1 /* 2 * arch/s390/kernel/ptrace.c 3 * 4 * S390 version 5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation 6 * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com), 7 * Martin Schwidefsky (schwidefsky@de.ibm.com) 8 * 9 * Based on PowerPC version 10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 11 * 12 * Derived from "arch/m68k/kernel/ptrace.c" 13 * Copyright (C) 1994 by Hamish Macdonald 14 * Taken from linux/kernel/ptrace.c and modified for M680x0. 15 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds 16 * 17 * Modified by Cort Dougan (cort@cs.nmt.edu) 18 * 19 * 20 * This file is subject to the terms and conditions of the GNU General 21 * Public License. See the file README.legal in the main directory of 22 * this archive for more details. 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/sched.h> 27 #include <linux/mm.h> 28 #include <linux/smp.h> 29 #include <linux/smp_lock.h> 30 #include <linux/errno.h> 31 #include <linux/ptrace.h> 32 #include <linux/user.h> 33 #include <linux/security.h> 34 #include <linux/audit.h> 35 #include <linux/signal.h> 36 37 #include <asm/segment.h> 38 #include <asm/page.h> 39 #include <asm/pgtable.h> 40 #include <asm/pgalloc.h> 41 #include <asm/system.h> 42 #include <asm/uaccess.h> 43 #include <asm/unistd.h> 44 45 #ifdef CONFIG_COMPAT 46 #include "compat_ptrace.h" 47 #endif 48 49 static void 50 FixPerRegisters(struct task_struct *task) 51 { 52 struct pt_regs *regs; 53 per_struct *per_info; 54 55 regs = task_pt_regs(task); 56 per_info = (per_struct *) &task->thread.per_info; 57 per_info->control_regs.bits.em_instruction_fetch = 58 per_info->single_step | per_info->instruction_fetch; 59 60 if (per_info->single_step) { 61 per_info->control_regs.bits.starting_addr = 0; 62 #ifdef CONFIG_COMPAT 63 if (test_thread_flag(TIF_31BIT)) 64 per_info->control_regs.bits.ending_addr = 0x7fffffffUL; 65 else 66 #endif 67 per_info->control_regs.bits.ending_addr = PSW_ADDR_INSN; 68 } else { 69 per_info->control_regs.bits.starting_addr = 70 per_info->starting_addr; 71 per_info->control_regs.bits.ending_addr = 72 per_info->ending_addr; 73 } 74 /* 75 * if any of the control reg tracing bits are on 76 * we switch on per in the psw 77 */ 78 if (per_info->control_regs.words.cr[0] & PER_EM_MASK) 79 regs->psw.mask |= PSW_MASK_PER; 80 else 81 regs->psw.mask &= ~PSW_MASK_PER; 82 83 if (per_info->control_regs.bits.em_storage_alteration) 84 per_info->control_regs.bits.storage_alt_space_ctl = 1; 85 else 86 per_info->control_regs.bits.storage_alt_space_ctl = 0; 87 } 88 89 void 90 set_single_step(struct task_struct *task) 91 { 92 task->thread.per_info.single_step = 1; 93 FixPerRegisters(task); 94 } 95 96 void 97 clear_single_step(struct task_struct *task) 98 { 99 task->thread.per_info.single_step = 0; 100 FixPerRegisters(task); 101 } 102 103 /* 104 * Called by kernel/ptrace.c when detaching.. 105 * 106 * Make sure single step bits etc are not set. 107 */ 108 void 109 ptrace_disable(struct task_struct *child) 110 { 111 /* make sure the single step bit is not set. */ 112 clear_single_step(child); 113 } 114 115 #ifndef CONFIG_64BIT 116 # define __ADDR_MASK 3 117 #else 118 # define __ADDR_MASK 7 119 #endif 120 121 /* 122 * Read the word at offset addr from the user area of a process. The 123 * trouble here is that the information is littered over different 124 * locations. The process registers are found on the kernel stack, 125 * the floating point stuff and the trace settings are stored in 126 * the task structure. In addition the different structures in 127 * struct user contain pad bytes that should be read as zeroes. 128 * Lovely... 129 */ 130 static int 131 peek_user(struct task_struct *child, addr_t addr, addr_t data) 132 { 133 struct user *dummy = NULL; 134 addr_t offset, tmp, mask; 135 136 /* 137 * Stupid gdb peeks/pokes the access registers in 64 bit with 138 * an alignment of 4. Programmers from hell... 139 */ 140 mask = __ADDR_MASK; 141 #ifdef CONFIG_64BIT 142 if (addr >= (addr_t) &dummy->regs.acrs && 143 addr < (addr_t) &dummy->regs.orig_gpr2) 144 mask = 3; 145 #endif 146 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK) 147 return -EIO; 148 149 if (addr < (addr_t) &dummy->regs.acrs) { 150 /* 151 * psw and gprs are stored on the stack 152 */ 153 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr); 154 if (addr == (addr_t) &dummy->regs.psw.mask) 155 /* Remove per bit from user psw. */ 156 tmp &= ~PSW_MASK_PER; 157 158 