xref: /linux/arch/s390/kernel/smp.c (revision 3df692169e8486fc3dd91fcd5ea81c27a0bac033)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17 
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/workqueue.h>
22 #include <linux/memblock.h>
23 #include <linux/export.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/irqflags.h>
32 #include <linux/irq_work.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/ctlreg.h>
41 #include <asm/pfault.h>
42 #include <asm/diag.h>
43 #include <asm/switch_to.h>
44 #include <asm/facility.h>
45 #include <asm/ipl.h>
46 #include <asm/setup.h>
47 #include <asm/irq.h>
48 #include <asm/tlbflush.h>
49 #include <asm/vtimer.h>
50 #include <asm/abs_lowcore.h>
51 #include <asm/sclp.h>
52 #include <asm/debug.h>
53 #include <asm/os_info.h>
54 #include <asm/sigp.h>
55 #include <asm/idle.h>
56 #include <asm/nmi.h>
57 #include <asm/stacktrace.h>
58 #include <asm/topology.h>
59 #include <asm/vdso.h>
60 #include <asm/maccess.h>
61 #include "entry.h"
62 
63 enum {
64 	ec_schedule = 0,
65 	ec_call_function_single,
66 	ec_stop_cpu,
67 	ec_mcck_pending,
68 	ec_irq_work,
69 };
70 
71 enum {
72 	CPU_STATE_STANDBY,
73 	CPU_STATE_CONFIGURED,
74 };
75 
76 static DEFINE_PER_CPU(struct cpu *, cpu_device);
77 
78 struct pcpu {
79 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
80 	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
81 	signed char state;		/* physical cpu state */
82 	signed char polarization;	/* physical polarization */
83 	u16 address;			/* physical cpu address */
84 };
85 
86 static u8 boot_core_type;
87 static struct pcpu pcpu_devices[NR_CPUS];
88 
89 unsigned int smp_cpu_mt_shift;
90 EXPORT_SYMBOL(smp_cpu_mt_shift);
91 
92 unsigned int smp_cpu_mtid;
93 EXPORT_SYMBOL(smp_cpu_mtid);
94 
95 #ifdef CONFIG_CRASH_DUMP
96 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
97 #endif
98 
99 static unsigned int smp_max_threads __initdata = -1U;
100 cpumask_t cpu_setup_mask;
101 
102 static int __init early_nosmt(char *s)
103 {
104 	smp_max_threads = 1;
105 	return 0;
106 }
107 early_param("nosmt", early_nosmt);
108 
109 static int __init early_smt(char *s)
110 {
111 	get_option(&s, &smp_max_threads);
112 	return 0;
113 }
114 early_param("smt", early_smt);
115 
116 /*
117  * The smp_cpu_state_mutex must be held when changing the state or polarization
118  * member of a pcpu data structure within the pcpu_devices array.
119  */
120 DEFINE_MUTEX(smp_cpu_state_mutex);
121 
122 /*
123  * Signal processor helper functions.
124  */
125 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
126 {
127 	int cc;
128 
129 	while (1) {
130 		cc = __pcpu_sigp(addr, order, parm, NULL);
131 		if (cc != SIGP_CC_BUSY)
132 			return cc;
133 		cpu_relax();
134 	}
135 }
136 
137 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
138 {
139 	int cc, retry;
140 
141 	for (retry = 0; ; retry++) {
142 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
143 		if (cc != SIGP_CC_BUSY)
144 			break;
145 		if (retry >= 3)
146 			udelay(10);
147 	}
148 	return cc;
149 }
150 
151 static inline int pcpu_stopped(struct pcpu *pcpu)
152 {
153 	u32 status;
154 
155 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
156 			0, &status) != SIGP_CC_STATUS_STORED)
157 		return 0;
158 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
159 }
160 
161 static inline int pcpu_running(struct pcpu *pcpu)
162 {
163 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
164 			0, NULL) != SIGP_CC_STATUS_STORED)
165 		return 1;
166 	/* Status stored condition code is equivalent to cpu not running. */
167 	return 0;
168 }
169 
170 /*
171  * Find struct pcpu by cpu address.
