xref: /linux/arch/s390/kernel/setup.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999, 2012
4  *    Author(s): Hartmut Penner (hp@de.ibm.com),
5  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
6  *
7  *  Derived from "arch/i386/kernel/setup.c"
8  *    Copyright (C) 1995, Linus Torvalds
9  */
10 
11 /*
12  * This file handles the architecture-dependent parts of initialization
13  */
14 
15 #define KMSG_COMPONENT "setup"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/memblock.h>
23 #include <linux/mm.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/user.h>
28 #include <linux/tty.h>
29 #include <linux/ioport.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/root_dev.h>
35 #include <linux/console.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/device.h>
38 #include <linux/notifier.h>
39 #include <linux/pfn.h>
40 #include <linux/ctype.h>
41 #include <linux/reboot.h>
42 #include <linux/topology.h>
43 #include <linux/ftrace.h>
44 #include <linux/kexec.h>
45 #include <linux/crash_dump.h>
46 #include <linux/memory.h>
47 #include <linux/compat.h>
48 
49 #include <asm/ipl.h>
50 #include <asm/uaccess.h>
51 #include <asm/facility.h>
52 #include <asm/smp.h>
53 #include <asm/mmu_context.h>
54 #include <asm/cpcmd.h>
55 #include <asm/lowcore.h>
56 #include <asm/irq.h>
57 #include <asm/page.h>
58 #include <asm/ptrace.h>
59 #include <asm/sections.h>
60 #include <asm/ebcdic.h>
61 #include <asm/kvm_virtio.h>
62 #include <asm/diag.h>
63 #include <asm/os_info.h>
64 #include <asm/sclp.h>
65 #include "entry.h"
66 
67 long psw_kernel_bits	= PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_ASC_PRIMARY |
68 			  PSW_MASK_EA | PSW_MASK_BA;
69 long psw_user_bits	= PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT |
70 			  PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_MASK_MCHECK |
71 			  PSW_MASK_PSTATE | PSW_ASC_HOME;
72 
73 /*
74  * User copy operations.
75  */
76 struct uaccess_ops uaccess;
77 EXPORT_SYMBOL(uaccess);
78 
79 /*
80  * Machine setup..
81  */
82 unsigned int console_mode = 0;
83 EXPORT_SYMBOL(console_mode);
84 
85 unsigned int console_devno = -1;
86 EXPORT_SYMBOL(console_devno);
87 
88 unsigned int console_irq = -1;
89 EXPORT_SYMBOL(console_irq);
90 
91 unsigned long elf_hwcap = 0;
92 char elf_platform[ELF_PLATFORM_SIZE];
93 
94 struct mem_chunk __initdata memory_chunk[MEMORY_CHUNKS];
95 
96 int __initdata memory_end_set;
97 unsigned long __initdata memory_end;
98 
99 unsigned long VMALLOC_START;
100 EXPORT_SYMBOL(VMALLOC_START);
101 
102 unsigned long VMALLOC_END;
103 EXPORT_SYMBOL(VMALLOC_END);
104 
105 struct page *vmemmap;
106 EXPORT_SYMBOL(vmemmap);
107 
108 #ifdef CONFIG_64BIT
109 unsigned long MODULES_VADDR;
110 unsigned long MODULES_END;
111 #endif
112 
113 /* An array with a pointer to the lowcore of every CPU. */
114 struct _lowcore *lowcore_ptr[NR_CPUS];
115 EXPORT_SYMBOL(lowcore_ptr);
116 
117 /*
118  * This is set up by the setup-routine at boot-time
119  * for S390 need to find out, what we have to setup
120  * using address 0x10400 ...
121  */
122 
123 #include <asm/setup.h>
124 
125 /*
126  * condev= and conmode= setup parameter.
127  */
128 
129 static int __init condev_setup(char *str)
130 {
131 	int vdev;
132 
133 	vdev = simple_strtoul(str, &str, 0);
134 	if (vdev >= 0 && vdev < 65536) {
135 		console_devno = vdev;
136 		console_irq = -1;
137 	}
138 	return 1;
139 }
140 
141 __setup("condev=", condev_setup);
142 
143 static void __init set_preferred_console(void)
144 {
145 	if (MACHINE_IS_KVM) {
146 		if (sclp_has_vt220())
147 			add_preferred_console("ttyS", 1, NULL);
148 		else if (sclp_has_linemode())
149 			add_preferred_console("ttyS", 0, NULL);
150 		else
151 			add_preferred_console("hvc", 0, NULL);
152 	} else if (CONSOLE_IS_3215 || CONSOLE_IS_SCLP)
153 		add_preferred_console("ttyS", 0, NULL);
154 	else if (CONSOLE_IS_3270)
155 		add_preferred_console("tty3270", 0, NULL);
156 }
157 
158 static int __init conmode_setup(char *str)
159 {
160 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
161 	if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0)
162                 SET_CONSOLE_SCLP;
163 #endif
164 #if defined(CONFIG_TN3215_CONSOLE)
165 	if (strncmp(str, "3215", 5) == 0)
166 		SET_CONSOLE_3215;
167 #endif
168 #if defined(CONFIG_TN3270_CONSOLE)
169 	if (strncmp(str, "3270", 5) == 0)
170 		SET_CONSOLE_3270;
171 #endif
172 	set_preferred_console();
173         return 1;
174 }
175 
176 __setup("conmode=", conmode_setup);
177 
178 static void __init conmode_default(void)
179 {
180 	char query_buffer[1024];
181 	char *ptr;
182 
183         if (MACHINE_IS_VM) {
184 		cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
185 		console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
186 		ptr = strstr(query_buffer, "SUBCHANNEL =");
187 		console_irq = simple_strtoul(ptr + 13, NULL, 16);
188 		cpcmd("QUERY TERM", query_buffer, 1024, NULL);
189 		ptr = strstr(query_buffer, "CONMODE");
190 		/*
191 		 * Set the conmode to 3215 so that the device recognition
192 		 * will set the cu_type of the console to 3215. If the
193 		 * conmode is 3270 and we don't set it back then both
194 		 * 3215 and the 3270 driver will try to access the console
195 		 * device (3215 as console and 3270 as normal tty).
