(ctl_lock); 593 594 void smp_ctl_set_clear_bit(int cr, int bit, bool set) 595 { 596 struct ec_creg_mask_parms parms = { .cr = cr, }; 597 struct lowcore *abs_lc; 598 u64 ctlreg; 599 600 if (set) { 601 parms.orval = 1UL << bit; 602 parms.andval = -1UL; 603 } else { 604 parms.orval = 0; 605 parms.andval = ~(1UL << bit); 606 } 607 spin_lock(&ctl_lock); 608 abs_lc = get_abs_lowcore(); 609 ctlreg = abs_lc->cregs_save_area[cr]; 610 ctlreg = (ctlreg & parms.andval) | parms.orval; 611 abs_lc->cregs_save_area[cr] = ctlreg; 612 put_abs_lowcore(abs_lc); 613 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 614 spin_unlock(&ctl_lock); 615 } 616 EXPORT_SYMBOL(smp_ctl_set_clear_bit); 617 618 #ifdef CONFIG_CRASH_DUMP 619 620 int smp_store_status(int cpu) 621 { 622 struct lowcore *lc; 623 struct pcpu *pcpu; 624 unsigned long pa; 625 626 pcpu = pcpu_devices + cpu; 627 lc = lowcore_ptr[cpu]; 628 pa = __pa(&lc->floating_pt_save_area); 629 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS, 630 pa) != SIGP_CC_ORDER_CODE_ACCEPTED) 631 return -EIO; 632 if (!MACHINE_HAS_VX && !MACHINE_HAS_GS) 633 return 0; 634 pa = lc->mcesad & MCESA_ORIGIN_MASK; 635 if (MACHINE_HAS_GS) 636 pa |= lc->mcesad & MCESA_LC_MASK; 637 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS, 638 pa) != SIGP_CC_ORDER_CODE_ACCEPTED) 639 return -EIO; 640 return 0; 641 } 642 643 /* 644 * Collect CPU state of the previous, crashed system. 645 * There are four cases: 646 * 1) standard zfcp/nvme dump 647 * condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true 648 * The state for all CPUs except the boot CPU needs to be collected 649 * with sigp stop-and-store-status. The boot CPU state is located in 650 * the absolute lowcore of the memory stored in the HSA. The zcore code 651 * will copy the boot CPU state from the HSA. 652 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory) 653 * condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true 654 * The state for all CPUs except the boot CPU needs to be collected 655 * with sigp stop-and-store-status. The firmware or the boot-loader 656 * stored the registers of the boot CPU in the absolute lowcore in the 657 * memory of the old system. 658 * 3) kdump and the old kernel did not store the CPU state, 659 * or stand-alone kdump for DASD 660 * condition: OLDMEM_BASE != NULL && !is_kdump_kernel() 661 * The state for all CPUs except the boot CPU needs to be collected 662 * with sigp stop-and-store-status. The kexec code or the boot-loader 663 * stored the registers of the boot CPU in the memory of the old system. 664 * 4) kdump and the old kernel stored the CPU state 665 * condition: OLDMEM_BASE != NULL && is_kdump_kernel() 666 * This case does not exist for s390 anymore, setup_arch explicitly 667 * deactivates the elfcorehdr= kernel parameter 668 */ 669 static bool dump_available(void) 670 { 671 return oldmem_data.start || is_ipl_type_dump(); 672 } 673 674 void __init smp_save_dump_ipl_cpu(void) 675 { 676 struct save_area *sa; 677 void *regs; 678 679 if (!dump_available()) 680 return; 681 sa = save_area_alloc(true); 682 regs = memblock_alloc(512, 8); 683 if (!sa || !regs) 684 panic("could not allocate memory for boot CPU save area\n"); 685 copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512); 686 save_area_add_regs(sa, regs); 687 memblock_free(regs, 512); 688 if (MACHINE_HAS_VX) 689 save_area_add_vxrs(sa, boot_cpu_vector_save_area); 690 } 691 692 void __init smp_save_dump_secondary_cpus(void) 693 { 694 int addr, boot_cpu_addr, max_cpu_addr; 695 struct save_area *sa; 