1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SMP related functions 4 * 5 * Copyright IBM Corp. 1999, 2012 6 * Author(s): Denis Joseph Barrow, 7 * Martin Schwidefsky <schwidefsky@de.ibm.com>, 8 * 9 * based on other smp stuff by 10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net> 11 * (c) 1998 Ingo Molnar 12 * 13 * The code outside of smp.c uses logical cpu numbers, only smp.c does 14 * the translation of logical to physical cpu ids. All new code that 15 * operates on physical cpu numbers needs to go into smp.c. 16 */ 17 18 #define KMSG_COMPONENT "cpu" 19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 20 21 #include <linux/workqueue.h> 22 #include <linux/memblock.h> 23 #include <linux/export.h> 24 #include <linux/init.h> 25 #include <linux/mm.h> 26 #include <linux/err.h> 27 #include <linux/spinlock.h> 28 #include <linux/kernel_stat.h> 29 #include <linux/delay.h> 30 #include <linux/interrupt.h> 31 #include <linux/irqflags.h> 32 #include <linux/irq_work.h> 33 #include <linux/cpu.h> 34 #include <linux/slab.h> 35 #include <linux/sched/hotplug.h> 36 #include <linux/sched/task_stack.h> 37 #include <linux/crash_dump.h> 38 #include <linux/kprobes.h> 39 #include <asm/access-regs.h> 40 #include <asm/asm-offsets.h> 41 #include <asm/ctlreg.h> 42 #include <asm/pfault.h> 43 #include <asm/diag.h> 44 #include <asm/facility.h> 45 #include <asm/fpu.h> 46 #include <asm/ipl.h> 47 #include <asm/setup.h> 48 #include <asm/irq.h> 49 #include <asm/tlbflush.h> 50 #include <asm/vtimer.h> 51 #include <asm/abs_lowcore.h> 52 #include <asm/sclp.h> 53 #include <asm/debug.h> 54 #include <asm/os_info.h> 55 #include <asm/sigp.h> 56 #include <asm/idle.h> 57 #include <asm/nmi.h> 58 #include <asm/stacktrace.h> 59 #include <asm/topology.h> 60 #include <asm/vdso.h> 61 #include <asm/maccess.h> 62 #include "entry.h" 63 64 enum { 65 ec_schedule = 0, 66 ec_call_function_single, 67 ec_stop_cpu, 68 ec_mcck_pending, 69 ec_irq_work, 70 }; 71 72 enum { 73 CPU_STATE_STANDBY, 74 CPU_STATE_CONFIGURED, 75 }; 76 77 static DEFINE_PER_CPU(struct cpu *, cpu_device); 78 79 struct pcpu { 80 unsigned long ec_mask; /* bit mask for ec_xxx functions */ 81 unsigned long ec_clk; /* sigp timestamp for ec_xxx */ 82 signed char state; /* physical cpu state */ 83 signed char polarization; /* physical polarization */ 84 u16 address; /* physical cpu address */ 85 }; 86 87 static u8 boot_core_type; 88 static struct pcpu pcpu_devices[NR_CPUS]; 89 90 unsigned int smp_cpu_mt_shift; 91 EXPORT_SYMBOL(smp_cpu_mt_shift); 92 93 unsigned int smp_cpu_mtid; 94 EXPORT_SYMBOL(smp_cpu_mtid); 95 96 #ifdef CONFIG_CRASH_DUMP 97 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS]; 98 #endif 99 100 static unsigned int smp_max_threads __initdata = -1U; 101 cpumask_t cpu_setup_mask; 102 103 static int __init early_nosmt(char *s) 104 { 105 smp_max_threads = 1; 106 return 0; 107 } 108 early_param("nosmt", early_nosmt); 109 110 static int __init early_smt(char *s) 111 { 112 get_option(&s, &smp_max_threads); 113 return 0; 114 } 115 early_param("smt", early_smt); 116 117 /* 118 * The smp_cpu_state_mutex must be held when changing the state or polarization 119 * member of a pcpu data structure within the pcpu_devices array. 120 */ 121 DEFINE_MUTEX(smp_cpu_state_mutex); 122 123 /* 124 * Signal processor helper functions. 125 */ 126 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm) 127 { 128 int cc; 129 130 while (1) { 131 cc = __pcpu_sigp(addr, order, parm, NULL); 132 if (cc != SIGP_CC_BUSY) 133 return cc; 134 cpu_relax(); 135 } 136 } 137 138 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm) 139 { 140 int cc, retry; 141 142 for (retry = 0; ; retry++) { 143 cc = __pcpu_sigp(pcpu->address, order, parm, NULL); 144 if (cc != SIGP_CC_BUSY) 145 break; 146 if (retry >= 3) 147 udelay(10); 148 } 149 return cc; 150 } 151 152 static inline int pcpu_stopped(struct pcpu *pcpu) 153 { 154 u32 status; 155 156 if (__pcpu_sigp(pcpu->address, SIGP_SENSE, 157 0, &status) != SIGP_CC_STATUS_STORED) 158 return 0; 159 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED)); 160 } 161 162 static inline int pcpu_running(struct pcpu *pcpu) 163 { 164 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING, 165 0, NULL) != SIGP_CC_STATUS_STORED) 166 return 1; 167 /* Status stored condition code is equivalent to cpu not running. */ 168 return 0; 169 } 170 171 /* 172 * Find struct pcpu by cpu address. 