1 /* 2 * SMP related functions 3 * 4 * Copyright IBM Corp. 1999,2012 5 * Author(s): Denis Joseph Barrow, 6 * Martin Schwidefsky <schwidefsky@de.ibm.com>, 7 * Heiko Carstens <heiko.carstens@de.ibm.com>, 8 * 9 * based on other smp stuff by 10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net> 11 * (c) 1998 Ingo Molnar 12 * 13 * The code outside of smp.c uses logical cpu numbers, only smp.c does 14 * the translation of logical to physical cpu ids. All new code that 15 * operates on physical cpu numbers needs to go into smp.c. 16 */ 17 18 #define KMSG_COMPONENT "cpu" 19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 20 21 #include <linux/workqueue.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 #include <linux/mm.h> 25 #include <linux/err.h> 26 #include <linux/spinlock.h> 27 #include <linux/kernel_stat.h> 28 #include <linux/delay.h> 29 #include <linux/interrupt.h> 30 #include <linux/irqflags.h> 31 #include <linux/cpu.h> 32 #include <linux/slab.h> 33 #include <linux/crash_dump.h> 34 #include <asm/asm-offsets.h> 35 #include <asm/switch_to.h> 36 #include <asm/facility.h> 37 #include <asm/ipl.h> 38 #include <asm/setup.h> 39 #include <asm/irq.h> 40 #include <asm/tlbflush.h> 41 #include <asm/timer.h> 42 #include <asm/lowcore.h> 43 #include <asm/sclp.h> 44 #include <asm/vdso.h> 45 #include <asm/debug.h> 46 #include <asm/os_info.h> 47 #include "entry.h" 48 49 enum { 50 sigp_sense = 1, 51 sigp_external_call = 2, 52 sigp_emergency_signal = 3, 53 sigp_start = 4, 54 sigp_stop = 5, 55 sigp_restart = 6, 56 sigp_stop_and_store_status = 9, 57 sigp_initial_cpu_reset = 11, 58 sigp_cpu_reset = 12, 59 sigp_set_prefix = 13, 60 sigp_store_status_at_address = 14, 61 sigp_store_extended_status_at_address = 15, 62 sigp_set_architecture = 18, 63 sigp_conditional_emergency_signal = 19, 64 sigp_sense_running = 21, 65 }; 66 67 enum { 68 sigp_order_code_accepted = 0, 69 sigp_status_stored = 1, 70 sigp_busy = 2, 71 sigp_not_operational = 3, 72 }; 73 74 enum { 75 ec_schedule = 0, 76 ec_call_function, 77 ec_call_function_single, 78 ec_stop_cpu, 79 }; 80 81 enum { 82 CPU_STATE_STANDBY, 83 CPU_STATE_CONFIGURED, 84 }; 85 86 struct pcpu { 87 struct cpu cpu; 88 struct _lowcore *lowcore; /* lowcore page(s) for the cpu */ 89 unsigned long async_stack; /* async stack for the cpu */ 90 unsigned long panic_stack; /* panic stack for the cpu */ 91 unsigned long ec_mask; /* bit mask for ec_xxx functions */ 92 int state; /* physical cpu state */ 93 u32 status; /* last status received via sigp */ 94 u16 address; /* physical cpu address */ 95 }; 96 97 static u8 boot_cpu_type; 98 static u16 boot_cpu_address; 99 static struct pcpu pcpu_devices[NR_CPUS]; 100 101 DEFINE_MUTEX(smp_cpu_state_mutex); 102 103 /* 104 * Signal processor helper functions. 105 */ 106 static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status) 107 { 108 register unsigned int reg1 asm ("1") = parm; 109 int cc; 110 111 asm volatile( 112 " sigp %1,%2,0(%3)\n" 113 " ipm %0\n" 114 " srl %0,28\n" 115 : "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc"); 116 if (status && cc == 1) 117 *status = reg1; 118 return cc; 119 } 120 121 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status) 122 { 123 int cc; 124 125 while (1) { 126 cc = __pcpu_sigp(addr, order, parm, status); 127 if (cc != sigp_busy) 128 return cc; 129 cpu_relax(); 130 } 131 } 132 133 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm) 134 { 135 int cc, retry; 136 137 for (retry = 0; ; retry++) { 138 cc = __pcpu_sigp(pcpu->address, order, parm, &pcpu->status); 139 if (cc != sigp_busy) 140 break; 141 if (retry >= 3) 142 udelay(10); 143 } 144 return cc; 145 } 146 147 static inline int pcpu_stopped(struct pcpu *pcpu) 148 { 149 if (__pcpu_sigp(pcpu->address, sigp_sense, 150 0, &pcpu->status) != sigp_status_stored) 151 return 0; 152 /* Check for stopped and check stop state */ 153 return !!