696 void *page; 697 698 if (!dump_available()) 699 return; 700 /* Allocate a page as dumping area for the store status sigps */ 701 page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE); 702 if (!page) 703 panic("ERROR: Failed to allocate %lx bytes below %lx\n", 704 PAGE_SIZE, 1UL << 31); 705 706 /* Set multi-threading state to the previous system. */ 707 pcpu_set_smt(sclp.mtid_prev); 708 boot_cpu_addr = stap(); 709 max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev; 710 for (addr = 0; addr <= max_cpu_addr; addr++) { 711 if (addr == boot_cpu_addr) 712 continue; 713 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) == 714 SIGP_CC_NOT_OPERATIONAL) 715 continue; 716 sa = save_area_alloc(false); 717 if (!sa) 718 panic("could not allocate memory for save area\n"); 719 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page)); 720 save_area_add_regs(sa, page); 721 if (MACHINE_HAS_VX) { 722 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page)); 723 save_area_add_vxrs(sa, page); 724 } 725 } 726 memblock_free(page, PAGE_SIZE); 727 diag_amode31_ops.diag308_reset(); 728 pcpu_set_smt(0); 729 } 730 #endif /* CONFIG_CRASH_DUMP */ 731 732 void smp_cpu_set_polarization(int cpu, int val) 733 { 734 pcpu_devices[cpu].polarization = val; 735 } 736 737 int smp_cpu_get_polarization(int cpu) 738 { 739 return pcpu_devices[cpu].polarization; 740 } 741 742 int smp_cpu_get_cpu_address(int cpu) 743 { 744 return pcpu_devices[cpu].address; 745 } 746 747 static void __ref smp_get_core_info(struct sclp_core_info *info, int early) 748 { 749 static int use_sigp_detection; 750 int address; 751 752 if (use_sigp_detection || sclp_get_core_info(info, early)) { 753 use_sigp_detection = 1; 754 for (address = 0; 755 address < (SCLP_MAX_CORES << smp_cpu_mt_shift); 756 address += (1U << smp_cpu_mt_shift)) { 757 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) == 758 SIGP_CC_NOT_OPERATIONAL) 759 continue; 760 info->core[info->configured].core_id = 761 address >> smp_cpu_mt_shift; 762 info->configured++; 763 } 764 info->combined = info->configured; 765 } 766 } 767 768 static int smp_add_present_cpu(int cpu); 769 770 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail, 771 bool configured, bool early) 772 { 773 struct pcpu *pcpu; 774 int cpu, nr, i; 775 u16 address; 776 777 nr = 0; 778 if (sclp.has_core_type && core->type != boot_core_type) 779 return nr; 780 cpu = cpumask_first(avail); 781 address = core->core_id << smp_cpu_mt_shift; 782 for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) { 783 if (pcpu_find_address(cpu_present_mask, address + i)) 784 continue; 785 pcpu = pcpu_devices + cpu; 786 pcpu->address = address + i; 787 if (configured) 788 pcpu->state = CPU_STATE_CONFIGURED; 789 else 790 pcpu->state = CPU_STATE_STANDBY; 791 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 792 set_cpu_present(cpu, true); 793 if (!early && smp_add_present_cpu(cpu) != 0) 794 set_cpu_present(cpu, false); 795 else 796 nr++; 797 cpumask_clear_cpu(cpu, avail); 798 cpu = cpumask_next(cpu, avail); 799 } 800 return nr; 801 } 802 803 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early) 804 { 805 struct sclp_core_entry *core; 806 static cpumask_t avail; 807 bool configured; 808 u16 core_id; 809 int nr, i; 810 811 cpus_read_lock(); 812 mutex_lock(&smp_cpu_state_mutex); 813 nr = 0; 814 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask); 815 /* 816 * Add IPL core first (which got logical CPU number 0) to make sure 817 * that all SMT threads get subsequent logical CPU numbers. 