172  */
173 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
174 {
175 	int cpu;
176 
177 	for_each_cpu(cpu, mask)
178 		if (pcpu_devices[cpu].address == address)
179 			return pcpu_devices + cpu;
180 	return NULL;
181 }
182 
183 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
184 {
185 	int order;
186 
187 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
188 		return;
189 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
190 	pcpu->ec_clk = get_tod_clock_fast();
191 	pcpu_sigp_retry(pcpu, order, 0);
192 }
193 
194 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
195 {
196 	unsigned long async_stack, nodat_stack, mcck_stack;
197 	struct lowcore *lc;
198 
199 	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
200 	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
201 	async_stack = stack_alloc();
202 	mcck_stack = stack_alloc();
203 	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
204 		goto out;
205 	memcpy(lc, &S390_lowcore, 512);
206 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
207 	lc->async_stack = async_stack + STACK_INIT_OFFSET;
208 	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
209 	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
210 	lc->cpu_nr = cpu;
211 	lc->spinlock_lockval = arch_spin_lockval(cpu);
212 	lc->spinlock_index = 0;
213 	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
214 	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
215 	lc->preempt_count = PREEMPT_DISABLED;
216 	if (nmi_alloc_mcesa(&lc->mcesad))
217 		goto out;
218 	if (abs_lowcore_map(cpu, lc, true))
219 		goto out_mcesa;
220 	lowcore_ptr[cpu] = lc;
221 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
222 	return 0;
223 
224 out_mcesa:
225 	nmi_free_mcesa(&lc->mcesad);
226 out:
227 	stack_free(mcck_stack);
228 	stack_free(async_stack);
229 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
230 	free_pages((unsigned long) lc, LC_ORDER);
231 	return -ENOMEM;
232 }
233 
234 static void pcpu_free_lowcore(struct pcpu *pcpu)
235 {
236 	unsigned long async_stack, nodat_stack, mcck_stack;
237 	struct lowcore *lc;
238 	int cpu;
239 
240 	cpu = pcpu - pcpu_devices;
241 	lc = lowcore_ptr[cpu];
242 	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
243 	async_stack = lc->async_stack - STACK_INIT_OFFSET;
244 	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
245 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
246 	lowcore_ptr[cpu] = NULL;
247 	abs_lowcore_unmap(cpu);
248 	nmi_free_mcesa(&lc->mcesad);
249 	stack_free(async_stack);
250 	stack_free(mcck_stack);
251 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
252 	free_pages((unsigned long) lc, LC_ORDER);
253 }
254 
255 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
256 {
257 	struct lowcore *lc, *abs_lc;
258 
259 	lc = lowcore_ptr[cpu];
260 	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
261 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
262 	lc->cpu_nr = cpu;
263 	lc->restart_flags = RESTART_FLAG_CTLREGS;
264 	lc->spinlock_lockval = arch_spin_lockval(cpu);
265 	lc->spinlock_index = 0;
266 	lc->percpu_offset = __per_cpu_offset[cpu];
267 	lc->kernel_asce = S390_lowcore.kernel_asce;
268 	lc->user_asce = s390_invalid_asce;
269 	lc->machine_flags = S390_lowcore.machine_flags;
270 	lc->user_timer = lc->system_timer =
271 		lc->steal_timer = lc->avg_steal_timer = 0;
272 	abs_lc = get_abs_lowcore();
273 	memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
274 	put_abs_lowcore(abs_lc);
275 	lc->cregs_save_area[1] = lc->kernel_asce;
276 	lc->cregs_save_area[7] = lc->user_asce;
277 	save_access_regs((unsigned int *) lc->access_regs_save_area);
278 	arch_spin_lock_setup(cpu);
279 }
280 
281 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
282 {
283 	struct lowcore *lc;
284 	int cpu;
285 
286 	cpu = pcpu - pcpu_devices;
287 	lc = lowcore_ptr[cpu];
288 	lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
289 	lc->current_task = (unsigned long)tsk;
290 	lc->lpp = LPP_MAGIC;
291 	lc->current_pid = tsk->pid;
292 	lc->user_timer = tsk->thread.user_timer;
293 	lc->guest_timer = tsk->thread.guest_timer;
294 	lc->system_timer = tsk->thread.system_timer;
295 	lc->hardirq_timer = tsk->thread.hardirq_timer;
296 	lc->softirq_timer = tsk->thread.softirq_timer;
297 	lc->steal_timer = 0;
298 }
299 
300 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
301 {
302 	struct lowcore *lc;
303 	int cpu;
304 
305 	cpu = pcpu - pcpu_devices;
306 	lc = lowcore_ptr[cpu];
307 	lc->restart_stack = lc->kernel_stack;
308 	lc->restart_fn = (unsigned long) func;
309 	lc->restart_data = (unsigned long) data;
310 	lc->restart_source = -1U;
311 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
312 }
313 
314 typedef void (pcpu_delegate_fn)(void *);
315 
316 /*
317  * Call function via PSW restart on pcpu and stop the current cpu.