173 */ 174 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address) 175 { 176 int cpu; 177 178 for_each_cpu(cpu, mask) 179 if (pcpu_devices[cpu].address == address) 180 return pcpu_devices + cpu; 181 return NULL; 182 } 183 184 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit) 185 { 186 int order; 187 188 if (test_and_set_bit(ec_bit, &pcpu->ec_mask)) 189 return; 190 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL; 191 pcpu->ec_clk = get_tod_clock_fast(); 192 pcpu_sigp_retry(pcpu, order, 0); 193 } 194 195 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu) 196 { 197 unsigned long async_stack, nodat_stack, mcck_stack; 198 struct lowcore *lc; 199 200 lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER); 201 nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER); 202 async_stack = stack_alloc(); 203 mcck_stack = stack_alloc(); 204 if (!lc || !nodat_stack || !async_stack || !mcck_stack) 205 goto out; 206 memcpy(lc, &S390_lowcore, 512); 207 memset((char *) lc + 512, 0, sizeof(*lc) - 512); 208 lc->async_stack = async_stack + STACK_INIT_OFFSET; 209 lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET; 210 lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET; 211 lc->cpu_nr = cpu; 212 lc->spinlock_lockval = arch_spin_lockval(cpu); 213 lc->spinlock_index = 0; 214 lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW); 215 lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW); 216 lc->preempt_count = PREEMPT_DISABLED; 217 if (nmi_alloc_mcesa(&lc->mcesad)) 218 goto out; 219 if (abs_lowcore_map(cpu, lc, true)) 220 goto out_mcesa; 221 lowcore_ptr[cpu] = lc; 222 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc)); 223 return 0; 224 225 out_mcesa: 226 nmi_free_mcesa(&lc->mcesad); 227 out: 228 stack_free(mcck_stack); 229 stack_free(async_stack); 230 free_pages(nodat_stack, THREAD_SIZE_ORDER); 231 free_pages((unsigned long) lc, LC_ORDER); 232 return -ENOMEM; 233 } 234 235 static void pcpu_free_lowcore(struct pcpu *pcpu) 236 { 237 unsigned long async_stack, nodat_stack, mcck_stack; 238 struct lowcore *lc; 239 int cpu; 240 241 cpu = pcpu - pcpu_devices; 242 lc = lowcore_ptr[cpu]; 243 nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET; 244 async_stack = lc->async_stack - STACK_INIT_OFFSET; 245 mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET; 246 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0); 247 lowcore_ptr[cpu] = NULL; 248 abs_lowcore_unmap(cpu); 249 nmi_free_mcesa(&lc->mcesad); 250 stack_free(async_stack); 251 stack_free(mcck_stack); 252 free_pages(nodat_stack, THREAD_SIZE_ORDER); 253 free_pages((unsigned long) lc, LC_ORDER); 254 } 255 256 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu) 257 { 258 struct lowcore *lc, *abs_lc; 259 260 lc = lowcore_ptr[cpu]; 261 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask); 262 cpumask_set_cpu(cpu, mm_cpumask(&init_mm)); 263 lc->cpu_nr = cpu; 264 lc->restart_flags = RESTART_FLAG_CTLREGS; 265 lc->spinlock_lockval = arch_spin_lockval(cpu); 266 lc->spinlock_index = 0; 267 lc->percpu_offset = __per_cpu_offset[cpu]; 268 lc->kernel_asce = S390_lowcore.kernel_asce; 269 lc->user_asce = s390_invalid_asce; 270 lc->machine_flags = S390_lowcore.machine_flags; 271 lc->user_timer = lc->system_timer = 272 lc->steal_timer = lc->avg_steal_timer = 0; 273 abs_lc = get_abs_lowcore(); 274 memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area)); 275 put_abs_lowcore(abs_lc); 276 lc->cregs_save_area[1] = lc->kernel_asce; 277 lc->cregs_save_area[7] = lc->user_asce; 278 save_access_regs((unsigned int *) lc->access_regs_save_area); 279 arch_spin_lock_setup(cpu); 280 } 281 282 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk) 283 { 284 struct lowcore *lc; 285 int cpu; 286 287 cpu = pcpu - pcpu_devices; 288 lc = lowcore_ptr[cpu]; 289 lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET; 290 lc->current_task = (unsigned long)tsk; 291 lc->lpp = LPP_MAGIC; 292 lc->current_pid = tsk->pid; 293 lc->user_timer = tsk->thread.user_timer; 294 lc->guest_timer = tsk->thread.guest_timer; 295 lc->system_timer = tsk->thread.system_timer; 296 lc->hardirq_timer = tsk->thread.hardirq_timer; 297 lc->softirq_timer = tsk->thread.softirq_timer; 298 lc->steal_timer = 0; 299 } 300 301 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data) 302 { 303 struct lowcore *lc; 304 int cpu; 305 306 cpu = pcpu - pcpu_devices; 307 lc = lowcore_ptr[cpu]; 308 lc->restart_stack = lc->kernel_stack; 309 lc->restart_fn = (unsigned long) func; 310 lc->restart_data = (unsigned long) data; 311 lc->restart_source = -1U; 312 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0); 313 } 314 315 typedef void (pcpu_delegate_fn)(void *); 316 317 /* 318 * Call function via PSW restart on pcpu and stop the current cpu. 319 */ 320 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data) 321 { 322 func(data); /* should not return */ 323 } 324 325 static void pcpu_delegate(struct pcpu *pcpu, 326 pcpu_delegate_fn *func, 327 void *data, unsigned long stack) 328 { 329 struct lowcore *lc, *abs_lc; 330 unsigned int source_cpu; 331 332 lc = lowcore_ptr[pcpu - pcpu_devices]; 333 source_cpu = stap(); 334 335 if (pcpu->address == source_cpu) { 336 call_on_stack(2, stack, void, __pcpu_delegate, 337 pcpu_delegate_fn *, func, void *, data); 338 } 339 /* Stop target cpu (if func returns this stops the current cpu). */ 340 pcpu_sigp_retry(pcpu, SIGP_STOP, 0); 341 pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0); 342 /* Restart func on the target cpu and stop the current cpu. */ 343 if (lc) { 344 lc->restart_stack = stack; 345 lc->restart_fn = (unsigned long)func; 346 lc->restart_data = (unsigned long)data; 347 lc->restart_source = source_cpu; 348 } else { 349 abs_lc = get_abs_lowcore(); 350 abs_lc->restart_stack = stack; 351 abs_lc->restart_fn = (unsigned long)func; 352 abs_lc->restart_data = (unsigned long)data; 353 abs_lc->restart_source = source_cpu; 354 put_abs_lowcore(abs_lc); 355 } 356 asm volatile( 357 "0: sigp 0,%0,%2 # sigp restart to target cpu\n" 358 " brc 2,0b # busy, try again\n" 359 "1: sigp 0,%1,%3 # sigp stop to current cpu\n" 360 " brc 2,1b # busy, try again\n" 361 : : "d" (pcpu->address), "d" (source_cpu), 362 "K" (SIGP_RESTART), "K" (SIGP_STOP) 363 : "0", "1", "cc"); 364 for (;;) ; 365 } 366 367 /* 368 * Enable additional logical cpus for multi-threading. 369 */ 370 static int pcpu_set_smt(unsigned int mtid) 371 { 372 int cc; 373 374 if (smp_cpu_mtid == mtid) 375 return 0; 376 cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL); 377 if (cc == 0) { 378 smp_cpu_mtid = mtid; 379 smp_cpu_mt_shift = 0; 380 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift)) 381 smp_cpu_mt_shift++; 382 pcpu_devices[0].address = stap(); 383 } 384 return cc; 385 } 386 387 /* 388 * Call function on an online CPU. 389 */ 390 void smp_call_online_cpu(void (*func)(void *), void *data) 391 { 392 struct pcpu *pcpu; 393 394 /* Use the current cpu if it is online. */ 395 pcpu = pcpu_find_address(cpu_online_mask, stap()); 396 if (!pcpu) 397 /* Use the first online cpu. */ 398 pcpu = pcpu_devices + cpumask_first(cpu_online_mask); 399 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack); 400 } 401 402 /* 403 * Call function on the ipl CPU. 404 */ 405 void smp_call_ipl_cpu(void (*func)(void *), void *data) 406 { 407 struct lowcore *lc = lowcore_ptr[0]; 408 409 if (pcpu_devices[0].address == stap()) 410 lc = &S390_lowcore; 411 412 pcpu_delegate(&pcpu_devices[0], func, data, 413 lc->nodat_stack); 414 } 415 416 int smp_find_processor_id(u16 address) 417 { 418 int cpu; 419 420 for_each_present_cpu(cpu) 421 if (pcpu_devices[cpu].address == address) 422 return cpu; 423 return -1; 424 } 425 426 void schedule_mcck_handler(void) 427 { 428 pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending); 429 } 430 431 bool notrace arch_vcpu_is_preempted(int cpu) 432 { 433 if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu)) 434 return false; 435 if (pcpu_running(pcpu_devices + cpu)) 436 return false; 437 return true; 438 } 439 EXPORT_SYMBOL(arch_vcpu_is_preempted); 440 441 void notrace smp_yield_cpu(int cpu) 442 { 443 if (!MACHINE_HAS_DIAG9C) 444 return; 445 diag_stat_inc_norecursion(DIAG_STAT_X09C); 446 asm volatile("diag %0,0,0x9c" 447 : : "d" (pcpu_devices[cpu].address)); 448 } 449 EXPORT_SYMBOL_GPL(smp_yield_cpu); 450 451 /* 452 * Send cpus emergency shutdown signal. This gives the cpus the 453 * opportunity to complete outstanding interrupts. 