818 */ 819 if (early) { 820 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift; 821 for (i = 0; i < info->configured; i++) { 822 core = &info->core[i]; 823 if (core->core_id == core_id) { 824 nr += smp_add_core(core, &avail, true, early); 825 break; 826 } 827 } 828 } 829 for (i = 0; i < info->combined; i++) { 830 configured = i < info->configured; 831 nr += smp_add_core(&info->core[i], &avail, configured, early); 832 } 833 mutex_unlock(&smp_cpu_state_mutex); 834 cpus_read_unlock(); 835 return nr; 836 } 837 838 void __init smp_detect_cpus(void) 839 { 840 unsigned int cpu, mtid, c_cpus, s_cpus; 841 struct sclp_core_info *info; 842 u16 address; 843 844 /* Get CPU information */ 845 info = memblock_alloc(sizeof(*info), 8); 846 if (!info) 847 panic("%s: Failed to allocate %zu bytes align=0x%x\n", 848 __func__, sizeof(*info), 8); 849 smp_get_core_info(info, 1); 850 /* Find boot CPU type */ 851 if (sclp.has_core_type) { 852 address = stap(); 853 for (cpu = 0; cpu < info->combined; cpu++) 854 if (info->core[cpu].core_id == address) { 855 /* The boot cpu dictates the cpu type. */ 856 boot_core_type = info->core[cpu].type; 857 break; 858 } 859 if (cpu >= info->combined) 860 panic("Could not find boot CPU type"); 861 } 862 863 /* Set multi-threading state for the current system */ 864 mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp; 865 mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1; 866 pcpu_set_smt(mtid); 867 868 /* Print number of CPUs */ 869 c_cpus = s_cpus = 0; 870 for (cpu = 0; cpu < info->combined; cpu++) { 871 if (sclp.has_core_type && 872 info->core[cpu].type != boot_core_type) 873 continue; 874 if (cpu < info->configured) 875 c_cpus += smp_cpu_mtid + 1; 876 else 877 s_cpus += smp_cpu_mtid + 1; 878 } 879 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus); 880 881 /* Add CPUs present at boot */ 882 __smp_rescan_cpus(info, true); 883 memblock_free(info, sizeof(*info)); 884 } 885 886 /* 887 * Activate a secondary processor. 888 */ 889 static void smp_start_secondary(void *cpuvoid) 890 { 891 int cpu = raw_smp_processor_id(); 892 893 S390_lowcore.last_update_clock = get_tod_clock(); 894 S390_lowcore.restart_stack = (unsigned long)restart_stack; 895 S390_lowcore.restart_fn = (unsigned long)do_restart; 896 S390_lowcore.restart_data = 0; 897 S390_lowcore.restart_source = -1U; 898 S390_lowcore.restart_flags = 0; 899 restore_access_regs(S390_lowcore.access_regs_save_area); 900 cpu_init(); 901 rcu_cpu_starting(cpu); 902 init_cpu_timer(); 903 vtime_init(); 904 vdso_getcpu_init(); 905 pfault_init(); 906 cpumask_set_cpu(cpu, &cpu_setup_mask); 907 update_cpu_masks(); 908 notify_cpu_starting(cpu); 909 if (topology_cpu_dedicated(cpu)) 910 set_cpu_flag(CIF_DEDICATED_CPU); 911 else 912 clear_cpu_flag(CIF_DEDICATED_CPU); 913 set_cpu_online(cpu, true); 914 inc_irq_stat(CPU_RST); 915 local_irq_enable(); 916 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 917 } 918 919 /* Upping and downing of CPUs */ 920 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 921 { 922 struct pcpu *pcpu = pcpu_devices + cpu; 923 int rc; 924 925 if (pcpu->state != CPU_STATE_CONFIGURED) 926 return -EIO; 927 if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) != 928 SIGP_CC_ORDER_CODE_ACCEPTED) 929 return -EIO; 930 931 rc = pcpu_alloc_lowcore(pcpu, cpu); 932 if (rc) 933 return rc; 934 /* 935 * Make sure global control register contents do not change 936 * until new CPU has initialized control registers. 