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) { 159 /* 160 * access registers are stored in the thread structure 161 */ 162 offset = addr - (addr_t) &dummy->regs.acrs; 163 #ifdef CONFIG_64BIT 164 /* 165 * Very special case: old & broken 64 bit gdb reading 166 * from acrs[15]. Result is a 64 bit value. Read the 167 * 32 bit acrs[15] value and shift it by 32. Sick... 168 */ 169 if (addr == (addr_t) &dummy->regs.acrs[15]) 170 tmp = ((unsigned long) child->thread.acrs[15]) << 32; 171 else 172 #endif 173 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset); 174 175 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) { 176 /* 177 * orig_gpr2 is stored on the kernel stack 178 */ 179 tmp = (addr_t) task_pt_regs(child)->orig_gpr2; 180 181 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) { 182 /* 183 * floating point regs. are stored in the thread structure 184 */ 185 offset = addr - (addr_t) &dummy->regs.fp_regs; 186 tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset); 187 if (addr == (addr_t) &dummy->regs.fp_regs.fpc) 188 tmp &= (unsigned long) FPC_VALID_MASK 189 << (BITS_PER_LONG - 32); 190 191 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) { 192 /* 193 * per_info is found in the thread structure 194 */ 195 offset = addr - (addr_t) &dummy->regs.per_info; 196 tmp = *(addr_t *)((addr_t) &child->thread.per_info + offset); 197 198 } else 199 tmp = 0; 200 201 return put_user(tmp, (addr_t __user *) data); 202 } 203 204 /* 205 * Write a word to the user area of a process at location addr. This 206 * operation does have an additional problem compared to peek_user. 207 * Stores to the program status word and on the floating point 208 * control register needs to get checked for validity. 209 */ 210 static int 211 poke_user(struct task_struct *child, addr_t addr, addr_t data) 212 { 213 struct user *dummy = NULL; 214 addr_t offset, mask; 215 216 /* 217 * Stupid gdb peeks/pokes the access registers in 64 bit with 218 * an alignment of 4. Programmers from hell indeed... 219 */ 220 mask = __ADDR_MASK; 221 #ifdef CONFIG_64BIT 222 if (addr >= (addr_t) &dummy->regs.acrs && 223 addr < (addr_t) &dummy->regs.orig_gpr2) 224 mask = 3; 225 #endif 226 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK) 227 return -EIO; 228 229 if (addr < (addr_t) &dummy->regs.acrs) { 230 /* 231 * psw and gprs are stored on the stack 232 */ 233 if (addr == (addr_t) &dummy->regs.psw.mask && 234 #ifdef CONFIG_COMPAT 235 data != PSW_MASK_MERGE(PSW_USER32_BITS, data) && 236 #endif 237 data != PSW_MASK_MERGE(PSW_USER_BITS, data)) 238 /* Invalid psw mask. */ 239 return -EINVAL; 240 #ifndef CONFIG_64BIT 241 if (addr == (addr_t) &dummy->regs.psw.addr) 242 /* I'd like to reject addresses without the 243 high order bit but older gdb's rely on it */ 244 data |= PSW_ADDR_AMODE; 245 #endif 246 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data; 247 248 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) { 249 /* 250 * access registers are stored in the thread structure 251 */ 252 offset = addr - (addr_t) &dummy->regs.acrs; 253 #ifdef CONFIG_64BIT 254 /* 255 * Very special case: old & broken 64 bit gdb writing 256 * to acrs[15] with a 64 bit value. Ignore the lower 257 * half of the value and write the upper 32 bit to 258 * acrs[15]. Sick... 259 */ 260 if (addr == (addr_t) &dummy->regs.acrs[15]) 261 child->thread.acrs[15] = (unsigned int) (data >> 32); 262 else 263 #endif 264 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data; 265 266 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) { 267 /* 268 * orig_gpr2 is stored on the kernel stack 269 */ 270 task_pt_regs(child)->orig_gpr2 = data; 271 272 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) { 273 /* 274 * floating point regs. are stored in the thread structure 275 */ 276 if (addr == (addr_t) &dummy->regs.fp_regs.fpc && 277 (data & ~((unsigned long) FPC_VALID_MASK 278 << (BITS_PER_LONG - 32))) != 0) 279 return -EINVAL; 280 offset = addr - (addr_t) &dummy->regs.fp_regs; 281 *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data; 282 283 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) { 284 /* 285 * per_info is found in the thread structure 286 */ 287 offset = addr - (addr_t) &dummy->regs.per_info; 288 *(addr_t *)((addr_t) &child->thread.per_info + offset) = data; 289 290 } 291 292 FixPerRegisters(child); 293 return 0; 294 } 295 296 static int 297 do_ptrace_normal(struct task_struct *child, long request, long addr, long data) 