454 */ 455 void notrace smp_emergency_stop(void) 456 { 457 static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED; 458 static cpumask_t cpumask; 459 u64 end; 460 int cpu; 461 462 arch_spin_lock(&lock); 463 cpumask_copy(&cpumask, cpu_online_mask); 464 cpumask_clear_cpu(smp_processor_id(), &cpumask); 465 466 end = get_tod_clock() + (1000000UL << 12); 467 for_each_cpu(cpu, &cpumask) { 468 struct pcpu *pcpu = pcpu_devices + cpu; 469 set_bit(ec_stop_cpu, &pcpu->ec_mask); 470 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL, 471 0, NULL) == SIGP_CC_BUSY && 472 get_tod_clock() < end) 473 cpu_relax(); 474 } 475 while (get_tod_clock() < end) { 476 for_each_cpu(cpu, &cpumask) 477 if (pcpu_stopped(pcpu_devices + cpu)) 478 cpumask_clear_cpu(cpu, &cpumask); 479 if (cpumask_empty(&cpumask)) 480 break; 481 cpu_relax(); 482 } 483 arch_spin_unlock(&lock); 484 } 485 NOKPROBE_SYMBOL(smp_emergency_stop); 486 487 /* 488 * Stop all cpus but the current one. 489 */ 490 void smp_send_stop(void) 491 { 492 int cpu; 493 494 /* Disable all interrupts/machine checks */ 495 __load_psw_mask(PSW_KERNEL_BITS); 496 trace_hardirqs_off(); 497 498 debug_set_critical(); 499 500 if (oops_in_progress) 501 smp_emergency_stop(); 502 503 /* stop all processors */ 504 for_each_online_cpu(cpu) { 505 if (cpu == smp_processor_id()) 506 continue; 507 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0); 508 while (!pcpu_stopped(pcpu_devices + cpu)) 509 cpu_relax(); 510 } 511 } 512 513 /* 514 * This is the main routine where commands issued by other 515 * cpus are handled. 516 */ 517 static void smp_handle_ext_call(void) 518 { 519 unsigned long bits; 520 521 /* handle bit signal external calls */ 522 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0); 523 if (test_bit(ec_stop_cpu, &bits)) 524 smp_stop_cpu(); 525 if (test_bit(ec_schedule, &bits)) 526 scheduler_ipi(); 527 if (test_bit(ec_call_function_single, &bits)) 528 generic_smp_call_function_single_interrupt(); 529 if (test_bit(ec_mcck_pending, &bits)) 530 s390_handle_mcck(); 531 if (test_bit(ec_irq_work, &bits)) 532 irq_work_run(); 533 } 534 535 static void do_ext_call_interrupt(struct ext_code ext_code, 536 unsigned int param32, unsigned long param64) 537 { 538 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS); 539 smp_handle_ext_call(); 540 } 541 542 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 543 { 544 int cpu; 545 546 for_each_cpu(cpu, mask) 547 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); 548 } 549 550 void arch_send_call_function_single_ipi(int cpu) 551 { 552 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); 553 } 554 555 /* 556 * this function sends a 'reschedule' IPI to another CPU. 557 * it goes straight through and wastes no time serializing 558 * anything. Worst case is that we lose a reschedule ... 559 */ 560 void arch_smp_send_reschedule(int cpu) 561 { 562 pcpu_ec_call(pcpu_devices + cpu, ec_schedule); 563 } 564 565 #ifdef CONFIG_IRQ_WORK 566 void arch_irq_work_raise(void) 567 { 568 pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work); 569 } 570 #endif 571 572 #ifdef CONFIG_CRASH_DUMP 573 574 int smp_store_status(int cpu) 575 { 576 struct lowcore *lc; 577 struct pcpu *pcpu; 578 unsigned long pa; 579 580 pcpu = pcpu_devices + cpu; 581 lc = lowcore_ptr[cpu]; 582 pa = __pa(&lc->floating_pt_save_area); 583 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS, 584 pa) != SIGP_CC_ORDER_CODE_ACCEPTED) 585 return -EIO; 586 if (!cpu_has_vx() && !MACHINE_HAS_GS) 587 return 0; 588 pa = lc->mcesad & MCESA_ORIGIN_MASK; 589 if (MACHINE_HAS_GS) 590 pa |= lc->mcesad & MCESA_LC_MASK; 591 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS, 592 pa) != SIGP_CC_ORDER_CODE_ACCEPTED) 593 return -EIO; 594 return 0; 595 } 596 597 /* 598 * Collect CPU state of the previous, crashed system. 599 * There are four cases: 600 * 1) standard zfcp/nvme dump 601 * condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true 602 * The state for all CPUs except the boot CPU needs to be collected 603 * with sigp stop-and-store-status. The boot CPU state is located in 604 * the absolute lowcore of the memory stored in the HSA. The zcore code 605 * will copy the boot CPU state from the HSA. 606 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory) 607 * condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true 608 * The state for all CPUs except the boot CPU needs to be collected 609 * with sigp stop-and-store-status. The firmware or the boot-loader 610 * stored the registers of the boot CPU in the absolute lowcore in the 611 * memory of the old system. 