937 */ 938 spin_lock(&ctl_lock); 939 pcpu_prepare_secondary(pcpu, cpu); 940 pcpu_attach_task(pcpu, tidle); 941 pcpu_start_fn(pcpu, smp_start_secondary, NULL); 942 /* Wait until cpu puts itself in the online & active maps */ 943 while (!cpu_online(cpu)) 944 cpu_relax(); 945 spin_unlock(&ctl_lock); 946 return 0; 947 } 948 949 static unsigned int setup_possible_cpus __initdata; 950 951 static int __init _setup_possible_cpus(char *s) 952 { 953 get_option(&s, &setup_possible_cpus); 954 return 0; 955 } 956 early_param("possible_cpus", _setup_possible_cpus); 957 958 int __cpu_disable(void) 959 { 960 unsigned long cregs[16]; 961 int cpu; 962 963 /* Handle possible pending IPIs */ 964 smp_handle_ext_call(); 965 cpu = smp_processor_id(); 966 set_cpu_online(cpu, false); 967 cpumask_clear_cpu(cpu, &cpu_setup_mask); 968 update_cpu_masks(); 969 /* Disable pseudo page faults on this cpu. */ 970 pfault_fini(); 971 /* Disable interrupt sources via control register. */ 972 __ctl_store(cregs, 0, 15); 973 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */ 974 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */ 975 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */ 976 __ctl_load(cregs, 0, 15); 977 clear_cpu_flag(CIF_NOHZ_DELAY); 978 return 0; 979 } 980 981 void __cpu_die(unsigned int cpu) 982 { 983 struct pcpu *pcpu; 984 985 /* Wait until target cpu is down */ 986 pcpu = pcpu_devices + cpu; 987 while (!pcpu_stopped(pcpu)) 988 cpu_relax(); 989 pcpu_free_lowcore(pcpu); 990 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm)); 991 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask); 992 } 993 994 void __noreturn cpu_die(void) 995 { 996 idle_task_exit(); 997 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0); 998 for (;;) ; 999 } 1000 1001 void __init smp_fill_possible_mask(void) 1002 { 1003 unsigned int possible, sclp_max, cpu; 1004 1005 sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1; 1006 sclp_max = min(smp_max_threads, sclp_max); 1007 sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids; 1008 possible = setup_possible_cpus ?: nr_cpu_ids; 1009 possible = min(possible, sclp_max); 1010 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++) 1011 set_cpu_possible(cpu, true); 1012 } 1013 1014 void __init smp_prepare_cpus(unsigned int max_cpus) 1015 { 1016 /* request the 0x1201 emergency signal external interrupt */ 1017 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt)) 1018 panic("Couldn't request external interrupt 0x1201"); 1019 /* request the 0x1202 external call external interrupt */ 1020 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt)) 1021 panic("Couldn't request external interrupt 0x1202"); 1022 } 1023 1024 void __init smp_prepare_boot_cpu(void) 1025 { 1026 struct pcpu *pcpu = pcpu_devices; 1027 1028 WARN_ON(!cpu_present(0) || !cpu_online(0)); 1029 pcpu->state = CPU_STATE_CONFIGURED; 1030 S390_lowcore.percpu_offset = __per_cpu_offset[0]; 1031 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN); 1032 } 1033 1034 void __init smp_setup_processor_id(void) 1035 { 1036 pcpu_devices[0].address = stap(); 1037 S390_lowcore.cpu_nr = 0; 1038 S390_lowcore.spinlock_lockval = arch_spin_lockval(0); 1039 S390_lowcore.spinlock_index = 0; 1040 } 1041 1042 /* 1043 * the frequency of the profiling timer can be changed 1044 * by writing a multiplier value into /proc/profile. 