196 		 */
197 		cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
198 		if (ptr == NULL) {
199 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
200 			SET_CONSOLE_SCLP;
201 #endif
202 			return;
203 		}
204 		if (strncmp(ptr + 8, "3270", 4) == 0) {
205 #if defined(CONFIG_TN3270_CONSOLE)
206 			SET_CONSOLE_3270;
207 #elif defined(CONFIG_TN3215_CONSOLE)
208 			SET_CONSOLE_3215;
209 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
210 			SET_CONSOLE_SCLP;
211 #endif
212 		} else if (strncmp(ptr + 8, "3215", 4) == 0) {
213 #if defined(CONFIG_TN3215_CONSOLE)
214 			SET_CONSOLE_3215;
215 #elif defined(CONFIG_TN3270_CONSOLE)
216 			SET_CONSOLE_3270;
217 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
218 			SET_CONSOLE_SCLP;
219 #endif
220 		}
221 	} else {
222 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
223 		SET_CONSOLE_SCLP;
224 #endif
225 	}
226 }
227 
228 #ifdef CONFIG_ZFCPDUMP
229 static void __init setup_zfcpdump(unsigned int console_devno)
230 {
231 	static char str[41];
232 
233 	if (ipl_info.type != IPL_TYPE_FCP_DUMP)
234 		return;
235 	if (OLDMEM_BASE)
236 		return;
237 	if (console_devno != -1)
238 		sprintf(str, " cio_ignore=all,!0.0.%04x,!0.0.%04x",
239 			ipl_info.data.fcp.dev_id.devno, console_devno);
240 	else
241 		sprintf(str, " cio_ignore=all,!0.0.%04x",
242 			ipl_info.data.fcp.dev_id.devno);
243 	strcat(boot_command_line, str);
244 	console_loglevel = 2;
245 }
246 #else
247 static inline void setup_zfcpdump(unsigned int console_devno) {}
248 #endif /* CONFIG_ZFCPDUMP */
249 
250  /*
251  * Reboot, halt and power_off stubs. They just call _machine_restart,
252  * _machine_halt or _machine_power_off.
253  */
254 
255 void machine_restart(char *command)
256 {
257 	if ((!in_interrupt() && !in_atomic()) || oops_in_progress)
258 		/*
259 		 * Only unblank the console if we are called in enabled
260 		 * context or a bust_spinlocks cleared the way for us.
261 		 */
262 		console_unblank();
263 	_machine_restart(command);
264 }
265 
266 void machine_halt(void)
267 {
268 	if (!in_interrupt() || oops_in_progress)
269 		/*
270 		 * Only unblank the console if we are called in enabled
271 		 * context or a bust_spinlocks cleared the way for us.
272 		 */
273 		console_unblank();
274 	_machine_halt();
275 }
276 
277 void machine_power_off(void)
278 {
279 	if (!in_interrupt() || oops_in_progress)
280 		/*
281 		 * Only unblank the console if we are called in enabled
282 		 * context or a bust_spinlocks cleared the way for us.
283 		 */
284 		console_unblank();
285 	_machine_power_off();
286 }
287 
288 /*
289  * Dummy power off function.
