xref: /linux/arch/s390/kernel/setup.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999, 2012
4  *    Author(s): Hartmut Penner (hp@de.ibm.com),
5  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
6  *
7  *  Derived from "arch/i386/kernel/setup.c"
8  *    Copyright (C) 1995, Linus Torvalds
9  */
10 
11 /*
12  * This file handles the architecture-dependent parts of initialization
13  */
14 
15 #define KMSG_COMPONENT "setup"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/memblock.h>
23 #include <linux/mm.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/user.h>
28 #include <linux/tty.h>
29 #include <linux/ioport.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/root_dev.h>
35 #include <linux/console.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/device.h>
38 #include <linux/notifier.h>
39 #include <linux/pfn.h>
40 #include <linux/ctype.h>
41 #include <linux/reboot.h>
42 #include <linux/topology.h>
43 #include <linux/ftrace.h>
44 #include <linux/kexec.h>
45 #include <linux/crash_dump.h>
46 #include <linux/memory.h>
47 #include <linux/compat.h>
48 
49 #include <asm/ipl.h>
50 #include <asm/uaccess.h>
51 #include <asm/facility.h>
52 #include <asm/smp.h>
53 #include <asm/mmu_context.h>
54 #include <asm/cpcmd.h>
55 #include <asm/lowcore.h>
56 #include <asm/irq.h>
57 #include <asm/page.h>
58 #include <asm/ptrace.h>
59 #include <asm/sections.h>
60 #include <asm/ebcdic.h>
61 #include <asm/kvm_virtio.h>
62 #include <asm/diag.h>
63 #include <asm/os_info.h>
64 #include <asm/sclp.h>
65 #include "entry.h"
66 
67 long psw_kernel_bits	= PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_ASC_PRIMARY |
68 			  PSW_MASK_EA | PSW_MASK_BA;
69 long psw_user_bits	= PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT |
70 			  PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_MASK_MCHECK |
71 			  PSW_MASK_PSTATE | PSW_ASC_HOME;
72 
73 /*
74  * User copy operations.
75  */
76 struct uaccess_ops uaccess;
77 EXPORT_SYMBOL(uaccess);
78 
79 /*
80  * Machine setup..
81  */
82 unsigned int console_mode = 0;
83 EXPORT_SYMBOL(console_mode);
84 
85 unsigned int console_devno = -1;
86 EXPORT_SYMBOL(console_devno);
87 
88 unsigned int console_irq = -1;
89 EXPORT_SYMBOL(console_irq);
90 
91 unsigned long elf_hwcap = 0;
92 char elf_platform[ELF_PLATFORM_SIZE];
93 
94 struct mem_chunk __initdata memory_chunk[MEMORY_CHUNKS];
95 
96 int __initdata memory_end_set;
97 unsigned long __initdata memory_end;
98 
99 unsigned long VMALLOC_START;
100 EXPORT_SYMBOL(VMALLOC_START);
101 
102 unsigned long VMALLOC_END;
103 EXPORT_SYMBOL(VMALLOC_END);
104 
105 struct page *vmemmap;
106 EXPORT_SYMBOL(vmemmap);
107 
108 /* An array with a pointer to the lowcore of every CPU. */
109 struct _lowcore *lowcore_ptr[NR_CPUS];
110 EXPORT_SYMBOL(lowcore_ptr);
111 
112 /*
113  * This is set up by the setup-routine at boot-time
114  * for S390 need to find out, what we have to setup
115  * using address 0x10400 ...
116  */
117 
118 #include <asm/setup.h>
119 
120 /*
121  * condev= and conmode= setup parameter.
122  */
123 
124 static int __init condev_setup(char *str)
125 {
126 	int vdev;
127 
128 	vdev = simple_strtoul(str, &str, 0);
129 	if (vdev >= 0 && vdev < 65536) {
130 		console_devno = vdev;
131 		console_irq = -1;
132 	}
133 	return 1;
134 }
135 
136 __setup("condev=", condev_setup);
137 
138 static void __init set_preferred_console(void)
139 {
140 	if (MACHINE_IS_KVM) {
141 		if (sclp_has_vt220())
142 			add_preferred_console("ttyS", 1, NULL);
143 		else if (sclp_has_linemode())
144 			add_preferred_console("ttyS", 0, NULL);
145 		else
146 			add_preferred_console("hvc", 0, NULL);
147 	} else if (CONSOLE_IS_3215 || CONSOLE_IS_SCLP)
148 		add_preferred_console("ttyS", 0, NULL);
149 	else if (CONSOLE_IS_3270)
150 		add_preferred_console("tty3270", 0, NULL);
151 }
152 
153 static int __init conmode_setup(char *str)
154 {
155 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
156 	if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0)
157                 SET_CONSOLE_SCLP;
158 #endif
159 #if defined(CONFIG_TN3215_CONSOLE)
160 	if (strncmp(str, "3215", 5) == 0)
161 		SET_CONSOLE_3215;
162 #endif
163 #if defined(CONFIG_TN3270_CONSOLE)
164 	if (strncmp(str, "3270", 5) == 0)
165 		SET_CONSOLE_3270;
166 #endif
167 	set_preferred_console();
168         return 1;
169 }
170 
171 __setup("conmode=", conmode_setup);
172 
173 static void __init conmode_default(void)
174 {
175 	char query_buffer[1024];
176 	char *ptr;
177 
178         if (MACHINE_IS_VM) {
179 		cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
180 		console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
181 		ptr = strstr(query_buffer, "SUBCHANNEL =");
182 		console_irq = simple_strtoul(ptr + 13, NULL, 16);
183 		cpcmd("QUERY TERM", query_buffer, 1024, NULL);
184 		ptr = strstr(query_buffer, "CONMODE");
185 		/*
186 		 * Set the conmode to 3215 so that the device recognition
187 		 * will set the cu_type of the console to 3215. If the
188 		 * conmode is 3270 and we don't set it back then both
189 		 * 3215 and the 3270 driver will try to access the console
190 		 * device (3215 as console and 3270 as normal tty).