612 * 3) kdump and the old kernel did not store the CPU state, 613 * or stand-alone kdump for DASD 614 * condition: OLDMEM_BASE != NULL && !is_kdump_kernel() 615 * The state for all CPUs except the boot CPU needs to be collected 616 * with sigp stop-and-store-status. The kexec code or the boot-loader 617 * stored the registers of the boot CPU in the memory of the old system. 618 * 4) kdump and the old kernel stored the CPU state 619 * condition: OLDMEM_BASE != NULL && is_kdump_kernel() 620 * This case does not exist for s390 anymore, setup_arch explicitly 621 * deactivates the elfcorehdr= kernel parameter 622 */ 623 static bool dump_available(void) 624 { 625 return oldmem_data.start || is_ipl_type_dump(); 626 } 627 628 void __init smp_save_dump_ipl_cpu(void) 629 { 630 struct save_area *sa; 631 void *regs; 632 633 if (!dump_available()) 634 return; 635 sa = save_area_alloc(true); 636 regs = memblock_alloc(512, 8); 637 if (!sa || !regs) 638 panic("could not allocate memory for boot CPU save area\n"); 639 copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512); 640 save_area_add_regs(sa, regs); 641 memblock_free(regs, 512); 642 if (cpu_has_vx()) 643 save_area_add_vxrs(sa, boot_cpu_vector_save_area); 644 } 645 646 void __init smp_save_dump_secondary_cpus(void) 647 { 648 int addr, boot_cpu_addr, max_cpu_addr; 649 struct save_area *sa; 650 void *page; 651 652 if (!dump_available()) 653 return; 654 /* Allocate a page as dumping area for the store status sigps */ 655 page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE); 656 if (!page) 657 panic("ERROR: Failed to allocate %lx bytes below %lx\n", 658 PAGE_SIZE, 1UL << 31); 659 660 /* Set multi-threading state to the previous system. */ 661 pcpu_set_smt(sclp.mtid_prev); 662 boot_cpu_addr = stap(); 663 max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev; 664 for (addr = 0; addr <= max_cpu_addr; addr++) { 665 if (addr == boot_cpu_addr) 666 continue; 667 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) == 668 SIGP_CC_NOT_OPERATIONAL) 669 continue; 670 sa = save_area_alloc(false); 671 if (!sa) 672 panic("could not allocate memory for save area\n"); 673 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page)); 674 save_area_add_regs(sa, page); 675 if (cpu_has_vx()) { 676 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page)); 677 save_area_add_vxrs(sa, page); 678 } 679 } 680 memblock_free(page, PAGE_SIZE); 681 diag_amode31_ops.diag308_reset(); 682 pcpu_set_smt(0); 683 } 684 #endif /* CONFIG_CRASH_DUMP */ 685 686 void smp_cpu_set_polarization(int cpu, int val) 687 { 688 pcpu_devices[cpu].polarization = val; 689 } 690 691 int smp_cpu_get_polarization(int cpu) 692 { 693 return pcpu_devices[cpu].polarization; 694 } 695 696 int smp_cpu_get_cpu_address(int cpu) 697 { 698 return pcpu_devices[cpu].address; 699 } 700 701 static void __ref smp_get_core_info(struct sclp_core_info *info, int early) 702 { 703 static int use_sigp_detection; 704 int address; 705 706 if (use_sigp_detection || sclp_get_core_info(info, early)) { 707 use_sigp_detection = 1; 708 for (address = 0; 709 address < (SCLP_MAX_CORES << smp_cpu_mt_shift); 710 address += (1U << smp_cpu_mt_shift)) { 711 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) == 712 SIGP_CC_NOT_OPERATIONAL) 713 continue; 714 info->core[info->configured].core_id = 715 address >> smp_cpu_mt_shift; 716 info->configured++; 717 } 718 info->combined = info->configured; 719 } 720 } 721 722 static int smp_add_present_cpu(int cpu); 723 724 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail, 725 bool configured, bool early) 726 { 727 struct pcpu *pcpu; 728 int cpu, nr, i; 729 u16 address; 730 731 nr = 0; 732 if (sclp.has_core_type && core->type != boot_core_type) 733 return nr; 734 cpu = cpumask_first(avail); 735 address = core->core_id << smp_cpu_mt_shift; 736 for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) { 737 if (pcpu_find_address(cpu_present_mask, address + i)) 738 continue; 739 pcpu = pcpu_devices + cpu; 740 pcpu->address = address + i; 741 if (configured) 742 pcpu->state = CPU_STATE_CONFIGURED; 743 else 744 pcpu->state = CPU_STATE_STANDBY; 745 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); 746 set_cpu_present(cpu, true); 747 if (!early && smp_add_present_cpu(cpu) != 0) 748 set_cpu_present(cpu, false); 749 else 750 nr++; 751 cpumask_clear_cpu(cpu, avail); 752 cpu = cpumask_next(cpu, avail); 753 } 754 return nr; 755 } 756 757 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early) 758 { 759 struct sclp_core_entry *core; 760 static cpumask_t avail; 761 bool configured; 762 u16 core_id; 763 int nr, i; 764 765 cpus_read_lock(); 766 mutex_lock(&smp_cpu_state_mutex); 767 nr = 0; 768 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask); 769 /* 770 * Add IPL core first (which got logical CPU number 0) to make sure 771 * that all SMT threads get subsequent logical CPU numbers. 772 */ 773 if (early) { 774 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift; 775 for (i = 0; i < info->configured; i++) { 776 core = &info->core[i]; 777 if (core->core_id == core_id) { 778 nr += smp_add_core(core, &avail, true, early); 779 break; 780 } 781 } 782 } 783 for (i = 0; i < info->combined; i++) { 784 configured = i < info->configured; 785 nr += smp_add_core(&info->core[i], &avail, configured, early); 786 } 787 mutex_unlock(&smp_cpu_state_mutex); 788 cpus_read_unlock(); 789 return nr; 790 } 791 792 void __init smp_detect_cpus(void) 793 { 794 unsigned int cpu, mtid, c_cpus, s_cpus; 795 struct sclp_core_info *info; 796 u16 address; 797 798 /* Get CPU information */ 799 info = memblock_alloc(sizeof(*info), 8); 800 if (!info) 801 panic("%s: Failed to allocate %zu bytes align=0x%x\n", 802 __func__, sizeof(*info), 8); 803 smp_get_core_info(info, 1); 804 /* Find boot CPU type */ 805 if (sclp.has_core_type) { 806 address = stap(); 807 for (cpu = 0; cpu < info->combined; cpu++) 808 if (info->core[cpu].core_id == address) { 809 /* The boot cpu dictates the cpu type. */ 810 boot_core_type = info->core[cpu].type; 811 break; 812 } 813 if (cpu >= info->combined) 814 panic("Could not find boot CPU type"); 815 } 816 817 /* Set multi-threading state for the current system */ 818 mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp; 819 mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1; 820 pcpu_set_smt(mtid); 821 822 /* Print number of CPUs */ 823 c_cpus = s_cpus = 0; 824 for (cpu = 0; cpu < info->combined; cpu++) { 825 if (sclp.has_core_type && 826 info->core[cpu].type != boot_core_type) 827 continue; 828 if (cpu < info->configured) 829 c_cpus += smp_cpu_mtid + 1; 830 else 831 s_cpus += smp_cpu_mtid + 1; 832 } 833 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus); 834 835 /* Add CPUs present at boot */ 836 __smp_rescan_cpus(info, true); 837 memblock_free(info, sizeof(*info)); 838 } 839 840 /* 841 * Activate a secondary processor. 842 */ 843 static void smp_start_secondary(void *cpuvoid) 844 { 845 int cpu = raw_smp_processor_id(); 846 847 S390_lowcore.last_update_clock = get_tod_clock(); 848 S390_lowcore.restart_stack = (unsigned long)restart_stack; 849 S390_lowcore.restart_fn = (unsigned long)do_restart; 850 S390_lowcore.restart_data = 0; 851 S390_lowcore.restart_source = -1U; 852 S390_lowcore.restart_flags = 0; 853 restore_access_regs(S390_lowcore.access_regs_save_area); 854 cpu_init(); 855 rcutree_report_cpu_starting(cpu); 856 init_cpu_timer(); 857 vtime_init(); 858 vdso_getcpu_init(); 859 pfault_init(); 860 cpumask_set_cpu(cpu, &cpu_setup_mask); 861 update_cpu_masks(); 862 notify_cpu_starting(cpu); 863 if (topology_cpu_dedicated(cpu)) 864 set_cpu_flag(CIF_DEDICATED_CPU); 865 else 866 clear_cpu_flag(CIF_DEDICATED_CPU); 867 set_cpu_online(cpu, true); 868 inc_irq_stat(CPU_RST); 869 local_irq_enable(); 870 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 871 } 872 873 /* Upping and downing of CPUs */ 874 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 875 { 876 struct pcpu *pcpu = pcpu_devices + cpu; 877 int rc; 878 879 if (pcpu->state != CPU_STATE_CONFIGURED) 880 return -EIO; 881 if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) != 882 SIGP_CC_ORDER_CODE_ACCEPTED) 883 return -EIO; 884 885 rc = pcpu_alloc_lowcore(pcpu, cpu); 886 if (rc) 887 return rc; 888 /* 889 * Make sure global control register contents do not change 890 * until new CPU has initialized control registers. 