290  */
291 void (*pm_power_off)(void) = machine_power_off;
292 
293 static int __init early_parse_mem(char *p)
294 {
295 	memory_end = memparse(p, &p);
296 	memory_end_set = 1;
297 	return 0;
298 }
299 early_param("mem", early_parse_mem);
300 
301 static int __init parse_vmalloc(char *arg)
302 {
303 	if (!arg)
304 		return -EINVAL;
305 	VMALLOC_END = (memparse(arg, &arg) + PAGE_SIZE - 1) & PAGE_MASK;
306 	return 0;
307 }
308 early_param("vmalloc", parse_vmalloc);
309 
310 unsigned int s390_user_mode = PRIMARY_SPACE_MODE;
311 EXPORT_SYMBOL_GPL(s390_user_mode);
312 
313 static void __init set_user_mode_primary(void)
314 {
315 	psw_kernel_bits = (psw_kernel_bits & ~PSW_MASK_ASC) | PSW_ASC_HOME;
316 	psw_user_bits = (psw_user_bits & ~PSW_MASK_ASC) | PSW_ASC_PRIMARY;
317 #ifdef CONFIG_COMPAT
318 	psw32_user_bits =
319 		(psw32_user_bits & ~PSW32_MASK_ASC) | PSW32_ASC_PRIMARY;
320 #endif
321 	uaccess = MACHINE_HAS_MVCOS ? uaccess_mvcos_switch : uaccess_pt;
322 }
323 
324 static int __init early_parse_user_mode(char *p)
325 {
326 	if (p && strcmp(p, "primary") == 0)
327 		s390_user_mode = PRIMARY_SPACE_MODE;
328 	else if (!p || strcmp(p, "home") == 0)
329 		s390_user_mode = HOME_SPACE_MODE;
330 	else
331 		return 1;
332 	return 0;
333 }
334 early_param("user_mode", early_parse_user_mode);
335 
336 static void __init setup_addressing_mode(void)
337 {
338 	if (s390_user_mode != PRIMARY_SPACE_MODE)
339 		return;
340 	set_user_mode_primary();
341 	if (MACHINE_HAS_MVCOS)
342 		pr_info("Address spaces switched, mvcos available\n");
343 	else
344 		pr_info("Address spaces switched, mvcos not available\n");
345 }
346 
347 void *restart_stack __attribute__((__section__(".data")));
348 
349 static void __init setup_lowcore(void)
350 {
351 	struct _lowcore *lc;
352 
353 	/*
354 	 * Setup lowcore for boot cpu
355 	 */
356 	BUILD_BUG_ON(sizeof(struct _lowcore) != LC_PAGES * 4096);
357 	lc = __alloc_bootmem_low(LC_PAGES * PAGE_SIZE, LC_PAGES * PAGE_SIZE, 0);
358 	lc->restart_psw.mask = psw_kernel_bits;
359 	lc->restart_psw.addr =
360 		PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
361 	lc->external_new_psw.mask = psw_kernel_bits |
362 		PSW_MASK_DAT | PSW_MASK_MCHECK;
363 	lc->external_new_psw.addr =
364 		PSW_ADDR_AMODE | (unsigned long) ext_int_handler;
365 	lc->svc_new_psw.mask = psw_kernel_bits |
366 		PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
367 	lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call;
368 	lc->program_new_psw.mask = psw_kernel_bits |
369 		PSW_MASK_DAT | PSW_MASK_MCHECK;
370 	lc->program_new_psw.addr =
371 		PSW_ADDR_AMODE | (unsigned long) pgm_check_handler;
372 	lc->mcck_new_psw.mask = psw_kernel_bits;
373 	lc->mcck_new_psw.addr =
374 		PSW_ADDR_AMODE | (unsigned long) mcck_int_handler;
375 	lc->io_new_psw.mask = psw_kernel_bits |
376 		PSW_MASK_DAT | PSW_MASK_MCHECK;
377 	lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler;
378 	lc->clock_comparator = -1ULL;
379 	lc->kernel_stack = ((unsigned long) &init_thread_union) + THREAD_SIZE;
380 	lc->async_stack = (unsigned long)
381 		__alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0) + ASYNC_SIZE;
382 	lc->panic_stack = (unsigned long)
383 		__alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0) + PAGE_SIZE;
384 	lc->current_task = (unsigned long) init_thread_union.thread_info.task;
385 	lc->thread_info = (unsigned long) &init_thread_union;
386 	lc->machine_flags = S390_lowcore.machine_flags;
387 	lc->stfl_fac_list = S390_lowcore.stfl_fac_list;
388 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
389 	       MAX_FACILITY_BIT/8);
390 #ifndef CONFIG_64BIT
391 	if (MACHINE_HAS_IEEE) {
392 		lc->extended_save_area_addr = (__u32)
393 			__alloc_bootmem_low(PAGE_SIZE, PAGE_SIZE, 0);
394 		/* enable extended save area */
395 		__ctl_set_bit(14, 29);
396 	}
397 #else
398 	lc->vdso_per_cpu_data = (unsigned long) &lc->paste[0];
399 #endif
400 	lc->sync_enter_timer = S390_lowcore.sync_enter_timer;
401 	lc->async_enter_timer = S390_lowcore.async_enter_timer;
402 	lc->exit_timer = S390_lowcore.exit_timer;
403 	lc->user_timer = S390_lowcore.user_timer;
404 	lc->system_timer = S390_lowcore.system_timer;
405 	lc->steal_timer = S390_lowcore.steal_timer;
406 	lc->last_update_timer = S390_lowcore.last_update_timer;
407 	lc->last_update_clock = S390_lowcore.last_update_clock;
408 	lc->ftrace_func = S390_lowcore.ftrace_func;
409 
410 	restart_stack = __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0);
411 	restart_stack += ASYNC_SIZE;
412 
413 	/*
414 	 * Set up PSW restart to call ipl.c:do_restart(). Copy the relevant
415 	 * restart data to the absolute zero lowcore. This is necesary if
416 	 * PSW restart is done on an offline CPU that has lowcore zero.