191 		 */
192 		cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
193 		if (ptr == NULL) {
194 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
195 			SET_CONSOLE_SCLP;
196 #endif
197 			return;
198 		}
199 		if (strncmp(ptr + 8, "3270", 4) == 0) {
200 #if defined(CONFIG_TN3270_CONSOLE)
201 			SET_CONSOLE_3270;
202 #elif defined(CONFIG_TN3215_CONSOLE)
203 			SET_CONSOLE_3215;
204 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
205 			SET_CONSOLE_SCLP;
206 #endif
207 		} else if (strncmp(ptr + 8, "3215", 4) == 0) {
208 #if defined(CONFIG_TN3215_CONSOLE)
209 			SET_CONSOLE_3215;
210 #elif defined(CONFIG_TN3270_CONSOLE)
211 			SET_CONSOLE_3270;
212 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
213 			SET_CONSOLE_SCLP;
214 #endif
215 		}
216 	} else {
217 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
218 		SET_CONSOLE_SCLP;
219 #endif
220 	}
221 }
222 
223 #ifdef CONFIG_ZFCPDUMP
224 static void __init setup_zfcpdump(unsigned int console_devno)
225 {
226 	static char str[41];
227 
228 	if (ipl_info.type != IPL_TYPE_FCP_DUMP)
229 		return;
230 	if (OLDMEM_BASE)
231 		return;
232 	if (console_devno != -1)
233 		sprintf(str, " cio_ignore=all,!0.0.%04x,!0.0.%04x",
234 			ipl_info.data.fcp.dev_id.devno, console_devno);
235 	else
236 		sprintf(str, " cio_ignore=all,!0.0.%04x",
237 			ipl_info.data.fcp.dev_id.devno);
238 	strcat(boot_command_line, str);
239 	console_loglevel = 2;
240 }
241 #else
242 static inline void setup_zfcpdump(unsigned int console_devno) {}
243 #endif /* CONFIG_ZFCPDUMP */
244 
245  /*
246  * Reboot, halt and power_off stubs. They just call _machine_restart,
247  * _machine_halt or _machine_power_off.
248  */
249 
250 void machine_restart(char *command)
251 {
252 	if ((!in_interrupt() && !in_atomic()) || oops_in_progress)
253 		/*
254 		 * Only unblank the console if we are called in enabled
255 		 * context or a bust_spinlocks cleared the way for us.
256 		 */
257 		console_unblank();
258 	_machine_restart(command);
259 }
260 
261 void machine_halt(void)
262 {
263 	if (!in_interrupt() || oops_in_progress)
264 		/*
265 		 * Only unblank the console if we are called in enabled
266 		 * context or a bust_spinlocks cleared the way for us.
267 		 */
268 		console_unblank();
269 	_machine_halt();
270 }
271 
272 void machine_power_off(void)
273 {
274 	if (!in_interrupt() || oops_in_progress)
275 		/*
276 		 * Only unblank the console if we are called in enabled
277 		 * context or a bust_spinlocks cleared the way for us.
278 		 */
279 		console_unblank();
280 	_machine_power_off();
281 }
282 
283 /*
284  * Dummy power off function.