318  */
319 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
320 {
321 	func(data);	/* should not return */
322 }
323 
324 static void pcpu_delegate(struct pcpu *pcpu,
325 			  pcpu_delegate_fn *func,
326 			  void *data, unsigned long stack)
327 {
328 	struct lowcore *lc, *abs_lc;
329 	unsigned int source_cpu;
330 
331 	lc = lowcore_ptr[pcpu - pcpu_devices];
332 	source_cpu = stap();
333 
334 	if (pcpu->address == source_cpu) {
335 		call_on_stack(2, stack, void, __pcpu_delegate,
336 			      pcpu_delegate_fn *, func, void *, data);
337 	}
338 	/* Stop target cpu (if func returns this stops the current cpu). */
339 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
340 	pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
341 	/* Restart func on the target cpu and stop the current cpu. */
342 	if (lc) {
343 		lc->restart_stack = stack;
344 		lc->restart_fn = (unsigned long)func;
345 		lc->restart_data = (unsigned long)data;
346 		lc->restart_source = source_cpu;
347 	} else {
348 		abs_lc = get_abs_lowcore();
349 		abs_lc->restart_stack = stack;
350 		abs_lc->restart_fn = (unsigned long)func;
351 		abs_lc->restart_data = (unsigned long)data;
352 		abs_lc->restart_source = source_cpu;
353 		put_abs_lowcore(abs_lc);
354 	}
355 	asm volatile(
356 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
357 		"	brc	2,0b	# busy, try again\n"
358 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
359 		"	brc	2,1b	# busy, try again\n"
360 		: : "d" (pcpu->address), "d" (source_cpu),
361 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
362 		: "0", "1", "cc");
363 	for (;;) ;
364 }
365 
366 /*
367  * Enable additional logical cpus for multi-threading.
368  */
369 static int pcpu_set_smt(unsigned int mtid)
370 {
371 	int cc;
372 
373 	if (smp_cpu_mtid == mtid)
374 		return 0;
375 	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
376 	if (cc == 0) {
377 		smp_cpu_mtid = mtid;
378 		smp_cpu_mt_shift = 0;
379 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
380 			smp_cpu_mt_shift++;
381 		pcpu_devices[0].address = stap();
382 	}
383 	return cc;
384 }
385 
386 /*
387  * Call function on an online CPU.
388  */
389 void smp_call_online_cpu(void (*func)(void *), void *data)
390 {
391 	struct pcpu *pcpu;
392 
393 	/* Use the current cpu if it is online. */
394 	pcpu = pcpu_find_address(cpu_online_mask, stap());
395 	if (!pcpu)
396 		/* Use the first online cpu. */
397 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
398 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
399 }
400 
401 /*
402  * Call function on the ipl CPU.
403  */
404 void smp_call_ipl_cpu(void (*func)(void *), void *data)
405 {
406 	struct lowcore *lc = lowcore_ptr[0];
407 
408 	if (pcpu_devices[0].address == stap())
409 		lc = &S390_lowcore;
410 
411 	pcpu_delegate(&pcpu_devices[0], func, data,
412 		      lc->nodat_stack);
413 }
414 
415 int smp_find_processor_id(u16 address)
416 {
417 	int cpu;
418 
419 	for_each_present_cpu(cpu)
420 		if (pcpu_devices[cpu].address == address)
421 			return cpu;
422 	return -1;
423 }
424 
425 void schedule_mcck_handler(void)
426 {
427 	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
428 }
429 
430 bool notrace arch_vcpu_is_preempted(int cpu)
431 {
432 	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
433 		return false;
434 	if (pcpu_running(pcpu_devices + cpu))
435 		return false;
436 	return true;
437 }
438 EXPORT_SYMBOL(arch_vcpu_is_preempted);
439 
440 void notrace smp_yield_cpu(int cpu)
441 {
442 	if (!MACHINE_HAS_DIAG9C)
443 		return;
444 	diag_stat_inc_norecursion(DIAG_STAT_X09C);
445 	asm volatile("diag %0,0,0x9c"
446 		     : : "d" (pcpu_devices[cpu].address));
447 }
448 EXPORT_SYMBOL_GPL(smp_yield_cpu);
449 
450 /*
451  * Send cpus emergency shutdown signal. This gives the cpus the
452  * opportunity to complete outstanding interrupts.
453  */
454 void notrace smp_emergency_stop(void)
455 {
456 	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
457 	static cpumask_t cpumask;
458 	u64 end;
459 	int cpu;
460 
461 	arch_spin_lock(&lock);
462 	cpumask_copy(&cpumask, cpu_online_mask);
463 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
464 
465 	end = get_tod_clock() + (1000000UL << 12);
466 	for_each_cpu(cpu, &cpumask) {
467 		struct pcpu *pcpu = pcpu_devices + cpu;
468 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
469 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
470 				   0, NULL) == SIGP_CC_BUSY &&
471 		       get_tod_clock() < end)
472 			cpu_relax();
473 	}
474 	while (get_tod_clock() < end) {
475 		for_each_cpu(cpu, &cpumask)
476 			if (pcpu_stopped(pcpu_devices + cpu))
477 				cpumask_clear_cpu(cpu, &cpumask);
478 		if (cpumask_empty(&cpumask))
479 			break;
480 		cpu_relax();
481 	}
482 	arch_spin_unlock(&lock);
483 }
484 NOKPROBE_SYMBOL(smp_emergency_stop);
485 
486 /*
487  * Stop all cpus but the current one.