(pcpu->status & 0x50); 154 } 155 156 static inline int pcpu_running(struct pcpu *pcpu) 157 { 158 if (__pcpu_sigp(pcpu->address, sigp_sense_running, 159 0, &pcpu->status) != sigp_status_stored) 160 return 1; 161 /* Check for running status */ 162 return !(pcpu->status & 0x400); 163 } 164 165 /* 166 * Find struct pcpu by cpu address. 167 */ 168 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address) 169 { 170 int cpu; 171 172 for_each_cpu(cpu, mask) 173 if (pcpu_devices[cpu].address == address) 174 return pcpu_devices + cpu; 175 return NULL; 176 } 177 178 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit) 179 { 180 int order; 181 182 set_bit(ec_bit, &pcpu->ec_mask); 183 order = pcpu_running(pcpu) ? 184 sigp_external_call : sigp_emergency_signal; 185 pcpu_sigp_retry(pcpu, order, 0); 186 } 187 188 static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu) 189 { 190 struct _lowcore *lc; 191 192 if (pcpu != &pcpu_devices[0]) { 193 pcpu->lowcore = (struct _lowcore *) 194 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER); 195 pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER); 196 pcpu->panic_stack = __get_free_page(GFP_KERNEL); 197 if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack) 198 goto out; 199 } 200 lc = pcpu->lowcore; 201 memcpy(lc, &S390_lowcore, 512); 202 memset((char *) lc + 512, 0, sizeof(*lc) - 512); 203 lc->async_stack = pcpu->async_stack + ASYNC_SIZE; 204 lc->panic_stack = pcpu->panic_stack + PAGE_SIZE; 205 lc->cpu_nr = cpu; 206 #ifndef CONFIG_64BIT 207 if (MACHINE_HAS_IEEE) { 208 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL); 209 if (!lc->extended_save_area_addr) 210 goto out; 211 } 212 #else 213 if (vdso_alloc_per_cpu(lc)) 214 goto out; 215 #endif 216 lowcore_ptr[cpu] = lc; 217 pcpu_sigp_retry(pcpu, sigp_set_prefix, (u32)(unsigned long) lc); 218 return 0; 219 out: 220 if (pcpu != &pcpu_devices[0]) { 221 free_page(pcpu->panic_stack); 222 free_pages(pcpu->async_stack, ASYNC_ORDER); 223 free_pages((unsigned long) pcpu->lowcore, LC_ORDER); 224 } 225 return -ENOMEM; 226 } 227 228 #ifdef CONFIG_HOTPLUG_CPU 229 230 static void pcpu_free_lowcore(struct pcpu *pcpu) 231 { 232 pcpu_sigp_retry(pcpu, sigp_set_prefix, 0); 233 lowcore_ptr[pcpu - pcpu_devices] = NULL; 234 #ifndef CONFIG_64BIT 235 if (MACHINE_HAS_IEEE) { 236 struct _lowcore *lc = pcpu->lowcore; 237 238 free_page((unsigned long) lc->extended_save_area_addr); 239 lc->extended_save_area_addr = 0; 240 } 241 #else 242 vdso_free_per_cpu(pcpu->lowcore); 243 #endif 244 if (pcpu != &pcpu_devices[0]) { 245 free_page(pcpu->panic_stack); 246 free_pages(pcpu->async_stack, ASYNC_ORDER); 247 free_pages((unsigned long) pcpu->lowcore, LC_ORDER); 248 } 249 } 250 251 #endif /* CONFIG_HOTPLUG_CPU */ 252 253 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu) 254 { 255 struct _lowcore *lc = pcpu->lowcore; 256 257 atomic_inc(&init_mm.context.attach_count); 258 lc->cpu_nr = cpu; 259 lc->percpu_offset = __per_cpu_offset[cpu]; 260 lc->kernel_asce = S390_lowcore.kernel_asce; 261 lc->machine_flags = S390_lowcore.machine_flags; 262 lc->ftrace_func = S390_lowcore.ftrace_func; 263 lc->user_timer = lc->system_timer = lc->steal_timer = 0; 264 __ctl_store(lc->cregs_save_area, 0, 15); 265 save_access_regs((unsigned int *) lc->access_regs_save_area); 266 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list, 267 MAX_FACILITY_BIT/8); 268 } 269 270 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk) 271 { 272 struct _lowcore *lc = pcpu->lowcore; 273 struct thread_info *ti = task_thread_info(tsk); 274 275 lc->kernel_stack = (unsigned long) task_stack_page(tsk) + THREAD_SIZE; 276 lc->thread_info = (unsigned long) task_thread_info(tsk); 277 lc->current_task = (unsigned long) tsk; 278 lc->user_timer = ti->user_timer; 279 