285  */
286 void (*pm_power_off)(void) = machine_power_off;
287 
288 static int __init early_parse_mem(char *p)
289 {
290 	memory_end = memparse(p, &p);
291 	memory_end_set = 1;
292 	return 0;
293 }
294 early_param("mem", early_parse_mem);
295 
296 static int __init parse_vmalloc(char *arg)
297 {
298 	if (!arg)
299 		return -EINVAL;
300 	VMALLOC_END = (memparse(arg, &arg) + PAGE_SIZE - 1) & PAGE_MASK;
301 	return 0;
302 }
303 early_param("vmalloc", parse_vmalloc);
304 
305 unsigned int s390_user_mode = PRIMARY_SPACE_MODE;
306 EXPORT_SYMBOL_GPL(s390_user_mode);
307 
308 static void __init set_user_mode_primary(void)
309 {
310 	psw_kernel_bits = (psw_kernel_bits & ~PSW_MASK_ASC) | PSW_ASC_HOME;
311 	psw_user_bits = (psw_user_bits & ~PSW_MASK_ASC) | PSW_ASC_PRIMARY;
312 #ifdef CONFIG_COMPAT
313 	psw32_user_bits =
314 		(psw32_user_bits & ~PSW32_MASK_ASC) | PSW32_ASC_PRIMARY;
315 #endif
316 	uaccess = MACHINE_HAS_MVCOS ? uaccess_mvcos_switch : uaccess_pt;
317 }
318 
319 static int __init early_parse_user_mode(char *p)
320 {
321 	if (p && strcmp(p, "primary") == 0)
322 		s390_user_mode = PRIMARY_SPACE_MODE;
323 	else if (!p || strcmp(p, "home") == 0)
324 		s390_user_mode = HOME_SPACE_MODE;
325 	else
326 		return 1;
327 	return 0;
328 }
329 early_param("user_mode", early_parse_user_mode);
330 
331 static void __init setup_addressing_mode(void)
332 {
333 	if (s390_user_mode != PRIMARY_SPACE_MODE)
334 		return;
335 	set_user_mode_primary();
336 	if (MACHINE_HAS_MVCOS)
337 		pr_info("Address spaces switched, mvcos available\n");
338 	else
339 		pr_info("Address spaces switched, mvcos not available\n");
340 }
341 
342 void *restart_stack __attribute__((__section__(".data")));
343 
344 static void __init setup_lowcore(void)
345 {
346 	struct _lowcore *lc;
347 
348 	/*
349 	 * Setup lowcore for boot cpu
350 	 */
351 	BUILD_BUG_ON(sizeof(struct _lowcore) != LC_PAGES * 4096);
352 	lc = __alloc_bootmem_low(LC_PAGES * PAGE_SIZE, LC_PAGES * PAGE_SIZE, 0);
353 	lc->restart_psw.mask = psw_kernel_bits;
354 	lc->restart_psw.addr =
355 		PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
356 	lc->external_new_psw.mask = psw_kernel_bits |
357 		PSW_MASK_DAT | PSW_MASK_MCHECK;
358 	lc->external_new_psw.addr =
359 		PSW_ADDR_AMODE | (unsigned long) ext_int_handler;
360 	lc->svc_new_psw.mask = psw_kernel_bits |
361 		PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
362 	lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call;
363 	lc->program_new_psw.mask = psw_kernel_bits |
364 		PSW_MASK_DAT | PSW_MASK_MCHECK;
365 	lc->program_new_psw.addr =
366 		PSW_ADDR_AMODE | (unsigned long) pgm_check_handler;
367 	lc->mcck_new_psw.mask = psw_kernel_bits;
368 	lc->mcck_new_psw.addr =
369 		PSW_ADDR_AMODE | (unsigned long) mcck_int_handler;
370 	lc->io_new_psw.mask = psw_kernel_bits |
371 		PSW_MASK_DAT | PSW_MASK_MCHECK;
372 	lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler;
373 	lc->clock_comparator = -1ULL;
374 	lc->kernel_stack = ((unsigned long) &init_thread_union) + THREAD_SIZE;
375 	lc->async_stack = (unsigned long)
376 		__alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0) + ASYNC_SIZE;
377 	lc->panic_stack = (unsigned long)
378 		__alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0) + PAGE_SIZE;
379 	lc->current_task = (unsigned long) init_thread_union.thread_info.task;
380 	lc->thread_info = (unsigned long) &init_thread_union;
381 	lc->machine_flags = S390_lowcore.machine_flags;
382 	lc->stfl_fac_list = S390_lowcore.stfl_fac_list;
383 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
384 	       MAX_FACILITY_BIT/8);
385 #ifndef CONFIG_64BIT
386 	if (MACHINE_HAS_IEEE) {
387 		lc->extended_save_area_addr = (__u32)
388 			__alloc_bootmem_low(PAGE_SIZE, PAGE_SIZE, 0);
389 		/* enable extended save area */
390 		__ctl_set_bit(14, 29);
391 	}
392 #else
393 	lc->vdso_per_cpu_data = (unsigned long) &lc->paste[0];
394 #endif
395 	lc->sync_enter_timer = S390_lowcore.sync_enter_timer;
396 	lc->async_enter_timer = S390_lowcore.async_enter_timer;
397 	lc->exit_timer = S390_lowcore.exit_timer;
398 	lc->user_timer = S390_lowcore.user_timer;
399 	lc->system_timer = S390_lowcore.system_timer;
400 	lc->steal_timer = S390_lowcore.steal_timer;
401 	lc->last_update_timer = S390_lowcore.last_update_timer;
402 	lc->last_update_clock = S390_lowcore.last_update_clock;
403 	lc->ftrace_func = S390_lowcore.ftrace_func;
404 
405 	restart_stack = __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0);
406 	restart_stack += ASYNC_SIZE;
407 
408 	/*
409 	 * Set up PSW restart to call ipl.c:do_restart(). Copy the relevant
410 	 * restart data to the absolute zero lowcore. This is necesary if
411 	 * PSW restart is done on an offline CPU that has lowcore zero.