891 */ 892 system_ctlreg_lock(); 893 pcpu_prepare_secondary(pcpu, cpu); 894 pcpu_attach_task(pcpu, tidle); 895 pcpu_start_fn(pcpu, smp_start_secondary, NULL); 896 /* Wait until cpu puts itself in the online & active maps */ 897 while (!cpu_online(cpu)) 898 cpu_relax(); 899 system_ctlreg_unlock(); 900 return 0; 901 } 902 903 static unsigned int setup_possible_cpus __initdata; 904 905 static int __init _setup_possible_cpus(char *s) 906 { 907 get_option(&s, &setup_possible_cpus); 908 return 0; 909 } 910 early_param("possible_cpus", _setup_possible_cpus); 911 912 int __cpu_disable(void) 913 { 914 struct ctlreg cregs[16]; 915 int cpu; 916 917 /* Handle possible pending IPIs */ 918 smp_handle_ext_call(); 919 cpu = smp_processor_id(); 920 set_cpu_online(cpu, false); 921 cpumask_clear_cpu(cpu, &cpu_setup_mask); 922 update_cpu_masks(); 923 /* Disable pseudo page faults on this cpu. */ 924 pfault_fini(); 925 /* Disable interrupt sources via control register. */ 926 __local_ctl_store(0, 15, cregs); 927 cregs[0].val &= ~0x0000ee70UL; /* disable all external interrupts */ 928 cregs[6].val &= ~0xff000000UL; /* disable all I/O interrupts */ 929 cregs[14].val &= ~0x1f000000UL; /* disable most machine checks */ 930 __local_ctl_load(0, 15, cregs); 931 clear_cpu_flag(CIF_NOHZ_DELAY); 932 return 0; 933 } 934 935 void __cpu_die(unsigned int cpu) 936 { 937 struct pcpu *pcpu; 938 939 /* Wait until target cpu is down */ 940 pcpu = pcpu_devices + cpu; 941 while (!pcpu_stopped(pcpu)) 942 cpu_relax(); 943 pcpu_free_lowcore(pcpu); 944 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm)); 945 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask); 946 } 947 948 void __noreturn cpu_die(void) 949 { 950 idle_task_exit(); 951 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0); 952 for (;;) ; 953 } 954 955 void __init smp_fill_possible_mask(void) 956 { 957 unsigned int possible, sclp_max, cpu; 958 959 sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1; 960 sclp_max = min(smp_max_threads, sclp_max); 961 sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids; 962 possible = setup_possible_cpus ?: nr_cpu_ids; 963 possible = min(possible, sclp_max); 964 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++) 965 set_cpu_possible(cpu, true); 966 } 967 968 void __init smp_prepare_cpus(unsigned int max_cpus) 969 { 970 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt)) 971 panic("Couldn't request external interrupt 0x1201"); 972 system_ctl_set_bit(0, 14); 973 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt)) 974 panic("Couldn't request external interrupt 0x1202"); 975 system_ctl_set_bit(0, 13); 976 } 977 978 void __init smp_prepare_boot_cpu(void) 979 { 980 struct pcpu *pcpu = pcpu_devices; 981 982 WARN_ON(!cpu_present(0) || !cpu_online(0)); 983 pcpu->state = CPU_STATE_CONFIGURED; 984 S390_lowcore.percpu_offset = __per_cpu_offset[0]; 985 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN); 986 } 987 988 void __init smp_setup_processor_id(void) 989 { 990 pcpu_devices[0].address = stap(); 991 S390_lowcore.cpu_nr = 0; 992 S390_lowcore.spinlock_lockval = arch_spin_lockval(0); 993 S390_lowcore.spinlock_index = 0; 994 } 995 996 /* 997 * the frequency of the profiling timer can be changed 998 * by writing a multiplier value into /proc/profile. 999 * 1000 * usually you want to run this on all CPUs ;) 1001 */ 1002 int setup_profiling_timer(unsigned int multiplier) 1003 { 1004 return 0; 1005 } 1006 1007 static ssize_t cpu_configure_show(struct device *dev, 1008 struct device_attribute *attr, char *buf) 1009 { 1010 ssize_t count; 1011 1012 mutex_lock(&smp_cpu_state_mutex); 1013 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state); 1014 mutex_unlock(&smp_cpu_state_mutex); 1015 return count; 1016 } 1017 1018 static ssize_t cpu_configure_store(struct device *dev, 1019 struct device_attribute *attr, 1020 const char *buf, size_t count) 1021 { 1022 struct pcpu *pcpu; 1023 int cpu, val, rc, i; 1024 char delim; 1025 1026 if (sscanf(buf, "%d %c", &val, &delim) != 1) 1027 return -EINVAL; 1028 if (val != 0 && val != 1) 1029 return -EINVAL; 1030 cpus_read_lock(); 1031 mutex_lock(&smp_cpu_state_mutex); 1032 rc = -EBUSY; 1033 /* disallow configuration changes of online cpus */ 1034 cpu = dev->id; 1035 cpu = smp_get_base_cpu(cpu); 1036 for (i = 0; i <= smp_cpu_mtid; i++) 1037 if (cpu_online(cpu + i)) 1038 goto