417 	 */
418 	lc->restart_stack = (unsigned long) restart_stack;
419 	lc->restart_fn = (unsigned long) do_restart;
420 	lc->restart_data = 0;
421 	lc->restart_source = -1UL;
422 
423 	/* Setup absolute zero lowcore */
424 	mem_assign_absolute(S390_lowcore.restart_stack, lc->restart_stack);
425 	mem_assign_absolute(S390_lowcore.restart_fn, lc->restart_fn);
426 	mem_assign_absolute(S390_lowcore.restart_data, lc->restart_data);
427 	mem_assign_absolute(S390_lowcore.restart_source, lc->restart_source);
428 	mem_assign_absolute(S390_lowcore.restart_psw, lc->restart_psw);
429 
430 	set_prefix((u32)(unsigned long) lc);
431 	lowcore_ptr[0] = lc;
432 }
433 
434 static struct resource code_resource = {
435 	.name  = "Kernel code",
436 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
437 };
438 
439 static struct resource data_resource = {
440 	.name = "Kernel data",
441 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
442 };
443 
444 static struct resource bss_resource = {
445 	.name = "Kernel bss",
446 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
447 };
448 
449 static struct resource __initdata *standard_resources[] = {
450 	&code_resource,
451 	&data_resource,
452 	&bss_resource,
453 };
454 
455 static void __init setup_resources(void)
456 {
457 	struct resource *res, *std_res, *sub_res;
458 	int i, j;
459 
460 	code_resource.start = (unsigned long) &_text;
461 	code_resource.end = (unsigned long) &_etext - 1;
462 	data_resource.start = (unsigned long) &_etext;
463 	data_resource.end = (unsigned long) &_edata - 1;
464 	bss_resource.start = (unsigned long) &__bss_start;
465 	bss_resource.end = (unsigned long) &__bss_stop - 1;
466 
467 	for (i = 0; i < MEMORY_CHUNKS; i++) {
468 		if (!memory_chunk[i].size)
469 			continue;
470 		if (memory_chunk[i].type == CHUNK_OLDMEM ||
471 		    memory_chunk[i].type == CHUNK_CRASHK)
472 			continue;
473 		res = alloc_bootmem_low(sizeof(*res));
474 		res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
475 		switch (memory_chunk[i].type) {
476 		case CHUNK_READ_WRITE:
477 		case CHUNK_CRASHK:
478 			res->name = "System RAM";
479 			break;
480 		case CHUNK_READ_ONLY:
481 			res->name = "System ROM";
482 			res->flags |= IORESOURCE_READONLY;
483 			break;
484 		default:
485 			res->name = "reserved";
486 		}
487 		res->start = memory_chunk[i].addr;
488 		res->end = res->start + memory_chunk[i].size - 1;
489 		request_resource(&iomem_resource, res);
490 
491 		for (j = 0; j < ARRAY_SIZE(standard_resources); j++) {
492 			std_res = standard_resources[j];
493 			if (std_res->start < res->start ||
494 			    std_res->start > res->end)
495 				continue;
496 			if (std_res->end > res->end) {
497 				sub_res = alloc_bootmem_low(sizeof(*sub_res));
498 				*sub_res = *std_res;
499 				sub_res->end = res->end;
500 				std_res->start = res->end + 1;
501 				request_resource(res, sub_res);
502 			} else {
503 				request_resource(res, std_res);
504 			}
505 		}
506 	}
507 }
508 
509 unsigned long real_memory_size;
510 EXPORT_SYMBOL_GPL(real_memory_size);
511 
512 static void __init setup_memory_end(void)
513 {
514 	unsigned long vmax, vmalloc_size, tmp;
515 	int i;
516 
517 
518 #ifdef CONFIG_ZFCPDUMP
519 	if (ipl_info.type == IPL_TYPE_FCP_DUMP && !OLDMEM_BASE) {
520 		memory_end = ZFCPDUMP_HSA_SIZE;
521 		memory_end_set = 1;
522 	}
523 #endif
524 	real_memory_size = 0;
525 	memory_end &= PAGE_MASK;
526 
527 	/*
528 	 * Make sure all chunks are MAX_ORDER aligned so we don't need the
529 	 * extra checks that HOLES_IN_ZONE would require.
530 	 */
531 	for (i = 0; i < MEMORY_CHUNKS; i++) {
532 		unsigned long start, end;
533 		struct mem_chunk *chunk;
534 		unsigned long align;
535 
536 		chunk = &memory_chunk[i];
537 		align = 1UL << (MAX_ORDER + PAGE_SHIFT - 1);
538 		start = (chunk->addr + align - 1) & ~(align - 1);
539 		end = (chunk->addr + chunk->size) & ~(align - 1);
540 		if (start >= end)
541 			memset(chunk, 0, sizeof(*chunk));
542 		else {
543 			chunk->addr = start;
544 			chunk->size = end - start;
545 		}
546 		real_memory_size = max(real_memory_size,
547 				       chunk->addr + chunk->size);
548 	}
549 
550 	/* Choose kernel address space layout: 2, 3, or 4 levels. */
551 #ifdef CONFIG_64BIT
552 	vmalloc_size = VMALLOC_END ?: (128UL << 30) - MODULES_LEN;
553 	tmp = (memory_end ?: real_memory_size) / PAGE_SIZE;
554 	tmp = tmp * (sizeof(struct page) + PAGE_SIZE) + vmalloc_size;
555 	if (tmp <= (1UL << 42))