412 	 */
413 	lc->restart_stack = (unsigned long) restart_stack;
414 	lc->restart_fn = (unsigned long) do_restart;
415 	lc->restart_data = 0;
416 	lc->restart_source = -1UL;
417 
418 	/* Setup absolute zero lowcore */
419 	mem_assign_absolute(S390_lowcore.restart_stack, lc->restart_stack);
420 	mem_assign_absolute(S390_lowcore.restart_fn, lc->restart_fn);
421 	mem_assign_absolute(S390_lowcore.restart_data, lc->restart_data);
422 	mem_assign_absolute(S390_lowcore.restart_source, lc->restart_source);
423 	mem_assign_absolute(S390_lowcore.restart_psw, lc->restart_psw);
424 
425 	set_prefix((u32)(unsigned long) lc);
426 	lowcore_ptr[0] = lc;
427 }
428 
429 static struct resource code_resource = {
430 	.name  = "Kernel code",
431 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
432 };
433 
434 static struct resource data_resource = {
435 	.name = "Kernel data",
436 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
437 };
438 
439 static struct resource bss_resource = {
440 	.name = "Kernel bss",
441 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
442 };
443 
444 static struct resource __initdata *standard_resources[] = {
445 	&code_resource,
446 	&data_resource,
447 	&bss_resource,
448 };
449 
450 static void __init setup_resources(void)
451 {
452 	struct resource *res, *std_res, *sub_res;
453 	int i, j;
454 
455 	code_resource.start = (unsigned long) &_text;
456 	code_resource.end = (unsigned long) &_etext - 1;
457 	data_resource.start = (unsigned long) &_etext;
458 	data_resource.end = (unsigned long) &_edata - 1;
459 	bss_resource.start = (unsigned long) &__bss_start;
460 	bss_resource.end = (unsigned long) &__bss_stop - 1;
461 
462 	for (i = 0; i < MEMORY_CHUNKS; i++) {
463 		if (!memory_chunk[i].size)
464 			continue;
465 		if (memory_chunk[i].type == CHUNK_OLDMEM ||
466 		    memory_chunk[i].type == CHUNK_CRASHK)
467 			continue;
468 		res = alloc_bootmem_low(sizeof(*res));
469 		res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
470 		switch (memory_chunk[i].type) {
471 		case CHUNK_READ_WRITE:
472 		case CHUNK_CRASHK:
473 			res->name = "System RAM";
474 			break;
475 		case CHUNK_READ_ONLY:
476 			res->name = "System ROM";
477 			res->flags |= IORESOURCE_READONLY;
478 			break;
479 		default:
480 			res->name = "reserved";
481 		}
482 		res->start = memory_chunk[i].addr;
483 		res->end = res->start + memory_chunk[i].size - 1;
484 		request_resource(&iomem_resource, res);
485 
486 		for (j = 0; j < ARRAY_SIZE(standard_resources); j++) {
487 			std_res = standard_resources[j];
488 			if (std_res->start < res->start ||
489 			    std_res->start > res->end)
490 				continue;
491 			if (std_res->end > res->end) {
492 				sub_res = alloc_bootmem_low(sizeof(*sub_res));
493 				*sub_res = *std_res;
494 				sub_res->end = res->end;
495 				std_res->start = res->end + 1;
496 				request_resource(res, sub_res);
497 			} else {
498 				request_resource(res, std_res);
499 			}
500 		}
501 	}
502 }
503 
504 unsigned long real_memory_size;
505 EXPORT_SYMBOL_GPL(real_memory_size);
506 
507 static void __init setup_memory_end(void)
508 {
509 	unsigned long vmax, vmalloc_size, tmp;
510 	int i;
511 
512 
513 #ifdef CONFIG_ZFCPDUMP
514 	if (ipl_info.type == IPL_TYPE_FCP_DUMP && !OLDMEM_BASE) {
515 		memory_end = ZFCPDUMP_HSA_SIZE;
516 		memory_end_set = 1;
517 	}
518 #endif
519 	real_memory_size = 0;
520 	memory_end &= PAGE_MASK;
521 
522 	/*
523 	 * Make sure all chunks are MAX_ORDER aligned so we don't need the
524 	 * extra checks that HOLES_IN_ZONE would require.
525 	 */
526 	for (i = 0; i < MEMORY_CHUNKS; i++) {
527 		unsigned long start, end;
528 		struct mem_chunk *chunk;
529 		unsigned long align;
530 
531 		chunk = &memory_chunk[i];
532 		align = 1UL << (MAX_ORDER + PAGE_SHIFT - 1);
533 		start = (chunk->addr + align - 1) & ~(align - 1);
534 		end = (chunk->addr + chunk->size) & ~(align - 1);
535 		if (start >= end)
536 			memset(chunk, 0, sizeof(*chunk));
537 		else {
538 			chunk->addr = start;
539 			chunk->size = end - start;
540 		}
541 		real_memory_size = max(real_memory_size,
542 				       chunk->addr + chunk->size);
543 	}
544 
545 	/* Choose kernel address space layout: 2, 3, or 4 levels. */
546 #ifdef CONFIG_64BIT
547 	vmalloc_size = VMALLOC_END ?: 128UL << 30;
548 	tmp = (memory_end ?: real_memory_size) / PAGE_SIZE;