lc->system_timer = ti->system_timer; 280 lc->steal_timer = 0; 281 } 282 283 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data) 284 { 285 struct _lowcore *lc = pcpu->lowcore; 286 287 lc->restart_stack = lc->kernel_stack; 288 lc->restart_fn = (unsigned long) func; 289 lc->restart_data = (unsigned long) data; 290 lc->restart_source = -1UL; 291 pcpu_sigp_retry(pcpu, sigp_restart, 0); 292 } 293 294 /* 295 * Call function via PSW restart on pcpu and stop the current cpu. 296 */ 297 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *), 298 void *data, unsigned long stack) 299 { 300 struct _lowcore *lc = pcpu->lowcore; 301 unsigned short this_cpu; 302 303 __load_psw_mask(psw_kernel_bits); 304 this_cpu = stap(); 305 if (pcpu->address == this_cpu) 306 func(data); /* should not return */ 307 /* Stop target cpu (if func returns this stops the current cpu). */ 308 pcpu_sigp_retry(pcpu, sigp_stop, 0); 309 /* Restart func on the target cpu and stop the current cpu. */ 310 lc->restart_stack = stack; 311 lc->restart_fn = (unsigned long) func; 312 lc->restart_data = (unsigned long) data; 313 lc->restart_source = (unsigned long) this_cpu; 314 asm volatile( 315 "0: sigp 0,%0,6 # sigp restart to target cpu\n" 316 " brc 2,0b # busy, try again\n" 317 "1: sigp 0,%1,5 # sigp stop to current cpu\n" 318 " brc 2,1b # busy, try again\n" 319 : : "d" (pcpu->address), "d" (this_cpu) : "0", "1", "cc"); 320 for (;;) ; 321 } 322 323 /* 324 * Call function on an online CPU. 325 */ 326 void smp_call_online_cpu(void (*func)(void *), void *data) 327 { 328 struct pcpu *pcpu; 329 330 /* Use the current cpu if it is online. */ 331 pcpu = pcpu_find_address(cpu_online_mask, stap()); 332 if (!pcpu) 333 /* Use the first online cpu. */ 334 pcpu = pcpu_devices + cpumask_first(cpu_online_mask); 335 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack); 336 } 337 338 /* 339 * Call function on the ipl CPU. 340 */ 341 void smp_call_ipl_cpu(void (*func)(void *), void *data) 342 { 343 pcpu_delegate(&pcpu_devices[0], func, data, 344 pcpu_devices->panic_stack + PAGE_SIZE); 345 } 346 347 int smp_find_processor_id(u16 address) 348 { 349 int cpu; 350 351 for_each_present_cpu(cpu) 352 if (pcpu_devices[cpu].address == address) 353 return cpu; 354 return -1; 355 } 356 357 int smp_vcpu_scheduled(int cpu) 358 { 359 return pcpu_running(pcpu_devices + cpu); 360 } 361 362 void smp_yield(void) 363 { 364 if (MACHINE_HAS_DIAG44) 365 asm volatile("diag 0,0,0x44"); 366 } 367 368 void smp_yield_cpu(int cpu) 369 { 370 if (MACHINE_HAS_DIAG9C) 371 asm volatile("diag %0,0,0x9c" 372 : : "d" (pcpu_devices[cpu].address)); 373 else if (MACHINE_HAS_DIAG44) 374 asm volatile("diag 0,0,0x44"); 375 } 376 377 /* 378 * Send cpus emergency shutdown signal. This gives the cpus the 379 * opportunity to complete outstanding interrupts. 380 */ 381 void smp_emergency_stop(cpumask_t *cpumask) 382 { 383 u64 end; 384 int cpu; 385 386 end = get_clock() + (1000000UL << 12); 387 for_each_cpu(cpu, cpumask) { 388 struct pcpu *pcpu = pcpu_devices + cpu; 389 set_bit(ec_stop_cpu, &pcpu->ec_mask); 390 while (__pcpu_sigp(pcpu->address, sigp_emergency_signal, 391 0, NULL) == sigp_busy && 392 get_clock() < end) 393 cpu_relax(); 394 } 395 while (get_clock() < end) { 396 for_each_cpu(cpu, cpumask) 397 if (pcpu_stopped(pcpu_devices + cpu)) 398 cpumask_clear_cpu(cpu, cpumask); 399 if (cpumask_empty(cpumask)) 400 break; 401 cpu_relax(); 402 } 403 } 404 405 /* 406 * Stop all cpus but the current one. 407 */ 408 void smp_send_stop(void) 409 { 410 cpumask_t cpumask; 411 int cpu; 412 413 /* Disable all interrupts/machine checks */ 414 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT); 415 trace_hardirqs_off(); 416 417 debug_set_critical(); 418 cpumask_copy(&cpumask, cpu_online_mask); 419 cpumask_clear_cpu(smp_processor_id(), &cpumask); 420 421 if (oops_in_progress) 422 smp_emergency_stop(&cpumask); 423 424 /* stop all processors */ 425 for_each_cpu(cpu, &cpumask) { 426 struct pcpu *pcpu = pcpu_devices + cpu; 427 pcpu_sigp_retry(pcpu, sigp_stop, 0); 428 while (!pcpu_stopped(pcpu)) 429 cpu_relax(); 430 } 431 } 432 433 /* 434 * Stop the current cpu. 435 */ 436 void smp_stop_cpu(void) 437 { 438 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0); 439 for (;;) ; 440 } 441 442 /* 443 * This is the main routine where commands issued by other 444 * cpus are handled. 