556 		vmax = 1UL << 42;	/* 3-level kernel page table */
557 	else
558 		vmax = 1UL << 53;	/* 4-level kernel page table */
559 	/* module area is at the end of the kernel address space. */
560 	MODULES_END = vmax;
561 	MODULES_VADDR = MODULES_END - MODULES_LEN;
562 	VMALLOC_END = MODULES_VADDR;
563 #else
564 	vmalloc_size = VMALLOC_END ?: 96UL << 20;
565 	vmax = 1UL << 31;		/* 2-level kernel page table */
566 	/* vmalloc area is at the end of the kernel address space. */
567 	VMALLOC_END = vmax;
568 #endif
569 	VMALLOC_START = vmax - vmalloc_size;
570 
571 	/* Split remaining virtual space between 1:1 mapping & vmemmap array */
572 	tmp = VMALLOC_START / (PAGE_SIZE + sizeof(struct page));
573 	tmp = VMALLOC_START - tmp * sizeof(struct page);
574 	tmp &= ~((vmax >> 11) - 1);	/* align to page table level */
575 	tmp = min(tmp, 1UL << MAX_PHYSMEM_BITS);
576 	vmemmap = (struct page *) tmp;
577 
578 	/* Take care that memory_end is set and <= vmemmap */
579 	memory_end = min(memory_end ?: real_memory_size, tmp);
580 
581 	/* Fixup memory chunk array to fit into 0..memory_end */
582 	for (i = 0; i < MEMORY_CHUNKS; i++) {
583 		struct mem_chunk *chunk = &memory_chunk[i];
584 
585 		if (chunk->addr >= memory_end) {
586 			memset(chunk, 0, sizeof(*chunk));
587 			continue;
588 		}
589 		if (chunk->addr + chunk->size > memory_end)
590 			chunk->size = memory_end - chunk->addr;
591 	}
592 }
593 
594 static void __init setup_vmcoreinfo(void)
595 {
596 	mem_assign_absolute(S390_lowcore.vmcore_info, paddr_vmcoreinfo_note());
597 }
598 
599 #ifdef CONFIG_CRASH_DUMP
600 
601 /*
602  * Find suitable location for crashkernel memory
603  */
604 static unsigned long __init find_crash_base(unsigned long crash_size,
605 					    char **msg)
606 {
607 	unsigned long crash_base;
608 	struct mem_chunk *chunk;
609 	int i;
610 
611 	if (memory_chunk[0].size < crash_size) {
612 		*msg = "first memory chunk must be at least crashkernel size";
613 		return 0;
614 	}
615 	if (OLDMEM_BASE && crash_size == OLDMEM_SIZE)
616 		return OLDMEM_BASE;
617 
618 	for (i = MEMORY_CHUNKS - 1; i >= 0; i--) {
619 		chunk = &memory_chunk[i];
620 		if (chunk->size == 0)
621 			continue;
622 		if (chunk->type != CHUNK_READ_WRITE)
623 			continue;
624 		if (chunk->size < crash_size)
625 			continue;
626 		crash_base = (chunk->addr + chunk->size) - crash_size;
627 		if (crash_base < crash_size)
628 			continue;
629 		if (crash_base < ZFCPDUMP_HSA_SIZE_MAX)
630 			continue;
631 		if (crash_base < (unsigned long) INITRD_START + INITRD_SIZE)
632 			continue;
633 		return crash_base;
634 	}
635 	*msg = "no suitable area found";
636 	return 0;
637 }
638 
639 /*
640  * Check if crash_base and crash_size is valid
641  */
642 static int __init verify_crash_base(unsigned long crash_base,
643 				    unsigned long crash_size,
644 				    char **msg)
645 {
646 	struct mem_chunk *chunk;
647 	int i;
648 
649 	/*
650 	 * Because we do the swap to zero, we must have at least 'crash_size'
651 	 * bytes free space before crash_base
652 	 */
653 	if (crash_size > crash_base) {
654 		*msg = "crashkernel offset must be greater than size";
655 		return -EINVAL;
656 	}
657 
658 	/* First memory chunk must be at least crash_size */
659 	if (memory_chunk[0].size < crash_size) {
660 		*msg = "first memory chunk must be at least crashkernel size";
661 		return -EINVAL;
662 	}
663 	/* Check if we fit into the respective memory chunk */
664 	for (i = 0; i < MEMORY_CHUNKS; i++) {
665 		chunk = &memory_chunk[i];
666 		if (chunk->size == 0)
667 			continue;
668 		if (crash_base < chunk->addr)
669 			continue;
670 		if (crash_base >= chunk->addr + chunk->size)
671 			continue;
672 		/* we have found the memory chunk */
673 		if (crash_base + crash_size > chunk->addr + chunk->size) {
674 			*msg = "selected memory chunk is too small for "
675 				"crashkernel memory";
676 			return -EINVAL;
677 		}
678 		return 0;
679 	}
680 	*msg = "invalid memory range specified";
681 	return -EINVAL;
682 }
683 
684 /*
685  * Reserve kdump memory by creating a memory hole in the mem_chunk array
686  */
687 static void __init reserve_kdump_bootmem(unsigned long addr, unsigned long size,
688 					 int type)
689 {
690 	create_mem_hole(memory_chunk, addr, size, type);
691 }
692 
693 /*
694  * When kdump is enabled, we have to ensure that no memory from
695  * the area [0 - crashkernel memory size] and
696  * [crashk_res.start - crashk_res.end] is set offline.