549 	tmp = tmp * (sizeof(struct page) + PAGE_SIZE) + vmalloc_size;
550 	if (tmp <= (1UL << 42))
551 		vmax = 1UL << 42;	/* 3-level kernel page table */
552 	else
553 		vmax = 1UL << 53;	/* 4-level kernel page table */
554 #else
555 	vmalloc_size = VMALLOC_END ?: 96UL << 20;
556 	vmax = 1UL << 31;		/* 2-level kernel page table */
557 #endif
558 	/* vmalloc area is at the end of the kernel address space. */
559 	VMALLOC_END = vmax;
560 	VMALLOC_START = vmax - vmalloc_size;
561 
562 	/* Split remaining virtual space between 1:1 mapping & vmemmap array */
563 	tmp = VMALLOC_START / (PAGE_SIZE + sizeof(struct page));
564 	tmp = VMALLOC_START - tmp * sizeof(struct page);
565 	tmp &= ~((vmax >> 11) - 1);	/* align to page table level */
566 	tmp = min(tmp, 1UL << MAX_PHYSMEM_BITS);
567 	vmemmap = (struct page *) tmp;
568 
569 	/* Take care that memory_end is set and <= vmemmap */
570 	memory_end = min(memory_end ?: real_memory_size, tmp);
571 
572 	/* Fixup memory chunk array to fit into 0..memory_end */
573 	for (i = 0; i < MEMORY_CHUNKS; i++) {
574 		struct mem_chunk *chunk = &memory_chunk[i];
575 
576 		if (chunk->addr >= memory_end) {
577 			memset(chunk, 0, sizeof(*chunk));
578 			continue;
579 		}
580 		if (chunk->addr + chunk->size > memory_end)
581 			chunk->size = memory_end - chunk->addr;
582 	}
583 }
584 
585 static void __init setup_vmcoreinfo(void)
586 {
587 	mem_assign_absolute(S390_lowcore.vmcore_info, paddr_vmcoreinfo_note());
588 }
589 
590 #ifdef CONFIG_CRASH_DUMP
591 
592 /*
593  * Find suitable location for crashkernel memory
594  */
595 static unsigned long __init find_crash_base(unsigned long crash_size,
596 					    char **msg)
597 {
598 	unsigned long crash_base;
599 	struct mem_chunk *chunk;
600 	int i;
601 
602 	if (memory_chunk[0].size < crash_size) {
603 		*msg = "first memory chunk must be at least crashkernel size";
604 		return 0;
605 	}
606 	if (OLDMEM_BASE && crash_size == OLDMEM_SIZE)
607 		return OLDMEM_BASE;
608 
609 	for (i = MEMORY_CHUNKS - 1; i >= 0; i--) {
610 		chunk = &memory_chunk[i];
611 		if (chunk->size == 0)
612 			continue;
613 		if (chunk->type != CHUNK_READ_WRITE)
614 			continue;
615 		if (chunk->size < crash_size)
616 			continue;
617 		crash_base = (chunk->addr + chunk->size) - crash_size;
618 		if (crash_base < crash_size)
619 			continue;
620 		if (crash_base < ZFCPDUMP_HSA_SIZE_MAX)
621 			continue;
622 		if (crash_base < (unsigned long) INITRD_START + INITRD_SIZE)
623 			continue;
624 		return crash_base;
625 	}
626 	*msg = "no suitable area found";
627 	return 0;
628 }
629 
630 /*
631  * Check if crash_base and crash_size is valid
632  */
633 static int __init verify_crash_base(unsigned long crash_base,
634 				    unsigned long crash_size,
635 				    char **msg)
636 {
637 	struct mem_chunk *chunk;
638 	int i;
639 
640 	/*
641 	 * Because we do the swap to zero, we must have at least 'crash_size'
642 	 * bytes free space before crash_base
643 	 */
644 	if (crash_size > crash_base) {
645 		*msg = "crashkernel offset must be greater than size";
646 		return -EINVAL;
647 	}
648 
649 	/* First memory chunk must be at least crash_size */
650 	if (memory_chunk[0].size < crash_size) {
651 		*msg = "first memory chunk must be at least crashkernel size";
652 		return -EINVAL;
653 	}
654 	/* Check if we fit into the respective memory chunk */
655 	for (i = 0; i < MEMORY_CHUNKS; i++) {
656 		chunk = &memory_chunk[i];
657 		if (chunk->size == 0)
658 			continue;
659 		if (crash_base < chunk->addr)
660 			continue;
661 		if (crash_base >= chunk->addr + chunk->size)
662 			continue;
663 		/* we have found the memory chunk */
664 		if (crash_base + crash_size > chunk->addr + chunk->size) {
665 			*msg = "selected memory chunk is too small for "
666 				"crashkernel memory";
667 			return -EINVAL;
668 		}
669 		return 0;
670 	}
671 	*msg = "invalid memory range specified";
672 	return -EINVAL;
673 }
674 
675 /*
676  * Reserve kdump memory by creating a memory hole in the mem_chunk array
677  */
678 static void __init reserve_kdump_bootmem(unsigned long addr, unsigned long size,
679 					 int type)
680 {
681 	create_mem_hole(memory_chunk, addr, size, type);
682 }
683 
684 /*
685  * When kdump is enabled, we have to ensure that no memory from
686  * the area [0 - crashkernel memory size] and
687  * [crashk_res.start - crashk_res.end] is set offline.