1045 * 1046 * usually you want to run this on all CPUs ;) 1047 */ 1048 int setup_profiling_timer(unsigned int multiplier) 1049 { 1050 return 0; 1051 } 1052 1053 static ssize_t cpu_configure_show(struct device *dev, 1054 struct device_attribute *attr, char *buf) 1055 { 1056 ssize_t count; 1057 1058 mutex_lock(&smp_cpu_state_mutex); 1059 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state); 1060 mutex_unlock(&smp_cpu_state_mutex); 1061 return count; 1062 } 1063 1064 static ssize_t cpu_configure_store(struct device *dev, 1065 struct device_attribute *attr, 1066 const char *buf, size_t count) 1067 { 1068 struct pcpu *pcpu; 1069 int cpu, val, rc, i; 1070 char delim; 1071 1072 if (sscanf(buf, "%d %c", &val, &delim) != 1) 1073 return -EINVAL; 1074 if (val != 0 && val != 1) 1075 return -EINVAL; 1076 cpus_read_lock(); 1077 mutex_lock(&smp_cpu_state_mutex); 1078 rc = -EBUSY; 1079 /* disallow configuration changes of online cpus and cpu 0 */ 1080 cpu = dev->id; 1081 cpu = smp_get_base_cpu(cpu); 1082 if (cpu == 0) 1083 goto out; 1084 for (i = 0; i <= smp_cpu_mtid; i++) 1085 if (cpu_online(cpu + i)) 1086 goto out; 1087 pcpu = pcpu_devices + cpu; 1088 rc = 0; 1089 switch (val) { 1090 case 0: 1091 if (pcpu->state != CPU_STATE_CONFIGURED) 1092 break; 1093 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift); 1094 if (rc) 1095 break; 1096 for (i = 0; i <= smp_cpu_mtid; i++) { 1097 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i)) 1098 continue; 1099 pcpu[i].state = CPU_STATE_STANDBY; 1100 smp_cpu_set_polarization(cpu + i, 1101 POLARIZATION_UNKNOWN); 1102 } 1103 topology_expect_change(); 1104 break; 1105 case 1: 1106 if (pcpu->state != CPU_STATE_STANDBY) 1107 break; 1108 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift); 1109 if (rc) 1110 break; 1111 for (i = 0; i <= smp_cpu_mtid; i++) { 1112 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i)) 1113 continue; 1114 pcpu[i].state = CPU_STATE_CONFIGURED; 1115 smp_cpu_set_polarization(cpu + i, 1116 POLARIZATION_UNKNOWN); 1117 } 1118 topology_expect_change(); 1119 break; 1120 default: 1121 break; 1122 } 1123 out: 1124 mutex_unlock(&smp_cpu_state_mutex); 1125 cpus_read_unlock(); 1126 return rc ? rc : count; 1127 } 1128 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store); 1129 1130 static ssize_t show_cpu_address(struct device *dev, 1131 struct device_attribute *attr, char *buf) 1132 { 1133 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address); 1134 } 1135 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL); 1136 1137 static struct attribute *cpu_common_attrs[] = { 1138 &dev_attr_configure.attr, 1139 &dev_attr_address.attr, 1140 NULL, 1141 }; 1142 1143 static struct attribute_group cpu_common_attr_group = { 1144 .attrs = cpu_common_attrs, 1145 }; 1146 1147 static struct attribute *cpu_online_attrs[] = { 1148 &dev_attr_idle_count.attr, 1149 &dev_attr_idle_time_us.attr, 1150 NULL, 1151 }; 1152 1153 static struct attribute_group cpu_online_attr_group = { 1154 .attrs = cpu_online_attrs, 1155 }; 1156 1157 static int smp_cpu_online(unsigned int cpu) 1158 { 1159 struct device *s = &per_cpu(cpu_device, cpu)->dev; 1160 1161 return sysfs_create_group(&s->kobj, &cpu_online_attr_group); 1162 } 1163 1164 static int smp_cpu_pre_down(unsigned int cpu) 1165 { 1166 struct device *s = &per_cpu(cpu_device, cpu)->dev; 1167 1168 sysfs_remove_group(&s->kobj, &cpu_online_attr_group); 1169 return 0; 1170 } 1171 1172 static int smp_add_present_cpu(int cpu) 1173 { 1174 struct device *s; 1175 struct cpu *c; 1176 int rc; 1177 1178 c = kzalloc(sizeof(*c), GFP_KERNEL); 1179 if (!c) 1180 return -ENOMEM; 1181 per_cpu(cpu_device, cpu) = c; 1182 s = &c->dev; 1183 c->hotpluggable = 1; 1184 rc = register_cpu(c, cpu); 1185 if (rc) 1186 goto out; 1187 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group); 1188 if (rc) 1189 goto out_cpu; 