445 */ 446 static void do_ext_call_interrupt(struct ext_code ext_code, 447 unsigned int param32, unsigned long param64) 448 { 449 unsigned long bits; 450 int cpu; 451 452 cpu = smp_processor_id(); 453 if (ext_code.code == 0x1202) 454 kstat_cpu(cpu).irqs[EXTINT_EXC]++; 455 else 456 kstat_cpu(cpu).irqs[EXTINT_EMS]++; 457 /* 458 * handle bit signal external calls 459 */ 460 bits = xchg(&pcpu_devices[cpu].ec_mask, 0); 461 462 if (test_bit(ec_stop_cpu, &bits)) 463 smp_stop_cpu(); 464 465 if (test_bit(ec_schedule, &bits)) 466 scheduler_ipi(); 467 468 if (test_bit(ec_call_function, &bits)) 469 generic_smp_call_function_interrupt(); 470 471 if (test_bit(ec_call_function_single, &bits)) 472 generic_smp_call_function_single_interrupt(); 473 474 } 475 476 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 477 { 478 int cpu; 479 480 for_each_cpu(cpu, mask) 481 pcpu_ec_call(pcpu_devices + cpu, ec_call_function); 482 } 483 484 void arch_send_call_function_single_ipi(int cpu) 485 { 486 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); 487 } 488 489 #ifndef CONFIG_64BIT 490 /* 491 * this function sends a 'purge tlb' signal to another CPU. 492 */ 493 static void smp_ptlb_callback(void *info) 494 { 495 __tlb_flush_local(); 496 } 497 498 void smp_ptlb_all(void) 499 { 500 on_each_cpu(smp_ptlb_callback, NULL, 1); 501 } 502 EXPORT_SYMBOL(smp_ptlb_all); 503 #endif /* ! CONFIG_64BIT */ 504 505 /* 506 * this function sends a 'reschedule' IPI to another CPU. 507 * it goes straight through and wastes no time serializing 508 * anything. Worst case is that we lose a reschedule ... 509 */ 510 void smp_send_reschedule(int cpu) 511 { 512 pcpu_ec_call(pcpu_devices + cpu, ec_schedule); 513 } 514 515 /* 516 * parameter area for the set/clear control bit callbacks 517 */ 518 struct ec_creg_mask_parms { 519 unsigned long orval; 520 unsigned long andval; 521 int cr; 522 }; 523 524 /* 525 * callback for setting/clearing control bits 526 */ 527 static void smp_ctl_bit_callback(void *info) 528 { 529 struct ec_creg_mask_parms *pp = info; 530 unsigned long cregs[16]; 531 532 __ctl_store(cregs, 0, 15); 533 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval; 534 __ctl_load(cregs, 0, 15); 535 } 536 537 /* 538 * Set a bit in a control register of all cpus 539 */ 540 void smp_ctl_set_bit(int cr, int bit) 541 { 542 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr }; 543 544 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 545 } 546 EXPORT_SYMBOL(smp_ctl_set_bit); 547 548 /* 549 * Clear a bit in a control register of all cpus 550 */ 551 void smp_ctl_clear_bit(int cr, int bit) 552 { 553 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr }; 554 555 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 556 } 557 EXPORT_SYMBOL(smp_ctl_clear_bit); 558 559 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP) 560 561 struct save_area *zfcpdump_save_areas[NR_CPUS + 1]; 562 EXPORT_SYMBOL_GPL(zfcpdump_save_areas); 563 564 static void __init smp_get_save_area(int cpu, u16 address) 565 { 566 void *lc = pcpu_devices[0].lowcore; 567 struct save_area *save_area; 568 569 if (is_kdump_kernel()) 570 return; 571 if (!OLDMEM_BASE && (address == boot_cpu_address || 572 ipl_info.type != IPL_TYPE_FCP_DUMP)) 573 return; 574 if (cpu >= NR_CPUS) { 575 pr_warning("CPU %i exceeds