488  */
489 void smp_send_stop(void)
490 {
491 	int cpu;
492 
493 	/* Disable all interrupts/machine checks */
494 	__load_psw_mask(PSW_KERNEL_BITS);
495 	trace_hardirqs_off();
496 
497 	debug_set_critical();
498 
499 	if (oops_in_progress)
500 		smp_emergency_stop();
501 
502 	/* stop all processors */
503 	for_each_online_cpu(cpu) {
504 		if (cpu == smp_processor_id())
505 			continue;
506 		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
507 		while (!pcpu_stopped(pcpu_devices + cpu))
508 			cpu_relax();
509 	}
510 }
511 
512 /*
513  * This is the main routine where commands issued by other
514  * cpus are handled.
515  */
516 static void smp_handle_ext_call(void)
517 {
518 	unsigned long bits;
519 
520 	/* handle bit signal external calls */
521 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
522 	if (test_bit(ec_stop_cpu, &bits))
523 		smp_stop_cpu();
524 	if (test_bit(ec_schedule, &bits))
525 		scheduler_ipi();
526 	if (test_bit(ec_call_function_single, &bits))
527 		generic_smp_call_function_single_interrupt();
528 	if (test_bit(ec_mcck_pending, &bits))
529 		s390_handle_mcck();
530 	if (test_bit(ec_irq_work, &bits))
531 		irq_work_run();
532 }
533 
534 static void do_ext_call_interrupt(struct ext_code ext_code,
535 				  unsigned int param32, unsigned long param64)
536 {
537 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
538 	smp_handle_ext_call();
539 }
540 
541 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
542 {
543 	int cpu;
544 
545 	for_each_cpu(cpu, mask)
546 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
547 }
548 
549 void arch_send_call_function_single_ipi(int cpu)
550 {
551 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
552 }
553 
554 /*
555  * this function sends a 'reschedule' IPI to another CPU.
556  * it goes straight through and wastes no time serializing
557  * anything. Worst case is that we lose a reschedule ...
558  */
559 void arch_smp_send_reschedule(int cpu)
560 {
561 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
562 }
563 
564 #ifdef CONFIG_IRQ_WORK
565 void arch_irq_work_raise(void)
566 {
567 	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
568 }
569 #endif
570 
571 #ifdef CONFIG_CRASH_DUMP
572 
573 int smp_store_status(int cpu)
574 {
575 	struct lowcore *lc;
576 	struct pcpu *pcpu;
577 	unsigned long pa;
578 
579 	pcpu = pcpu_devices + cpu;
580 	lc = lowcore_ptr[cpu];
581 	pa = __pa(&lc->floating_pt_save_area);
582 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
583 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
584 		return -EIO;
585 	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
586 		return 0;
587 	pa = lc->mcesad & MCESA_ORIGIN_MASK;
588 	if (MACHINE_HAS_GS)
589 		pa |= lc->mcesad & MCESA_LC_MASK;
590 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
591 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
592 		return -EIO;
593 	return 0;
594 }
595 
596 /*
597  * Collect CPU state of the previous, crashed system.
598  * There are four cases:
599  * 1) standard zfcp/nvme dump
600  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
601  *    The state for all CPUs except the boot CPU needs to be collected
602  *    with sigp stop-and-store-status. The boot CPU state is located in
603  *    the absolute lowcore of the memory stored in the HSA. The zcore code
604  *    will copy the boot CPU state from the HSA.
605  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
606  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
607  *    The state for all CPUs except the boot CPU needs to be collected
608  *    with sigp stop-and-store-status. The firmware or the boot-loader
609  *    stored the registers of the boot CPU in the absolute lowcore in the
610  *    memory of the old system.
611  * 3) kdump and the old kernel did not store the CPU state,
612  *    or stand-alone kdump for DASD
613  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
614  *    The state for all CPUs except the boot CPU needs to be collected
615  *    with sigp stop-and-store-status. The kexec code or the boot-loader
616  *    stored the registers of the boot CPU in the memory of the old system.