697  */
698 static int kdump_mem_notifier(struct notifier_block *nb,
699 			      unsigned long action, void *data)
700 {
701 	struct memory_notify *arg = data;
702 
703 	if (arg->start_pfn < PFN_DOWN(resource_size(&crashk_res)))
704 		return NOTIFY_BAD;
705 	if (arg->start_pfn > PFN_DOWN(crashk_res.end))
706 		return NOTIFY_OK;
707 	if (arg->start_pfn + arg->nr_pages - 1 < PFN_DOWN(crashk_res.start))
708 		return NOTIFY_OK;
709 	return NOTIFY_BAD;
710 }
711 
712 static struct notifier_block kdump_mem_nb = {
713 	.notifier_call = kdump_mem_notifier,
714 };
715 
716 #endif
717 
718 /*
719  * Make sure that oldmem, where the dump is stored, is protected
720  */
721 static void reserve_oldmem(void)
722 {
723 #ifdef CONFIG_CRASH_DUMP
724 	if (!OLDMEM_BASE)
725 		return;
726 
727 	reserve_kdump_bootmem(OLDMEM_BASE, OLDMEM_SIZE, CHUNK_OLDMEM);
728 	reserve_kdump_bootmem(OLDMEM_SIZE, memory_end - OLDMEM_SIZE,
729 			      CHUNK_OLDMEM);
730 	if (OLDMEM_BASE + OLDMEM_SIZE == real_memory_size)
731 		saved_max_pfn = PFN_DOWN(OLDMEM_BASE) - 1;
732 	else
733 		saved_max_pfn = PFN_DOWN(real_memory_size) - 1;
734 #endif
735 }
736 
737 /*
738  * Reserve memory for kdump kernel to be loaded with kexec
739  */
740 static void __init reserve_crashkernel(void)
741 {
742 #ifdef CONFIG_CRASH_DUMP
743 	unsigned long long crash_base, crash_size;
744 	char *msg = NULL;
745 	int rc;
746 
747 	rc = parse_crashkernel(boot_command_line, memory_end, &crash_size,
748 			       &crash_base);
749 	if (rc || crash_size == 0)
750 		return;
751 	crash_base = ALIGN(crash_base, KEXEC_CRASH_MEM_ALIGN);
752 	crash_size = ALIGN(crash_size, KEXEC_CRASH_MEM_ALIGN);
753 	if (register_memory_notifier(&kdump_mem_nb))
754 		return;
755 	if (!crash_base)
756 		crash_base = find_crash_base(crash_size, &msg);
757 	if (!crash_base) {
758 		pr_info("crashkernel reservation failed: %s\n", msg);
759 		unregister_memory_notifier(&kdump_mem_nb);
760 		return;
761 	}
762 	if (verify_crash_base(crash_base, crash_size, &msg)) {
763 		pr_info("crashkernel reservation failed: %s\n", msg);
764 		unregister_memory_notifier(&kdump_mem_nb);
765 		return;
766 	}
767 	if (!OLDMEM_BASE && MACHINE_IS_VM)
768 		diag10_range(PFN_DOWN(crash_base), PFN_DOWN(crash_size));
769 	crashk_res.start = crash_base;
770 	crashk_res.end = crash_base + crash_size - 1;
771 	insert_resource(&iomem_resource, &crashk_res);
772 	reserve_kdump_bootmem(crash_base, crash_size, CHUNK_CRASHK);
773 	pr_info("Reserving %lluMB of memory at %lluMB "
774 		"for crashkernel (System RAM: %luMB)\n",
775 		crash_size >> 20, crash_base >> 20, memory_end >> 20);
776 	os_info_crashkernel_add(crash_base, crash_size);
777 #endif
778 }
779 
780 static void __init setup_memory(void)
781 {
782         unsigned long bootmap_size;
783 	unsigned long start_pfn, end_pfn;
784 	int i;
785 
786 	/*
787 	 * partially used pages are not usable - thus
788 	 * we are rounding upwards:
789 	 */
790 	start_pfn = PFN_UP(__pa(&_end));
791 	end_pfn = max_pfn = PFN_DOWN(memory_end);
792 
793 #ifdef CONFIG_BLK_DEV_INITRD
794 	/*
795 	 * Move the initrd in case the bitmap of the bootmem allocater
796 	 * would overwrite it.
797 	 */
798 
799 	if (INITRD_START && INITRD_SIZE) {
800 		unsigned long bmap_size;
801 		unsigned long start;
802 
803 		bmap_size = bootmem_bootmap_pages(end_pfn - start_pfn + 1);
804 		bmap_size = PFN_PHYS(bmap_size);
805 
806 		if (PFN_PHYS(start_pfn) + bmap_size > INITRD_START) {
807 			start = PFN_PHYS(start_pfn) + bmap_size + PAGE_SIZE;
808 
809 #ifdef CONFIG_CRASH_DUMP
810 			if (OLDMEM_BASE) {
811 				/* Move initrd behind kdump oldmem */
812 				if (start + INITRD_SIZE > OLDMEM_BASE &&
813 				    start < OLDMEM_BASE + OLDMEM_SIZE)
814 					start = OLDMEM_BASE + OLDMEM_SIZE;
815 			}
816 #endif
817 			if (start + INITRD_SIZE > memory_end) {
818 				pr_err("initrd extends beyond end of "
819 				       "memory (0x%08lx > 0x%08lx) "
820 				       "disabling initrd\n",
821 				       start + INITRD_SIZE, memory_end);
822 				INITRD_START = INITRD_SIZE = 0;
823 			} else {
824 				pr_info("Moving initrd (0x%08lx -> "
825 					"0x%08lx, size: %ld)\n",
826 					INITRD_START, start, INITRD_SIZE);
827 				memmove((void *) start, (void *) INITRD_START,
828 					INITRD_SIZE);
829 				INITRD_START = start;
830 			}
831 		}
832 	}
833 #endif
834 
835 	/*
836 	 * Initialize the boot-time allocator
837 	 */
838 	bootmap_size = init_bootmem(start_pfn, end_pfn);
839 
840 	/*
841 	 * Register RAM areas with the bootmem allocator.