688  */
689 static int kdump_mem_notifier(struct notifier_block *nb,
690 			      unsigned long action, void *data)
691 {
692 	struct memory_notify *arg = data;
693 
694 	if (arg->start_pfn < PFN_DOWN(resource_size(&crashk_res)))
695 		return NOTIFY_BAD;
696 	if (arg->start_pfn > PFN_DOWN(crashk_res.end))
697 		return NOTIFY_OK;
698 	if (arg->start_pfn + arg->nr_pages - 1 < PFN_DOWN(crashk_res.start))
699 		return NOTIFY_OK;
700 	return NOTIFY_BAD;
701 }
702 
703 static struct notifier_block kdump_mem_nb = {
704 	.notifier_call = kdump_mem_notifier,
705 };
706 
707 #endif
708 
709 /*
710  * Make sure that oldmem, where the dump is stored, is protected
711  */
712 static void reserve_oldmem(void)
713 {
714 #ifdef CONFIG_CRASH_DUMP
715 	if (!OLDMEM_BASE)
716 		return;
717 
718 	reserve_kdump_bootmem(OLDMEM_BASE, OLDMEM_SIZE, CHUNK_OLDMEM);
719 	reserve_kdump_bootmem(OLDMEM_SIZE, memory_end - OLDMEM_SIZE,
720 			      CHUNK_OLDMEM);
721 	if (OLDMEM_BASE + OLDMEM_SIZE == real_memory_size)
722 		saved_max_pfn = PFN_DOWN(OLDMEM_BASE) - 1;
723 	else
724 		saved_max_pfn = PFN_DOWN(real_memory_size) - 1;
725 #endif
726 }
727 
728 /*
729  * Reserve memory for kdump kernel to be loaded with kexec
730  */
731 static void __init reserve_crashkernel(void)
732 {
733 #ifdef CONFIG_CRASH_DUMP
734 	unsigned long long crash_base, crash_size;
735 	char *msg = NULL;
736 	int rc;
737 
738 	rc = parse_crashkernel(boot_command_line, memory_end, &crash_size,
739 			       &crash_base);
740 	if (rc || crash_size == 0)
741 		return;
742 	crash_base = ALIGN(crash_base, KEXEC_CRASH_MEM_ALIGN);
743 	crash_size = ALIGN(crash_size, KEXEC_CRASH_MEM_ALIGN);
744 	if (register_memory_notifier(&kdump_mem_nb))
745 		return;
746 	if (!crash_base)
747 		crash_base = find_crash_base(crash_size, &msg);
748 	if (!crash_base) {
749 		pr_info("crashkernel reservation failed: %s\n", msg);
750 		unregister_memory_notifier(&kdump_mem_nb);
751 		return;
752 	}
753 	if (verify_crash_base(crash_base, crash_size, &msg)) {
754 		pr_info("crashkernel reservation failed: %s\n", msg);
755 		unregister_memory_notifier(&kdump_mem_nb);
756 		return;
757 	}
758 	if (!OLDMEM_BASE && MACHINE_IS_VM)
759 		diag10_range(PFN_DOWN(crash_base), PFN_DOWN(crash_size));
760 	crashk_res.start = crash_base;
761 	crashk_res.end = crash_base + crash_size - 1;
762 	insert_resource(&iomem_resource, &crashk_res);
763 	reserve_kdump_bootmem(crash_base, crash_size, CHUNK_CRASHK);
764 	pr_info("Reserving %lluMB of memory at %lluMB "
765 		"for crashkernel (System RAM: %luMB)\n",
766 		crash_size >> 20, crash_base >> 20, memory_end >> 20);
767 	os_info_crashkernel_add(crash_base, crash_size);
768 #endif
769 }
770 
771 static void __init setup_memory(void)
772 {
773         unsigned long bootmap_size;
774 	unsigned long start_pfn, end_pfn;
775 	int i;
776 
777 	/*
778 	 * partially used pages are not usable - thus
779 	 * we are rounding upwards:
780 	 */
781 	start_pfn = PFN_UP(__pa(&_end));
782 	end_pfn = max_pfn = PFN_DOWN(memory_end);
783 
784 #ifdef CONFIG_BLK_DEV_INITRD
785 	/*
786 	 * Move the initrd in case the bitmap of the bootmem allocater
787 	 * would overwrite it.
788 	 */
789 
790 	if (INITRD_START && INITRD_SIZE) {
791 		unsigned long bmap_size;
792 		unsigned long start;
793 
794 		bmap_size = bootmem_bootmap_pages(end_pfn - start_pfn + 1);
795 		bmap_size = PFN_PHYS(bmap_size);
796 
797 		if (PFN_PHYS(start_pfn) + bmap_size > INITRD_START) {
798 			start = PFN_PHYS(start_pfn) + bmap_size + PAGE_SIZE;
799 
800 #ifdef CONFIG_CRASH_DUMP
801 			if (OLDMEM_BASE) {
802 				/* Move initrd behind kdump oldmem */
803 				if (start + INITRD_SIZE > OLDMEM_BASE &&
804 				    start < OLDMEM_BASE + OLDMEM_SIZE)
805 					start = OLDMEM_BASE + OLDMEM_SIZE;
806 			}
807 #endif
808 			if (start + INITRD_SIZE > memory_end) {
809 				pr_err("initrd extends beyond end of "
810 				       "memory (0x%08lx > 0x%08lx) "
811 				       "disabling initrd\n",
812 				       start + INITRD_SIZE, memory_end);
813 				INITRD_START = INITRD_SIZE = 0;
814 			} else {
815 				pr_info("Moving initrd (0x%08lx -> "
816 					"0x%08lx, size: %ld)\n",
817 					INITRD_START, start, INITRD_SIZE);
818 				memmove((void *) start, (void *) INITRD_START,
819 					INITRD_SIZE);
820 				INITRD_START = start;
821 			}
822 		}
823 	}
824 #endif
825 
826 	/*
827 	 * Initialize the boot-time allocator
828 	 */
829 	bootmap_size = init_bootmem(start_pfn, end_pfn);
830 
831 	/*
832 	 * Register RAM areas with the bootmem allocator.