617  * 4) kdump and the old kernel stored the CPU state
618  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
619  *    This case does not exist for s390 anymore, setup_arch explicitly
620  *    deactivates the elfcorehdr= kernel parameter
621  */
622 static bool dump_available(void)
623 {
624 	return oldmem_data.start || is_ipl_type_dump();
625 }
626 
627 void __init smp_save_dump_ipl_cpu(void)
628 {
629 	struct save_area *sa;
630 	void *regs;
631 
632 	if (!dump_available())
633 		return;
634 	sa = save_area_alloc(true);
635 	regs = memblock_alloc(512, 8);
636 	if (!sa || !regs)
637 		panic("could not allocate memory for boot CPU save area\n");
638 	copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
639 	save_area_add_regs(sa, regs);
640 	memblock_free(regs, 512);
641 	if (MACHINE_HAS_VX)
642 		save_area_add_vxrs(sa, boot_cpu_vector_save_area);
643 }
644 
645 void __init smp_save_dump_secondary_cpus(void)
646 {
647 	int addr, boot_cpu_addr, max_cpu_addr;
648 	struct save_area *sa;
649 	void *page;
650 
651 	if (!dump_available())
652 		return;
653 	/* Allocate a page as dumping area for the store status sigps */
654 	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
655 	if (!page)
656 		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
657 		      PAGE_SIZE, 1UL << 31);
658 
659 	/* Set multi-threading state to the previous system. */
660 	pcpu_set_smt(sclp.mtid_prev);
661 	boot_cpu_addr = stap();
662 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
663 	for (addr = 0; addr <= max_cpu_addr; addr++) {
664 		if (addr == boot_cpu_addr)
665 			continue;
666 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
667 		    SIGP_CC_NOT_OPERATIONAL)
668 			continue;
669 		sa = save_area_alloc(false);
670 		if (!sa)
671 			panic("could not allocate memory for save area\n");
672 		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
673 		save_area_add_regs(sa, page);
674 		if (MACHINE_HAS_VX) {
675 			__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
676 			save_area_add_vxrs(sa, page);
677 		}
678 	}
679 	memblock_free(page, PAGE_SIZE);
680 	diag_amode31_ops.diag308_reset();
681 	pcpu_set_smt(0);
682 }
683 #endif /* CONFIG_CRASH_DUMP */
684 
685 void smp_cpu_set_polarization(int cpu, int val)
686 {
687 	pcpu_devices[cpu].polarization = val;
688 }
689 
690 int smp_cpu_get_polarization(int cpu)
691 {
692 	return pcpu_devices[cpu].polarization;
693 }
694 
695 int smp_cpu_get_cpu_address(int cpu)
696 {
697 	return pcpu_devices[cpu].address;
698 }
699 
700 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
701 {
702 	static int use_sigp_detection;
703 	int address;
704 
705 	if (use_sigp_detection || sclp_get_core_info(info, early)) {
706 		use_sigp_detection = 1;
707 		for (address = 0;
708 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
709 		     address += (1U << smp_cpu_mt_shift)) {
710 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
711 			    SIGP_CC_NOT_OPERATIONAL)
712 				continue;
713 			info->core[info->configured].core_id =
714 				address >> smp_cpu_mt_shift;
715 			info->configured++;
716 		}
717 		info->combined = info->configured;
718 	}
719 }
720 
721 static int smp_add_present_cpu(int cpu);
722 
723 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
724 			bool configured, bool early)
725 {
726 	struct pcpu *pcpu;
727 	int cpu, nr, i;
728 	u16 address;
729 
730 	nr = 0;
731 	if (sclp.has_core_type && core->type != boot_core_type)
732 		return nr;
733 	cpu = cpumask_first(avail);
734 	address = core->core_id << smp_cpu_mt_shift;
735 	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
736 		if (pcpu_find_address(cpu_present_mask, address + i))
737 			continue;
738 		pcpu = pcpu_devices + cpu;
739 		pcpu->address = address + i;
740 		if (configured)
741 			pcpu->state = CPU_STATE_CONFIGURED;
742 		else
743 			pcpu->state = CPU_STATE_STANDBY;
744 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
745 		set_cpu_present(cpu, true);
746 		if (!early && smp_add_present_cpu(cpu) != 0)
747 			set_cpu_present(cpu, false);
748 		else
749 			nr++;
750 		cpumask_clear_cpu(cpu, avail);
751 		cpu = cpumask_next(cpu, avail);
752 	}
753 	return nr;
754 }
755 
756 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
757 {
758 	struct sclp_core_entry *core;
759 	static cpumask_t avail;
760 	bool configured;
761 	u16 core_id;
762 	int nr, i;
763 
764 	cpus_read_lock();
765 	mutex_lock(&smp_cpu_state_mutex);
766 	nr = 0;
767 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
768 	/*
769 	 * Add IPL core first (which got logical CPU number 0) to make sure
770 	 * that all SMT threads get subsequent logical CPU numbers.