842 	 */
843 
844 	for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
845 		unsigned long start_chunk, end_chunk, pfn;
846 
847 		if (memory_chunk[i].type != CHUNK_READ_WRITE &&
848 		    memory_chunk[i].type != CHUNK_CRASHK)
849 			continue;
850 		start_chunk = PFN_DOWN(memory_chunk[i].addr);
851 		end_chunk = start_chunk + PFN_DOWN(memory_chunk[i].size);
852 		end_chunk = min(end_chunk, end_pfn);
853 		if (start_chunk >= end_chunk)
854 			continue;
855 		memblock_add_node(PFN_PHYS(start_chunk),
856 				  PFN_PHYS(end_chunk - start_chunk), 0);
857 		pfn = max(start_chunk, start_pfn);
858 		storage_key_init_range(PFN_PHYS(pfn), PFN_PHYS(end_chunk));
859 	}
860 
861 	psw_set_key(PAGE_DEFAULT_KEY);
862 
863 	free_bootmem_with_active_regions(0, max_pfn);
864 
865 	/*
866 	 * Reserve memory used for lowcore/command line/kernel image.
867 	 */
868 	reserve_bootmem(0, (unsigned long)_ehead, BOOTMEM_DEFAULT);
869 	reserve_bootmem((unsigned long)_stext,
870 			PFN_PHYS(start_pfn) - (unsigned long)_stext,
871 			BOOTMEM_DEFAULT);
872 	/*
873 	 * Reserve the bootmem bitmap itself as well. We do this in two
874 	 * steps (first step was init_bootmem()) because this catches
875 	 * the (very unlikely) case of us accidentally initializing the
876 	 * bootmem allocator with an invalid RAM area.
877 	 */
878 	reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size,
879 			BOOTMEM_DEFAULT);
880 
881 #ifdef CONFIG_CRASH_DUMP
882 	if (crashk_res.start)
883 		reserve_bootmem(crashk_res.start,
884 				crashk_res.end - crashk_res.start + 1,
885 				BOOTMEM_DEFAULT);
886 	if (is_kdump_kernel())
887 		reserve_bootmem(elfcorehdr_addr - OLDMEM_BASE,
888 				PAGE_ALIGN(elfcorehdr_size), BOOTMEM_DEFAULT);
889 #endif
890 #ifdef CONFIG_BLK_DEV_INITRD
891 	if (INITRD_START && INITRD_SIZE) {
892 		if (INITRD_START + INITRD_SIZE <= memory_end) {
893 			reserve_bootmem(INITRD_START, INITRD_SIZE,
894 					BOOTMEM_DEFAULT);
895 			initrd_start = INITRD_START;
896 			initrd_end = initrd_start + INITRD_SIZE;
897 		} else {
898 			pr_err("initrd extends beyond end of "
899 			       "memory (0x%08lx > 0x%08lx) "
900 			       "disabling initrd\n",
901 			       initrd_start + INITRD_SIZE, memory_end);
902 			initrd_start = initrd_end = 0;
903 		}
904 	}
905 #endif
906 }
907 
908 /*
909  * Setup hardware capabilities.
910  */
911 static void __init setup_hwcaps(void)
912 {
913 	static const int stfl_bits[6] = { 0, 2, 7, 17, 19, 21 };
914 	struct cpuid cpu_id;
915 	int i;
916 
917 	/*
918 	 * The store facility list bits numbers as found in the principles
919 	 * of operation are numbered with bit 1UL<<31 as number 0 to
920 	 * bit 1UL<<0 as number 31.
921 	 *   Bit 0: instructions named N3, "backported" to esa-mode
922 	 *   Bit 2: z/Architecture mode is active
923 	 *   Bit 7: the store-facility-list-extended facility is installed
924 	 *   Bit 17: the message-security assist is installed
925 	 *   Bit 19: the long-displacement facility is installed
926 	 *   Bit 21: the extended-immediate facility is installed
927 	 *   Bit 22: extended-translation facility 3 is installed
928 	 *   Bit 30: extended-translation facility 3 enhancement facility
929 	 * These get translated to:
930 	 *   HWCAP_S390_ESAN3 bit 0, HWCAP_S390_ZARCH bit 1,
931 	 *   HWCAP_S390_STFLE bit 2, HWCAP_S390_MSA bit 3,
932 	 *   HWCAP_S390_LDISP bit 4, HWCAP_S390_EIMM bit 5 and
933 	 *   HWCAP_S390_ETF3EH bit 8 (22 && 30).
934 	 */
935 	for (i = 0; i < 6; i++)
936 		if (test_facility(stfl_bits[i]))
937 			elf_hwcap |= 1UL << i;
938 
939 	if (test_facility(22) && test_facility(30))
940 		elf_hwcap |= HWCAP_S390_ETF3EH;
941 
942 	/*
943 	 * Check for additional facilities with store-facility-list-extended.
944 	 * stfle stores doublewords (8 byte) with bit 1ULL<<63 as bit 0
945 	 * and 1ULL<<0 as bit 63. Bits 0-31 contain the same information
946 	 * as stored by stfl, bits 32-xxx contain additional facilities.
947 	 * How many facility words are stored depends on the number of
948 	 * doublewords passed to the instruction. The additional facilities
949 	 * are:
950 	 *   Bit 42: decimal floating point facility is installed
951 	 *   Bit 44: perform floating point operation facility is installed
952 	 * translated to:
953 	 *   HWCAP_S390_DFP bit 6 (42 && 44).