833 	 */
834 
835 	for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
836 		unsigned long start_chunk, end_chunk, pfn;
837 
838 		if (memory_chunk[i].type != CHUNK_READ_WRITE &&
839 		    memory_chunk[i].type != CHUNK_CRASHK)
840 			continue;
841 		start_chunk = PFN_DOWN(memory_chunk[i].addr);
842 		end_chunk = start_chunk + PFN_DOWN(memory_chunk[i].size);
843 		end_chunk = min(end_chunk, end_pfn);
844 		if (start_chunk >= end_chunk)
845 			continue;
846 		memblock_add_node(PFN_PHYS(start_chunk),
847 				  PFN_PHYS(end_chunk - start_chunk), 0);
848 		pfn = max(start_chunk, start_pfn);
849 		for (; pfn < end_chunk; pfn++)
850 			page_set_storage_key(PFN_PHYS(pfn),
851 					     PAGE_DEFAULT_KEY, 0);
852 	}
853 
854 	psw_set_key(PAGE_DEFAULT_KEY);
855 
856 	free_bootmem_with_active_regions(0, max_pfn);
857 
858 	/*
859 	 * Reserve memory used for lowcore/command line/kernel image.
860 	 */
861 	reserve_bootmem(0, (unsigned long)_ehead, BOOTMEM_DEFAULT);
862 	reserve_bootmem((unsigned long)_stext,
863 			PFN_PHYS(start_pfn) - (unsigned long)_stext,
864 			BOOTMEM_DEFAULT);
865 	/*
866 	 * Reserve the bootmem bitmap itself as well. We do this in two
867 	 * steps (first step was init_bootmem()) because this catches
868 	 * the (very unlikely) case of us accidentally initializing the
869 	 * bootmem allocator with an invalid RAM area.
870 	 */
871 	reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size,
872 			BOOTMEM_DEFAULT);
873 
874 #ifdef CONFIG_CRASH_DUMP
875 	if (crashk_res.start)
876 		reserve_bootmem(crashk_res.start,
877 				crashk_res.end - crashk_res.start + 1,
878 				BOOTMEM_DEFAULT);
879 	if (is_kdump_kernel())
880 		reserve_bootmem(elfcorehdr_addr - OLDMEM_BASE,
881 				PAGE_ALIGN(elfcorehdr_size), BOOTMEM_DEFAULT);
882 #endif
883 #ifdef CONFIG_BLK_DEV_INITRD
884 	if (INITRD_START && INITRD_SIZE) {
885 		if (INITRD_START + INITRD_SIZE <= memory_end) {
886 			reserve_bootmem(INITRD_START, INITRD_SIZE,
887 					BOOTMEM_DEFAULT);
888 			initrd_start = INITRD_START;
889 			initrd_end = initrd_start + INITRD_SIZE;
890 		} else {
891 			pr_err("initrd extends beyond end of "
892 			       "memory (0x%08lx > 0x%08lx) "
893 			       "disabling initrd\n",
894 			       initrd_start + INITRD_SIZE, memory_end);
895 			initrd_start = initrd_end = 0;
896 		}
897 	}
898 #endif
899 }
900 
901 /*
902  * Setup hardware capabilities.
903  */
904 static void __init setup_hwcaps(void)
905 {
906 	static const int stfl_bits[6] = { 0, 2, 7, 17, 19, 21 };
907 	struct cpuid cpu_id;
908 	int i;
909 
910 	/*
911 	 * The store facility list bits numbers as found in the principles
912 	 * of operation are numbered with bit 1UL<<31 as number 0 to
913 	 * bit 1UL<<0 as number 31.
914 	 *   Bit 0: instructions named N3, "backported" to esa-mode
915 	 *   Bit 2: z/Architecture mode is active
916 	 *   Bit 7: the store-facility-list-extended facility is installed
917 	 *   Bit 17: the message-security assist is installed
918 	 *   Bit 19: the long-displacement facility is installed
919 	 *   Bit 21: the extended-immediate facility is installed
920 	 *   Bit 22: extended-translation facility 3 is installed
921 	 *   Bit 30: extended-translation facility 3 enhancement facility
922 	 * These get translated to:
923 	 *   HWCAP_S390_ESAN3 bit 0, HWCAP_S390_ZARCH bit 1,
924 	 *   HWCAP_S390_STFLE bit 2, HWCAP_S390_MSA bit 3,
925 	 *   HWCAP_S390_LDISP bit 4, HWCAP_S390_EIMM bit 5 and
926 	 *   HWCAP_S390_ETF3EH bit 8 (22 && 30).
927 	 */
928 	for (i = 0; i < 6; i++)
929 		if (test_facility(stfl_bits[i]))
930 			elf_hwcap |= 1UL << i;
931 
932 	if (test_facility(22) && test_facility(30))
933 		elf_hwcap |= HWCAP_S390_ETF3EH;
934 
935 	/*
936 	 * Check for additional facilities with store-facility-list-extended.
937 	 * stfle stores doublewords (8 byte) with bit 1ULL<<63 as bit 0
938 	 * and 1ULL<<0 as bit 63. Bits 0-31 contain the same information
939 	 * as stored by stfl, bits 32-xxx contain additional facilities.