771 	 */
772 	if (early) {
773 		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
774 		for (i = 0; i < info->configured; i++) {
775 			core = &info->core[i];
776 			if (core->core_id == core_id) {
777 				nr += smp_add_core(core, &avail, true, early);
778 				break;
779 			}
780 		}
781 	}
782 	for (i = 0; i < info->combined; i++) {
783 		configured = i < info->configured;
784 		nr += smp_add_core(&info->core[i], &avail, configured, early);
785 	}
786 	mutex_unlock(&smp_cpu_state_mutex);
787 	cpus_read_unlock();
788 	return nr;
789 }
790 
791 void __init smp_detect_cpus(void)
792 {
793 	unsigned int cpu, mtid, c_cpus, s_cpus;
794 	struct sclp_core_info *info;
795 	u16 address;
796 
797 	/* Get CPU information */
798 	info = memblock_alloc(sizeof(*info), 8);
799 	if (!info)
800 		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
801 		      __func__, sizeof(*info), 8);
802 	smp_get_core_info(info, 1);
803 	/* Find boot CPU type */
804 	if (sclp.has_core_type) {
805 		address = stap();
806 		for (cpu = 0; cpu < info->combined; cpu++)
807 			if (info->core[cpu].core_id == address) {
808 				/* The boot cpu dictates the cpu type. */
809 				boot_core_type = info->core[cpu].type;
810 				break;
811 			}
812 		if (cpu >= info->combined)
813 			panic("Could not find boot CPU type");
814 	}
815 
816 	/* Set multi-threading state for the current system */
817 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
818 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
819 	pcpu_set_smt(mtid);
820 
821 	/* Print number of CPUs */
822 	c_cpus = s_cpus = 0;
823 	for (cpu = 0; cpu < info->combined; cpu++) {
824 		if (sclp.has_core_type &&
825 		    info->core[cpu].type != boot_core_type)
826 			continue;
827 		if (cpu < info->configured)
828 			c_cpus += smp_cpu_mtid + 1;
829 		else
830 			s_cpus += smp_cpu_mtid + 1;
831 	}
832 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
833 
834 	/* Add CPUs present at boot */
835 	__smp_rescan_cpus(info, true);
836 	memblock_free(info, sizeof(*info));
837 }
838 
839 /*
840  *	Activate a secondary processor.
841  */
842 static void smp_start_secondary(void *cpuvoid)
843 {
844 	int cpu = raw_smp_processor_id();
845 
846 	S390_lowcore.last_update_clock = get_tod_clock();
847 	S390_lowcore.restart_stack = (unsigned long)restart_stack;
848 	S390_lowcore.restart_fn = (unsigned long)do_restart;
849 	S390_lowcore.restart_data = 0;
850 	S390_lowcore.restart_source = -1U;
851 	S390_lowcore.restart_flags = 0;
852 	restore_access_regs(S390_lowcore.access_regs_save_area);
853 	cpu_init();
854 	rcutree_report_cpu_starting(cpu);
855 	init_cpu_timer();
856 	vtime_init();
857 	vdso_getcpu_init();
858 	pfault_init();
859 	cpumask_set_cpu(cpu, &cpu_setup_mask);
860 	update_cpu_masks();
861 	notify_cpu_starting(cpu);
862 	if (topology_cpu_dedicated(cpu))
863 		set_cpu_flag(CIF_DEDICATED_CPU);
864 	else
865 		clear_cpu_flag(CIF_DEDICATED_CPU);
866 	set_cpu_online(cpu, true);
867 	inc_irq_stat(CPU_RST);
868 	local_irq_enable();
869 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
870 }
871 
872 /* Upping and downing of CPUs */
873 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
874 {
875 	struct pcpu *pcpu = pcpu_devices + cpu;
876 	int rc;
877 
878 	if (pcpu->state != CPU_STATE_CONFIGURED)
879 		return -EIO;
880 	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
881 	    SIGP_CC_ORDER_CODE_ACCEPTED)
882 		return -EIO;
883 
884 	rc = pcpu_alloc_lowcore(pcpu, cpu);
885 	if (rc)
886 		return rc;
887 	/*
888 	 * Make sure global control register contents do not change
889 	 * until new CPU has initialized control registers.