the maximum %i and is excluded " 576 "from the dump\n", cpu, NR_CPUS - 1); 577 return; 578 } 579 save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL); 580 if (!save_area) 581 panic("could not allocate memory for save area\n"); 582 zfcpdump_save_areas[cpu] = save_area; 583 #ifdef CONFIG_CRASH_DUMP 584 if (address == boot_cpu_address) { 585 /* Copy the registers of the boot cpu. */ 586 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area), 587 SAVE_AREA_BASE - PAGE_SIZE, 0); 588 return; 589 } 590 #endif 591 /* Get the registers of a non-boot cpu. */ 592 __pcpu_sigp_relax(address, sigp_stop_and_store_status, 0, NULL); 593 memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area)); 594 } 595 596 int smp_store_status(int cpu) 597 { 598 struct pcpu *pcpu; 599 600 pcpu = pcpu_devices + cpu; 601 if (__pcpu_sigp_relax(pcpu->address, sigp_stop_and_store_status, 602 0, NULL) != sigp_order_code_accepted) 603 return -EIO; 604 return 0; 605 } 606 607 #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */ 608 609 static inline void smp_get_save_area(int cpu, u16 address) { } 610 611 #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */ 612 613 static struct sclp_cpu_info *smp_get_cpu_info(void) 614 { 615 static int use_sigp_detection; 616 struct sclp_cpu_info *info; 617 int address; 618 619 info = kzalloc(sizeof(*info), GFP_KERNEL); 620 if (info && (use_sigp_detection || sclp_get_cpu_info(info))) { 621 use_sigp_detection = 1; 622 for (address = 0; address <= MAX_CPU_ADDRESS; address++) { 623 if (__pcpu_sigp_relax(address, sigp_sense, 0, NULL) == 624 sigp_not_operational) 625 continue; 626 info->cpu[info->configured].address = address; 627 info->configured++; 628 } 629 info->combined = info->configured; 630 } 631 return info; 632 } 633 634 static int __devinit smp_add_present_cpu(int cpu); 635 636 static int __devinit __smp_rescan_cpus(struct sclp_cpu_info *info, 637 int sysfs_add) 638 { 639 struct pcpu *pcpu; 640 cpumask_t avail; 641 int cpu, nr, i; 642 643 nr = 0; 644 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask); 645 cpu = cpumask_first(&avail); 646 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) { 647 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type) 648 continue; 649 if (pcpu_find_address(cpu_present_mask, info->cpu[i].address)) 650 continue; 651 pcpu = pcpu_devices + cpu; 652 pcpu->address = info->cpu[i].address; 653 pcpu->state = (cpu >= info->configured) ? 654 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED; 655 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 656 set_cpu_present(cpu, true); 657 if (sysfs_add && smp_add_present_cpu(cpu) != 0) 658 set_cpu_present(cpu, false); 659 else 660 nr++; 661 cpu = cpumask_next(cpu, &avail); 662 } 663 return nr; 664 } 665 666 static void __init smp_detect_cpus(void) 667 { 668 unsigned int cpu, c_cpus, s_cpus; 669 struct sclp_cpu_info *info; 670 671 info = smp_get_cpu_info(); 672 if (!info) 673 panic("smp_detect_cpus failed to allocate memory\n"); 674 if (info->has_cpu_type) { 675 for (cpu = 0; cpu < info->combined; cpu++) { 676 if (info->cpu[cpu].address != boot_cpu_address) 677 continue; 678 /* The boot cpu dictates the cpu type. */ 679 boot_cpu_type = info->cpu[cpu].type; 680 break; 681 } 682 } 683 c_cpus = s_cpus = 0; 684 for (cpu = 0; cpu < info->combined; cpu++) { 685 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type) 686 continue; 687 if (cpu < info->configured) { 688 smp_get_save_area(c_cpus, info->cpu[cpu].address); 689 c_cpus++; 690 } else 691 s_cpus++; 692 } 693 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus); 694 get_online_cpus(); 695 __smp_rescan_cpus(info, 0); 696 put_online_cpus(); 697 kfree(info); 698 } 699 700 /* 701 * Activate a secondary processor. 