940 	 * How many facility words are stored depends on the number of
941 	 * doublewords passed to the instruction. The additional facilities
942 	 * are:
943 	 *   Bit 42: decimal floating point facility is installed
944 	 *   Bit 44: perform floating point operation facility is installed
945 	 * translated to:
946 	 *   HWCAP_S390_DFP bit 6 (42 && 44).
947 	 */
948 	if ((elf_hwcap & (1UL << 2)) && test_facility(42) && test_facility(44))
949 		elf_hwcap |= HWCAP_S390_DFP;
950 
951 	/*
952 	 * Huge page support HWCAP_S390_HPAGE is bit 7.
953 	 */
954 	if (MACHINE_HAS_HPAGE)
955 		elf_hwcap |= HWCAP_S390_HPAGE;
956 
957 #if defined(CONFIG_64BIT)
958 	/*
959 	 * 64-bit register support for 31-bit processes
960 	 * HWCAP_S390_HIGH_GPRS is bit 9.
961 	 */
962 	elf_hwcap |= HWCAP_S390_HIGH_GPRS;
963 
964 	/*
965 	 * Transactional execution support HWCAP_S390_TE is bit 10.
966 	 */
967 	if (test_facility(50) && test_facility(73))
968 		elf_hwcap |= HWCAP_S390_TE;
969 #endif
970 
971 	get_cpu_id(&cpu_id);
972 	switch (cpu_id.machine) {
973 	case 0x9672:
974 #if !defined(CONFIG_64BIT)
975 	default:	/* Use "g5" as default for 31 bit kernels. */
976 #endif
977 		strcpy(elf_platform, "g5");
978 		break;
979 	case 0x2064:
980 	case 0x2066:
981 #if defined(CONFIG_64BIT)
982 	default:	/* Use "z900" as default for 64 bit kernels. */
983 #endif
984 		strcpy(elf_platform, "z900");
985 		break;
986 	case 0x2084:
987 	case 0x2086:
988 		strcpy(elf_platform, "z990");
989 		break;
990 	case 0x2094:
991 	case 0x2096:
992 		strcpy(elf_platform, "z9-109");
993 		break;
994 	case 0x2097:
995 	case 0x2098:
996 		strcpy(elf_platform, "z10");
997 		break;
998 	case 0x2817:
999 	case 0x2818:
1000 		strcpy(elf_platform, "z196");
1001 		break;
1002 	}
1003 }
1004 
1005 /*
1006  * Setup function called from init/main.c just after the banner
1007  * was printed.
1008  */
1009 
1010 void __init setup_arch(char **cmdline_p)
1011 {
1012         /*
1013          * print what head.S has found out about the machine
1014          */
1015 #ifndef CONFIG_64BIT
1016 	if (MACHINE_IS_VM)
1017 		pr_info("Linux is running as a z/VM "
1018 			"guest operating system in 31-bit mode\n");
1019 	else if (MACHINE_IS_LPAR)
1020 		pr_info("Linux is running natively in 31-bit mode\n");
1021 	if (MACHINE_HAS_IEEE)
1022 		pr_info("The hardware system has IEEE compatible "
1023 			"floating point units\n");
1024 	else
1025 		pr_info("The hardware system has no IEEE compatible "
1026 			"floating point units\n");
1027 #else /* CONFIG_64BIT */
1028 	if (MACHINE_IS_VM)
1029 		pr_info("Linux is running as a z/VM "
1030 			"guest operating system in 64-bit mode\n");
1031 	else if (MACHINE_IS_KVM)
1032 		pr_info("Linux is running under KVM in 64-bit mode\n");
1033 	else if (MACHINE_IS_LPAR)
1034 		pr_info("Linux is running natively in 64-bit mode\n");
1035 #endif /* CONFIG_64BIT */
1036 
1037 	/* Have one command line that is parsed and saved in /proc/cmdline */
1038 	/* boot_command_line has been already set up in early.c */
1039 	*cmdline_p = boot_command_line;
1040 
1041         ROOT_DEV = Root_RAM0;
1042 
1043 	init_mm.start_code = PAGE_OFFSET;
1044 	init_mm.end_code = (unsigned long) &_etext;
1045 	init_mm.end_data = (unsigned long) &_edata;
1046 	init_mm.brk = (unsigned long) &_end;
1047 
1048 	if (MACHINE_HAS_MVCOS)
1049 		memcpy(&uaccess, &uaccess_mvcos, sizeof(uaccess));
1050 	else
1051 		memcpy(&uaccess, &uaccess_std, sizeof(uaccess));
1052 
1053 	parse_early_param();
1054 
1055 	os_info_init();
1056 	setup_ipl();
1057 	setup_memory_end();
1058 	setup_addressing_mode();
1059 	reserve_oldmem();
1060 	reserve_crashkernel();
1061 	setup_memory();
1062 	setup_resources();
1063 	setup_vmcoreinfo();
1064 	setup_lowcore();
1065 
1066         cpu_init();
1067 	s390_init_cpu_topology();
1068 
1069 	/*
1070 	 * Setup capabilities (ELF_HWCAP & ELF_PLATFORM).
1071 	 */
1072 	setup_hwcaps();
1073 
1074 	/*
1075 	 * Create kernel page tables and switch to virtual addressing.
1076 	 */
1077         paging_init();
1078 
1079         /* Setup default console */
1080 	conmode_default();
1081 	set_preferred_console();
1082 
1083 	/* Setup zfcpdump support */
1084 	setup_zfcpdump(console_devno);
1085 }
1086