890 	 */
891 	system_ctlreg_lock();
892 	pcpu_prepare_secondary(pcpu, cpu);
893 	pcpu_attach_task(pcpu, tidle);
894 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
895 	/* Wait until cpu puts itself in the online & active maps */
896 	while (!cpu_online(cpu))
897 		cpu_relax();
898 	system_ctlreg_unlock();
899 	return 0;
900 }
901 
902 static unsigned int setup_possible_cpus __initdata;
903 
904 static int __init _setup_possible_cpus(char *s)
905 {
906 	get_option(&s, &setup_possible_cpus);
907 	return 0;
908 }
909 early_param("possible_cpus", _setup_possible_cpus);
910 
911 int __cpu_disable(void)
912 {
913 	struct ctlreg cregs[16];
914 	int cpu;
915 
916 	/* Handle possible pending IPIs */
917 	smp_handle_ext_call();
918 	cpu = smp_processor_id();
919 	set_cpu_online(cpu, false);
920 	cpumask_clear_cpu(cpu, &cpu_setup_mask);
921 	update_cpu_masks();
922 	/* Disable pseudo page faults on this cpu. */
923 	pfault_fini();
924 	/* Disable interrupt sources via control register. */
925 	__local_ctl_store(0, 15, cregs);
926 	cregs[0].val  &= ~0x0000ee70UL;	/* disable all external interrupts */
927 	cregs[6].val  &= ~0xff000000UL;	/* disable all I/O interrupts */
928 	cregs[14].val &= ~0x1f000000UL;	/* disable most machine checks */
929 	__local_ctl_load(0, 15, cregs);
930 	clear_cpu_flag(CIF_NOHZ_DELAY);
931 	return 0;
932 }
933 
934 void __cpu_die(unsigned int cpu)
935 {
936 	struct pcpu *pcpu;
937 
938 	/* Wait until target cpu is down */
939 	pcpu = pcpu_devices + cpu;
940 	while (!pcpu_stopped(pcpu))
941 		cpu_relax();
942 	pcpu_free_lowcore(pcpu);
943 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
944 	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
945 }
946 
947 void __noreturn cpu_die(void)
948 {
949 	idle_task_exit();
950 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
951 	for (;;) ;
952 }
953 
954 void __init smp_fill_possible_mask(void)
955 {
956 	unsigned int possible, sclp_max, cpu;
957 
958 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
959 	sclp_max = min(smp_max_threads, sclp_max);
960 	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
961 	possible = setup_possible_cpus ?: nr_cpu_ids;
962 	possible = min(possible, sclp_max);
963 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
964 		set_cpu_possible(cpu, true);
965 }
966 
967 void __init smp_prepare_cpus(unsigned int max_cpus)
968 {
969 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
970 		panic("Couldn't request external interrupt 0x1201");
971 	system_ctl_set_bit(0, 14);
972 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
973 		panic("Couldn't request external interrupt 0x1202");
974 	system_ctl_set_bit(0, 13);
975 }
976 
977 void __init smp_prepare_boot_cpu(void)
978 {
979 	struct pcpu *pcpu = pcpu_devices;
980 
981 	WARN_ON(!cpu_present(0) || !cpu_online(0));
982 	pcpu->state = CPU_STATE_CONFIGURED;
983 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
984 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
985 }
986 
987 void __init smp_setup_processor_id(void)
988 {
989 	pcpu_devices[0].address = stap();
990 	S390_lowcore.cpu_nr = 0;
991 	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
992 	S390_lowcore.spinlock_index = 0;
993 }
994 
995 /*
996  * the frequency of the profiling timer can be changed
997  * by writing a multiplier value into /proc/profile.
998  *
999  * usually you want to run this on all CPUs ;)
1000  */
1001 int setup_profiling_timer(unsigned int multiplier)
1002 {
1003 	return 0;
1004 }
1005 
1006 static ssize_t cpu_configure_show(struct device *dev,
1007 				  struct device_attribute *attr, char *buf)
1008 {
1009 	ssize_t count;
1010 
1011 	mutex_lock(&smp_cpu_state_mutex);
1012 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1013 	mutex_unlock(&smp_cpu_state_mutex);
1014 	return count;
1015 }
1016 
1017 static ssize_t cpu_configure_store(struct device *dev,
1018 				   struct device_attribute *attr,
1019 				   const char *buf, size_t count)
1020 {
1021 	struct pcpu *pcpu;
1022 	int cpu, val, rc, i;
1023 	char delim;
1024 
1025 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1026 		return -EINVAL;
1027 	if (val != 0 && val != 1)
1028 		return -EINVAL;
1029 	cpus_read_lock();
1030 	mutex_lock(&smp_cpu_state_mutex);
1031 	rc = -EBUSY;
1032 	/* disallow configuration changes of online cpus */
1033 	cpu = dev->id;
1034 	cpu = smp_get_base_cpu(cpu);
1035 	for (i = 0; i <= smp_cpu_mtid; i++)
1036 		if (cpu_online(cpu + i))
1037 			goto out;