out; 1039 pcpu = pcpu_devices + cpu; 1040 rc = 0; 1041 switch (val) { 1042 case 0: 1043 if (pcpu->state != CPU_STATE_CONFIGURED) 1044 break; 1045 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift); 1046 if (rc) 1047 break; 1048 for (i = 0; i <= smp_cpu_mtid; i++) { 1049 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i)) 1050 continue; 1051 pcpu[i].state = CPU_STATE_STANDBY; 1052 smp_cpu_set_polarization(cpu + i, 1053 POLARIZATION_UNKNOWN); 1054 } 1055 topology_expect_change(); 1056 break; 1057 case 1: 1058 if (pcpu->state != CPU_STATE_STANDBY) 1059 break; 1060 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift); 1061 if (rc) 1062 break; 1063 for (i = 0; i <= smp_cpu_mtid; i++) { 1064 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i)) 1065 continue; 1066 pcpu[i].state = CPU_STATE_CONFIGURED; 1067 smp_cpu_set_polarization(cpu + i, 1068 POLARIZATION_UNKNOWN); 1069 } 1070 topology_expect_change(); 1071 break; 1072 default: 1073 break; 1074 } 1075 out: 1076 mutex_unlock(&smp_cpu_state_mutex); 1077 cpus_read_unlock(); 1078 return rc ? rc : count; 1079 } 1080 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store); 1081 1082 static ssize_t show_cpu_address(struct device *dev, 1083 struct device_attribute *attr, char *buf) 1084 { 1085 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address); 1086 } 1087 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL); 1088 1089 static struct attribute *cpu_common_attrs[] = { 1090 &dev_attr_configure.attr, 1091 &dev_attr_address.attr, 1092 NULL, 1093 }; 1094 1095 static struct attribute_group cpu_common_attr_group = { 1096 .attrs = cpu_common_attrs, 1097 }; 1098 1099 static struct attribute *cpu_online_attrs[] = { 1100 &dev_attr_idle_count.attr, 1101 &dev_attr_idle_time_us.attr, 1102 NULL, 1103 }; 1104 1105 static struct attribute_group cpu_online_attr_group = { 1106 .attrs = cpu_online_attrs, 1107 }; 1108 1109 static int smp_cpu_online(unsigned int cpu) 1110 { 1111 struct device *s = &per_cpu(cpu_device, cpu)->dev; 1112 1113 return sysfs_create_group(&s->kobj, &cpu_online_attr_group); 1114 } 1115 1116 static int smp_cpu_pre_down(unsigned int cpu) 1117 { 1118 struct device *s = &per_cpu(cpu_device, cpu)->dev; 1119 1120 sysfs_remove_group(&s->kobj, &cpu_online_attr_group); 1121 return 0; 1122 } 1123 1124 static int smp_add_present_cpu(int cpu) 1125 { 1126 struct device *s; 1127 struct cpu *c; 1128 int rc; 1129 1130 c = kzalloc(sizeof(*c), GFP_KERNEL); 1131 if (!c) 1132 return -ENOMEM; 1133 per_cpu(cpu_device, cpu) = c; 1134 s = &c->dev; 1135 c->hotpluggable = !!cpu; 1136 rc = register_cpu(c, cpu); 1137 if (rc) 1138 goto out; 1139 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group); 1140 if (rc) 1141 goto out_cpu; 1142 rc = topology_cpu_init(c); 1143 if (rc) 1144 goto out_topology; 1145 return 0; 1146 1147 out_topology: 1148 sysfs_remove_group(&s->kobj, &cpu_common_attr_group); 1149 out_cpu: 1150 unregister_cpu(c); 1151 out: 1152 return rc; 1153 } 1154 1155 int __ref smp_rescan_cpus(void) 1156 { 1157 struct sclp_core_info *info; 1158 int nr; 1159 1160 info = kzalloc(sizeof(*info), GFP_KERNEL); 1161 if (!info) 1162 return -ENOMEM; 1163 smp_get_core_info(info, 0); 1164 nr = __smp_rescan_cpus(info, false); 1165 kfree(info); 1166 if (nr) 1167 topology_schedule_update(); 1168 return 0; 1169 } 1170 1171 static ssize_t __ref rescan_store(struct device *dev, 1172 struct device_attribute *attr, 1173 const char *buf, 1174 size_t count) 1175 { 1176 int rc; 1177 1178 rc = lock_device_hotplug_sysfs(); 1179 if (rc) 1180 return rc; 1181 rc = smp_rescan_cpus(); 1182 unlock_device_hotplug(); 1183 return rc ? rc : count; 1184 } 1185 static DEVICE_ATTR_WO(rescan); 1186 1187 static int __init s390_smp_init(void) 1188 { 1189 struct device *dev_root; 1190 int cpu, rc = 0; 1191 1192 dev_root = bus_get_dev_root(&cpu_subsys); 1193 if (dev_root) { 1194 rc = device_create_file(dev_root, &dev_attr_rescan); 1195 put_device(dev_root); 1196 if (rc) 1197 return rc; 1198 } 1199 1200 for_each_present_cpu(cpu) { 1201 rc = smp_add_present_cpu(cpu); 1202 if (rc) 1203 goto out; 1204 } 1205 1206 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online", 1207 smp_cpu_online, smp_cpu_pre_down); 1208 rc = rc <= 0 ? rc : 0; 1209 out: 1210 return rc; 1211 } 1212 subsys_initcall(s390_smp_init); 1213