702 */ 703 static void __cpuinit smp_start_secondary(void *cpuvoid) 704 { 705 S390_lowcore.last_update_clock = get_clock(); 706 S390_lowcore.restart_stack = (unsigned long) restart_stack; 707 S390_lowcore.restart_fn = (unsigned long) do_restart; 708 S390_lowcore.restart_data = 0; 709 S390_lowcore.restart_source = -1UL; 710 restore_access_regs(S390_lowcore.access_regs_save_area); 711 __ctl_load(S390_lowcore.cregs_save_area, 0, 15); 712 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT); 713 cpu_init(); 714 preempt_disable(); 715 init_cpu_timer(); 716 init_cpu_vtimer(); 717 pfault_init(); 718 notify_cpu_starting(smp_processor_id()); 719 ipi_call_lock(); 720 set_cpu_online(smp_processor_id(), true); 721 ipi_call_unlock(); 722 local_irq_enable(); 723 /* cpu_idle will call schedule for us */ 724 cpu_idle(); 725 } 726 727 /* Upping and downing of CPUs */ 728 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle) 729 { 730 struct pcpu *pcpu; 731 int rc; 732 733 pcpu = pcpu_devices + cpu; 734 if (pcpu->state != CPU_STATE_CONFIGURED) 735 return -EIO; 736 if (pcpu_sigp_retry(pcpu, sigp_initial_cpu_reset, 0) != 737 sigp_order_code_accepted) 738 return -EIO; 739 740 rc = pcpu_alloc_lowcore(pcpu, cpu); 741 if (rc) 742 return rc; 743 pcpu_prepare_secondary(pcpu, cpu); 744 pcpu_attach_task(pcpu, tidle); 745 pcpu_start_fn(pcpu, smp_start_secondary, NULL); 746 while (!cpu_online(cpu)) 747 cpu_relax(); 748 return 0; 749 } 750 751 static int __init setup_possible_cpus(char *s) 752 { 753 int max, cpu; 754 755 if (kstrtoint(s, 0, &max) < 0) 756 return 0; 757 init_cpu_possible(cpumask_of(0)); 758 for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++) 759 set_cpu_possible(cpu, true); 760 return 0; 761 } 762 early_param("possible_cpus", setup_possible_cpus); 763 764 #ifdef CONFIG_HOTPLUG_CPU 765 766 int __cpu_disable(void) 767 { 768 unsigned long cregs[16]; 769 770 set_cpu_online(smp_processor_id(), false); 771 /* Disable pseudo page faults on this cpu. */ 772 pfault_fini(); 773 /* Disable interrupt sources via control register. */ 774 __ctl_store(cregs, 0, 15); 775 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */ 776 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */ 777 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */ 778 __ctl_load(cregs, 0, 15); 779 return 0; 780 } 781 782 void __cpu_die(unsigned int cpu) 783 { 784 struct pcpu *pcpu; 785 786 /* Wait until target cpu is down */ 787 pcpu = pcpu_devices + cpu; 788 while (!pcpu_stopped(pcpu)) 789 cpu_relax(); 790 pcpu_free_lowcore(pcpu); 791 atomic_dec(&init_mm.context.attach_count); 792 } 793 794 void __noreturn cpu_die(void) 795 { 796 idle_task_exit(); 797 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0); 798 for (;;) ; 799 } 800 801 #endif /* CONFIG_HOTPLUG_CPU */ 802 803 static void smp_call_os_info_init_fn(void) 804 { 805 int (*init_fn)(void); 806 unsigned long size; 807 808 init_fn = os_info_old_entry(OS_INFO_INIT_FN, &size); 809 if (!init_fn) 810 return; 811 init_fn(); 812 } 813 814 void __init smp_prepare_cpus(unsigned int max_cpus) 815 { 816 /* request the 0x1201 emergency signal external interrupt */ 817 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0) 818 panic("Couldn't request external interrupt 0x1201"); 819 /* request the 0x1202 external call external interrupt */ 820 if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0) 821 panic("Couldn't request external interrupt 0x1202"); 822 smp_call_os_info_init_fn(); 823 smp_detect_cpus(); 824 } 825 826 void __init smp_prepare_boot_cpu(void) 827 { 828 struct pcpu *pcpu = pcpu_devices; 829 830 boot_cpu_address = stap(); 831 pcpu->state = CPU_STATE_CONFIGURED; 832 pcpu->address = boot_cpu_address; 833 pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix(); 834 pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE; 835 pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE; 836 S390_lowcore.percpu_offset = __per_cpu_offset[0]; 837 cpu_set_polarization(0, POLARIZATION_UNKNOWN); 838 set_cpu_present(0, true); 839 set_cpu_online(0, true); 840 } 841 842 void __init smp_cpus_done(unsigned int max_cpus) 843 { 844 } 845 846 void __init smp_setup_processor_id(void) 847 { 848 S390_lowcore.cpu_nr = 0; 849 } 850 851 /* 852 * the frequency of the profiling timer can be changed 853 * by writing a multiplier value into /proc/profile. 