1038 	pcpu = pcpu_devices + cpu;
1039 	rc = 0;
1040 	switch (val) {
1041 	case 0:
1042 		if (pcpu->state != CPU_STATE_CONFIGURED)
1043 			break;
1044 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1045 		if (rc)
1046 			break;
1047 		for (i = 0; i <= smp_cpu_mtid; i++) {
1048 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1049 				continue;
1050 			pcpu[i].state = CPU_STATE_STANDBY;
1051 			smp_cpu_set_polarization(cpu + i,
1052 						 POLARIZATION_UNKNOWN);
1053 		}
1054 		topology_expect_change();
1055 		break;
1056 	case 1:
1057 		if (pcpu->state != CPU_STATE_STANDBY)
1058 			break;
1059 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1060 		if (rc)
1061 			break;
1062 		for (i = 0; i <= smp_cpu_mtid; i++) {
1063 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1064 				continue;
1065 			pcpu[i].state = CPU_STATE_CONFIGURED;
1066 			smp_cpu_set_polarization(cpu + i,
1067 						 POLARIZATION_UNKNOWN);
1068 		}
1069 		topology_expect_change();
1070 		break;
1071 	default:
1072 		break;
1073 	}
1074 out:
1075 	mutex_unlock(&smp_cpu_state_mutex);
1076 	cpus_read_unlock();
1077 	return rc ? rc : count;
1078 }
1079 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1080 
1081 static ssize_t show_cpu_address(struct device *dev,
1082 				struct device_attribute *attr, char *buf)
1083 {
1084 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1085 }
1086 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1087 
1088 static struct attribute *cpu_common_attrs[] = {
1089 	&dev_attr_configure.attr,
1090 	&dev_attr_address.attr,
1091 	NULL,
1092 };
1093 
1094 static struct attribute_group cpu_common_attr_group = {
1095 	.attrs = cpu_common_attrs,
1096 };
1097 
1098 static struct attribute *cpu_online_attrs[] = {
1099 	&dev_attr_idle_count.attr,
1100 	&dev_attr_idle_time_us.attr,
1101 	NULL,
1102 };
1103 
1104 static struct attribute_group cpu_online_attr_group = {
1105 	.attrs = cpu_online_attrs,
1106 };
1107 
1108 static int smp_cpu_online(unsigned int cpu)
1109 {
1110 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1111 
1112 	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1113 }
1114 
1115 static int smp_cpu_pre_down(unsigned int cpu)
1116 {
1117 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1118 
1119 	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1120 	return 0;
1121 }
1122 
1123 static int smp_add_present_cpu(int cpu)
1124 {
1125 	struct device *s;
1126 	struct cpu *c;
1127 	int rc;
1128 
1129 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1130 	if (!c)
1131 		return -ENOMEM;
1132 	per_cpu(cpu_device, cpu) = c;
1133 	s = &c->dev;
1134 	c->hotpluggable = !!cpu;
1135 	rc = register_cpu(c, cpu);
1136 	if (rc)
1137 		goto out;
1138 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1139 	if (rc)
1140 		goto out_cpu;
1141 	rc = topology_cpu_init(c);
1142 	if (rc)
1143 		goto out_topology;
1144 	return 0;
1145 
1146 out_topology:
1147 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1148 out_cpu:
1149 	unregister_cpu(c);
1150 out:
1151 	return rc;
1152 }
1153 
1154 int __ref smp_rescan_cpus(void)
1155 {
1156 	struct sclp_core_info *info;
1157 	int nr;
1158 
1159 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1160 	if (!info)
1161 		return -ENOMEM;
1162 	smp_get_core_info(info, 0);
1163 	nr = __smp_rescan_cpus(info, false);
1164 	kfree(info);
1165 	if (nr)
1166 		topology_schedule_update();
1167 	return 0;
1168 }
1169 
1170 static ssize_t __ref rescan_store(struct device *dev,
1171 				  struct device_attribute *attr,
1172 				  const char *buf,
1173 				  size_t count)
1174 {
1175 	int rc;
1176 
1177 	rc = lock_device_hotplug_sysfs();
1178 	if (rc)
1179 		return rc;
1180 	rc = smp_rescan_cpus();
1181 	unlock_device_hotplug();
1182 	return rc ? rc : count;
1183 }
1184 static DEVICE_ATTR_WO(rescan);
1185 
1186 static int __init s390_smp_init(void)
1187 {
1188 	struct device *dev_root;
1189 	int cpu, rc = 0;
1190 
1191 	dev_root = bus_get_dev_root(&cpu_subsys);
1192 	if (dev_root) {
1193 		rc = device_create_file(dev_root, &dev_attr_rescan);
1194 		put_device(dev_root);
1195 		if (rc)
1196 			return rc;
1197 	}
1198 
1199 	for_each_present_cpu(cpu) {
1200 		rc = smp_add_present_cpu(cpu);
1201 		if (rc)
1202 			goto out;
1203 	}
1204 
1205 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1206 			       smp_cpu_online, smp_cpu_pre_down);
1207 	rc = rc <= 0 ? rc : 0;
1208 out:
1209 	return rc;
1210 }
1211 subsys_initcall(s390_smp_init);
1212