1190 rc = topology_cpu_init(c); 1191 if (rc) 1192 goto out_topology; 1193 return 0; 1194 1195 out_topology: 1196 sysfs_remove_group(&s->kobj, &cpu_common_attr_group); 1197 out_cpu: 1198 unregister_cpu(c); 1199 out: 1200 return rc; 1201 } 1202 1203 int __ref smp_rescan_cpus(void) 1204 { 1205 struct sclp_core_info *info; 1206 int nr; 1207 1208 info = kzalloc(sizeof(*info), GFP_KERNEL); 1209 if (!info) 1210 return -ENOMEM; 1211 smp_get_core_info(info, 0); 1212 nr = __smp_rescan_cpus(info, false); 1213 kfree(info); 1214 if (nr) 1215 topology_schedule_update(); 1216 return 0; 1217 } 1218 1219 static ssize_t __ref rescan_store(struct device *dev, 1220 struct device_attribute *attr, 1221 const char *buf, 1222 size_t count) 1223 { 1224 int rc; 1225 1226 rc = lock_device_hotplug_sysfs(); 1227 if (rc) 1228 return rc; 1229 rc = smp_rescan_cpus(); 1230 unlock_device_hotplug(); 1231 return rc ? rc : count; 1232 } 1233 static DEVICE_ATTR_WO(rescan); 1234 1235 static int __init s390_smp_init(void) 1236 { 1237 struct device *dev_root; 1238 int cpu, rc = 0; 1239 1240 dev_root = bus_get_dev_root(&cpu_subsys); 1241 if (dev_root) { 1242 rc = device_create_file(dev_root, &dev_attr_rescan); 1243 put_device(dev_root); 1244 if (rc) 1245 return rc; 1246 } 1247 1248 for_each_present_cpu(cpu) { 1249 rc = smp_add_present_cpu(cpu); 1250 if (rc) 1251 goto out; 1252 } 1253 1254 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online", 1255 smp_cpu_online, smp_cpu_pre_down); 1256 rc = rc <= 0 ? rc : 0; 1257 out: 1258 return rc; 1259 } 1260 subsys_initcall(s390_smp_init); 1261 1262 static __always_inline void set_new_lowcore(struct lowcore *lc) 1263 { 1264 union register_pair dst, src; 1265 u32 pfx; 1266 1267 src.even = (unsigned long) &S390_lowcore; 1268 src.odd = sizeof(S390_lowcore); 1269 dst.even = (unsigned long) lc; 1270 dst.odd = sizeof(*lc); 1271 pfx = __pa(lc); 1272 1273 asm volatile( 1274 " mvcl %[dst],%[src]\n" 1275 " spx %[pfx]\n" 1276 : [dst] "+&d" (dst.pair), [src] "+&d" (src.pair) 1277 : [pfx] "Q" (pfx) 1278 : "memory", "cc"); 1279 } 1280 1281 int __init smp_reinit_ipl_cpu(void) 1282 { 1283 unsigned long async_stack, nodat_stack, mcck_stack; 1284 struct lowcore *lc, *lc_ipl; 1285 unsigned long flags, cr0; 1286 u64 mcesad; 1287 1288 lc_ipl = lowcore_ptr[0]; 1289 lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER); 1290 nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER); 1291 async_stack = stack_alloc(); 1292 mcck_stack = stack_alloc(); 1293 if (!lc || !nodat_stack || !async_stack || !mcck_stack || nmi_alloc_mcesa(&mcesad)) 1294 panic("Couldn't allocate memory"); 1295 1296 local_irq_save(flags); 1297 local_mcck_disable(); 1298 set_new_lowcore(lc); 1299 S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET; 1300 S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET; 1301 S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET; 1302 __ctl_store(cr0, 0, 0); 1303 __ctl_clear_bit(0, 28); /* disable lowcore protection */ 1304 S390_lowcore.mcesad = mcesad; 1305 __ctl_load(cr0, 0, 0); 1306 if (abs_lowcore_map(0, lc, false)) 1307 panic("Couldn't remap absolute lowcore"); 1308 lowcore_ptr[0] = lc; 1309 local_mcck_enable(); 1310 local_irq_restore(flags); 1311 1312 memblock_free_late(__pa(lc_ipl->mcck_stack - STACK_INIT_OFFSET), THREAD_SIZE); 1313 memblock_free_late(__pa(lc_ipl->async_stack - STACK_INIT_OFFSET), THREAD_SIZE); 1314 memblock_free_late(__pa(lc_ipl->nodat_stack - STACK_INIT_OFFSET), THREAD_SIZE); 1315 memblock_free_late(__pa(lc_ipl), sizeof(*lc_ipl)); 1316 return 0; 1317 } 1318