854 * 855 * usually you want to run this on all CPUs ;) 856 */ 857 int setup_profiling_timer(unsigned int multiplier) 858 { 859 return 0; 860 } 861 862 #ifdef CONFIG_HOTPLUG_CPU 863 static ssize_t cpu_configure_show(struct device *dev, 864 struct device_attribute *attr, char *buf) 865 { 866 ssize_t count; 867 868 mutex_lock(&smp_cpu_state_mutex); 869 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state); 870 mutex_unlock(&smp_cpu_state_mutex); 871 return count; 872 } 873 874 static ssize_t cpu_configure_store(struct device *dev, 875 struct device_attribute *attr, 876 const char *buf, size_t count) 877 { 878 struct pcpu *pcpu; 879 int cpu, val, rc; 880 char delim; 881 882 if (sscanf(buf, "%d %c", &val, &delim) != 1) 883 return -EINVAL; 884 if (val != 0 && val != 1) 885 return -EINVAL; 886 get_online_cpus(); 887 mutex_lock(&smp_cpu_state_mutex); 888 rc = -EBUSY; 889 /* disallow configuration changes of online cpus and cpu 0 */ 890 cpu = dev->id; 891 if (cpu_online(cpu) || cpu == 0) 892 goto out; 893 pcpu = pcpu_devices + cpu; 894 rc = 0; 895 switch (val) { 896 case 0: 897 if (pcpu->state != CPU_STATE_CONFIGURED) 898 break; 899 rc = sclp_cpu_deconfigure(pcpu->address); 900 if (rc) 901 break; 902 pcpu->state = CPU_STATE_STANDBY; 903 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 904 topology_expect_change(); 905 break; 906 case 1: 907 if (pcpu->state != CPU_STATE_STANDBY) 908 break; 909 rc = sclp_cpu_configure(pcpu->address); 910 if (rc) 911 break; 912 pcpu->state = CPU_STATE_CONFIGURED; 913 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 914 topology_expect_change(); 915 break; 916 default: 917 break; 918 } 919 out: 920 mutex_unlock(&smp_cpu_state_mutex); 921 put_online_cpus(); 922 return rc ? rc : count; 923 } 924 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store); 925 #endif /* CONFIG_HOTPLUG_CPU */ 926 927 static ssize_t show_cpu_address(struct device *dev, 928 struct device_attribute *attr, char *buf) 929 { 930 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address); 931 } 932 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL); 933 934 static struct attribute *cpu_common_attrs[] = { 935 #ifdef CONFIG_HOTPLUG_CPU 936 &dev_attr_configure.attr, 937 #endif 938 &dev_attr_address.attr, 939 NULL, 940 }; 941 942 static struct attribute_group cpu_common_attr_group = { 943 .attrs = cpu_common_attrs, 944 }; 945 946 static ssize_t show_capability(struct device *dev, 947 struct device_attribute *attr, char *buf) 948 { 949 unsigned int capability; 950 int rc; 951 952 rc = get_cpu_capability(&capability); 953 if (rc) 954 return rc; 955 return sprintf(buf, "%u\n", capability); 956 } 957 static DEVICE_ATTR(capability, 0444, show_capability, NULL); 958 959 static ssize_t show_idle_count(struct device *dev, 960 struct device_attribute *attr, char *buf) 961 { 962 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id); 963 unsigned long long idle_count; 964 unsigned int sequence; 965 966 do { 967 sequence = ACCESS_ONCE(idle->sequence); 968 idle_count = ACCESS_ONCE(idle->idle_count); 969 if (ACCESS_ONCE(idle->idle_enter)) 970 idle_count++; 971 } while ((sequence & 1) || (idle->sequence != sequence)); 972 return sprintf(buf, "%llu\n", idle_count); 973 } 974 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL); 975 976 static ssize_t show_idle_time(struct device *dev, 977 struct device_attribute *attr, char *buf) 978 { 979 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id); 980 unsigned long long now, idle_time, idle_enter, idle_exit; 981 unsigned int sequence; 982 983 do { 984 now = get_clock(); 985 sequence = ACCESS_ONCE(idle->sequence); 986 idle_time = ACCESS_ONCE(idle->idle_time); 987 idle_enter = ACCESS_ONCE(idle->idle_enter); 988 idle_exit = ACCESS_ONCE(idle->idle_exit); 989 } while ((sequence & 1) || (idle->sequence != sequence)); 990 idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0; 991 return sprintf(buf, "%llu\n", idle_time >> 12); 992 } 993 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL); 994 995 static struct attribute *cpu_online_attrs[] = { 996 &dev_attr_capability.attr, 997 &dev_attr_idle_count.attr, 998 &dev_attr_idle_time_us.attr, 999 NULL, 1000 }; 1001 1002 static struct attribute_group cpu_online_attr_group = { 1003 .attrs = cpu_online_attrs, 1004 }; 1005 1006 static int __cpuinit smp_cpu_notify(struct notifier_block *self, 1007 unsigned long action, void *hcpu) 1008 { 1009 unsigned int cpu = (unsigned int)(long)hcpu; 1010 struct cpu *c = &pcpu_devices[cpu].cpu; 1011 struct device *s = &c->dev; 1012 struct s390_idle_data *idle; 1013 int err = 0; 1014 1015 switch (action) { 1016 case CPU_ONLINE: 1017 case CPU_ONLINE_FROZEN: 1018 idle = &per_cpu(s390_idle, cpu); 1019 memset(idle, 0, sizeof(struct s390_idle_data)); 1020 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group); 1021 break; 1022 case CPU_DEAD: 1023 case CPU_DEAD_FROZEN: 1024 sysfs_remove_group(&s->kobj, &cpu_online_attr_group); 1025 break; 1026 } 1027 return notifier_from_errno(err); 1028 } 1029 1030 static struct notifier_block __cpuinitdata smp_cpu_nb = { 1031 .notifier_call = smp_cpu_notify, 1032 }; 1033 1034 static int __devinit smp_add_present_cpu(int cpu) 1035 { 1036 struct cpu *c = &pcpu_devices[cpu].cpu; 1037 struct device *s = &c->dev; 1038 int rc; 1039 1040 c->hotpluggable = 1; 1041 rc = register_cpu(c, cpu); 1042 if (rc) 1043 goto out; 1044 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group); 1045 if (rc) 1046 goto out_cpu; 1047 if (cpu_online(cpu)) { 1048 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group); 1049 if (rc) 1050 goto out_online; 1051 } 1052 rc = topology_cpu_init(c); 1053 if (rc) 1054 goto out_topology; 1055 return 0; 1056 1057 out_topology: 1058 if (cpu_online(cpu)) 1059 sysfs_remove_group(&s->kobj, &cpu_online_attr_group); 1060 out_online: 1061 sysfs_remove_group(&s->kobj, &cpu_common_attr_group); 1062 out_cpu: 1063 #ifdef CONFIG_HOTPLUG_CPU 1064 unregister_cpu(c); 1065 #endif 1066 out: 1067 return rc; 1068 } 1069 1070 #ifdef CONFIG_HOTPLUG_CPU 1071 1072 int __ref smp_rescan_cpus(void) 1073 { 1074 struct sclp_cpu_info *info; 1075 int nr; 1076 1077 info = smp_get_cpu_info(); 1078 if (!info) 1079 return -ENOMEM; 1080 get_online_cpus(); 1081 mutex_lock(&smp_cpu_state_mutex); 1082 nr = __smp_rescan_cpus(info, 1); 1083 mutex_unlock(&smp_cpu_state_mutex); 1084 put_online_cpus(); 1085 kfree(info); 1086 if (nr) 1087 topology_schedule_update(); 1088 return 0; 1089 } 1090 1091 static ssize_t __ref rescan_store(struct device *dev, 1092 struct device_attribute *attr, 1093 const char *buf, 1094 size_t count) 1095 { 1096 int rc; 1097 1098 rc = smp_rescan_cpus(); 1099 return rc ? rc : count; 1100 } 1101 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store); 1102 #endif /* CONFIG_HOTPLUG_CPU */ 1103 1104 static int __init s390_smp_init(void) 1105 { 1106 int cpu, rc; 1107 1108 register_cpu_notifier(&smp_cpu_nb); 1109 #ifdef CONFIG_HOTPLUG_CPU 1110 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan); 1111 if (rc) 1112 return rc; 1113 #endif 1114 for_each_present_cpu(cpu) { 1115 rc = smp_add_present_cpu(cpu); 1116 if (rc) 1117 return rc; 1118 } 1119 return 0; 1120 } 1121 subsys_initcall(s390_smp_init); 1122