954 	 */
955 	if ((elf_hwcap & (1UL << 2)) && test_facility(42) && test_facility(44))
956 		elf_hwcap |= HWCAP_S390_DFP;
957 
958 	/*
959 	 * Huge page support HWCAP_S390_HPAGE is bit 7.
960 	 */
961 	if (MACHINE_HAS_HPAGE)
962 		elf_hwcap |= HWCAP_S390_HPAGE;
963 
964 #if defined(CONFIG_64BIT)
965 	/*
966 	 * 64-bit register support for 31-bit processes
967 	 * HWCAP_S390_HIGH_GPRS is bit 9.
968 	 */
969 	elf_hwcap |= HWCAP_S390_HIGH_GPRS;
970 
971 	/*
972 	 * Transactional execution support HWCAP_S390_TE is bit 10.
973 	 */
974 	if (test_facility(50) && test_facility(73))
975 		elf_hwcap |= HWCAP_S390_TE;
976 #endif
977 
978 	get_cpu_id(&cpu_id);
979 	switch (cpu_id.machine) {
980 	case 0x9672:
981 #if !defined(CONFIG_64BIT)
982 	default:	/* Use "g5" as default for 31 bit kernels. */
983 #endif
984 		strcpy(elf_platform, "g5");
985 		break;
986 	case 0x2064:
987 	case 0x2066:
988 #if defined(CONFIG_64BIT)
989 	default:	/* Use "z900" as default for 64 bit kernels. */
990 #endif
991 		strcpy(elf_platform, "z900");
992 		break;
993 	case 0x2084:
994 	case 0x2086:
995 		strcpy(elf_platform, "z990");
996 		break;
997 	case 0x2094:
998 	case 0x2096:
999 		strcpy(elf_platform, "z9-109");
1000 		break;
1001 	case 0x2097:
1002 	case 0x2098:
1003 		strcpy(elf_platform, "z10");
1004 		break;
1005 	case 0x2817:
1006 	case 0x2818:
1007 		strcpy(elf_platform, "z196");
1008 		break;
1009 	case 0x2827:
1010 		strcpy(elf_platform, "zEC12");
1011 		break;
1012 	}
1013 }
1014 
1015 /*
1016  * Setup function called from init/main.c just after the banner
1017  * was printed.
1018  */
1019 
1020 void __init setup_arch(char **cmdline_p)
1021 {
1022         /*
1023          * print what head.S has found out about the machine
1024          */
1025 #ifndef CONFIG_64BIT
1026 	if (MACHINE_IS_VM)
1027 		pr_info("Linux is running as a z/VM "
1028 			"guest operating system in 31-bit mode\n");
1029 	else if (MACHINE_IS_LPAR)
1030 		pr_info("Linux is running natively in 31-bit mode\n");
1031 	if (MACHINE_HAS_IEEE)
1032 		pr_info("The hardware system has IEEE compatible "
1033 			"floating point units\n");
1034 	else
1035 		pr_info("The hardware system has no IEEE compatible "
1036 			"floating point units\n");
1037 #else /* CONFIG_64BIT */
1038 	if (MACHINE_IS_VM)
1039 		pr_info("Linux is running as a z/VM "
1040 			"guest operating system in 64-bit mode\n");
1041 	else if (MACHINE_IS_KVM)
1042 		pr_info("Linux is running under KVM in 64-bit mode\n");
1043 	else if (MACHINE_IS_LPAR)
1044 		pr_info("Linux is running natively in 64-bit mode\n");
1045 #endif /* CONFIG_64BIT */
1046 
1047 	/* Have one command line that is parsed and saved in /proc/cmdline */
1048 	/* boot_command_line has been already set up in early.c */
1049 	*cmdline_p = boot_command_line;
1050 
1051         ROOT_DEV = Root_RAM0;
1052 
1053 	init_mm.start_code = PAGE_OFFSET;
1054 	init_mm.end_code = (unsigned long) &_etext;
1055 	init_mm.end_data = (unsigned long) &_edata;
1056 	init_mm.brk = (unsigned long) &_end;
1057 
1058 	if (MACHINE_HAS_MVCOS)
1059 		memcpy(&uaccess, &uaccess_mvcos, sizeof(uaccess));
1060 	else
1061 		memcpy(&uaccess, &uaccess_std, sizeof(uaccess));
1062 
1063 	parse_early_param();
1064 
1065 	os_info_init();
1066 	setup_ipl();
1067 	setup_memory_end();
1068 	setup_addressing_mode();
1069 	reserve_oldmem();
1070 	reserve_crashkernel();
1071 	setup_memory();
1072 	setup_resources();
1073 	setup_vmcoreinfo();
1074 	setup_lowcore();
1075 
1076         cpu_init();
1077 	s390_init_cpu_topology();
1078 
1079 	/*
1080 	 * Setup capabilities (ELF_HWCAP & ELF_PLATFORM).
1081 	 */
1082 	setup_hwcaps();
1083 
1084 	/*
1085 	 * Create kernel page tables and switch to virtual addressing.
1086 	 */
1087         paging_init();
1088 
1089         /* Setup default console */
1090 	conmode_default();
1091 	set_preferred_console();
1092 
1093 	/* Setup zfcpdump support */
1094 	setup_zfcpdump(console_devno);
1095 }
1096