298 { 299 unsigned long tmp; 300 ptrace_area parea; 301 int copied, ret; 302 303 switch (request) { 304 case PTRACE_PEEKTEXT: 305 case PTRACE_PEEKDATA: 306 /* Remove high order bit from address (only for 31 bit). */ 307 addr &= PSW_ADDR_INSN; 308 /* read word at location addr. */ 309 copied = access_process_vm(child, addr, &tmp, sizeof(tmp), 0); 310 if (copied != sizeof(tmp)) 311 return -EIO; 312 return put_user(tmp, (unsigned long __user *) data); 313 314 case PTRACE_PEEKUSR: 315 /* read the word at location addr in the USER area. */ 316 return peek_user(child, addr, data); 317 318 case PTRACE_POKETEXT: 319 case PTRACE_POKEDATA: 320 /* Remove high order bit from address (only for 31 bit). */ 321 addr &= PSW_ADDR_INSN; 322 /* write the word at location addr. */ 323 copied = access_process_vm(child, addr, &data, sizeof(data),1); 324 if (copied != sizeof(data)) 325 return -EIO; 326 return 0; 327 328 case PTRACE_POKEUSR: 329 /* write the word at location addr in the USER area */ 330 return poke_user(child, addr, data); 331 332 case PTRACE_PEEKUSR_AREA: 333 case PTRACE_POKEUSR_AREA: 334 if (copy_from_user(&parea, (void __user *) addr, 335 sizeof(parea))) 336 return -EFAULT; 337 addr = parea.kernel_addr; 338 data = parea.process_addr; 339 copied = 0; 340 while (copied < parea.len) { 341 if (request == PTRACE_PEEKUSR_AREA) 342 ret = peek_user(child, addr, data); 343 else { 344 addr_t tmp; 345 if (get_user (tmp, (addr_t __user *) data)) 346 return -EFAULT; 347 ret = poke_user(child, addr, tmp); 348 } 349 if (ret) 350 return ret; 351 addr += sizeof(unsigned long); 352 data += sizeof(unsigned long); 353 copied += sizeof(unsigned long); 354 } 355 return 0; 356 } 357 return ptrace_request(child, request, addr, data); 358 } 359 360 #ifdef CONFIG_COMPAT 361 /* 362 * Now the fun part starts... a 31 bit program running in the 363 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT, 364 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy 365 * to handle, the difference to the 64 bit versions of the requests 366 * is that the access is done in multiples of 4 byte instead of 367 * 8 bytes (sizeof(unsigned long) on 31/64 bit). 368 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA, 369 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program 370 * is a 31 bit program too, the content of struct user can be 371 * emulated. A 31 bit program peeking into the struct user of 372 * a 64 bit program is a no-no. 373 */ 374 375 /* 376 * Same as peek_user but for a 31 bit program. 377 */ 378 static int 379 peek_user_emu31(struct task_struct *child, addr_t addr, addr_t data) 380 { 381 struct user32 *dummy32 = NULL; 382 per_struct32 *dummy_per32 = NULL; 383 addr_t offset; 384 __u32 tmp; 385 386 if (!test_thread_flag(TIF_31BIT) || 387 (addr & 3) || addr > sizeof(struct user) - 3) 388 return -EIO; 389 390 if (addr < (addr_t) &dummy32->regs.acrs) { 391 /* 392 * psw and gprs are stored on the stack 393 */ 394 if (addr == (addr_t) &dummy32->regs.psw.mask) { 395 /* Fake a 31 bit psw mask. */ 396 tmp = (__u32)(task_pt_regs(child)->psw.mask >> 32); 397 tmp = PSW32_MASK_MERGE(PSW32_USER_BITS, tmp); 398 } else if (addr == (addr_t) &dummy32->regs.psw.addr) { 399 /* Fake a 31 bit psw address. */ 400 tmp = (__u32) task_pt_regs(child)->psw.addr | 401 PSW32_ADDR_AMODE31; 402 } else { 403 /* gpr 0-15 */ 404 tmp = *(__u32 *)((addr_t) &task_pt_regs(child)->psw + 405 addr*2 + 4); 406 } 407 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) { 408 /* 409 * access registers are stored in the thread structure 410 */ 411 offset = addr - (addr_t) &dummy32->regs.acrs; 412 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset); 413 414 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) { 415 /* 416 * orig_gpr2 is stored on the kernel stack 417 */ 418 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4); 419 420 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) { 421 /* 422 * floating point regs. are stored in the thread structure 423 */ 424 offset = addr - (addr_t) &dummy32->regs.fp_regs; 425 tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset); 426 427 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) { 428 /* 429 * per_info is found in the thread structure 430 */ 431 offset = addr - (addr_t) &dummy32->regs.per_info; 432 /* This is magic. See per_struct and per_struct32. */ 433 if ((offset >= (addr_t) &dummy_per32->control_regs && 434 offset < (addr_t) (&dummy_per32->control_regs + 1)) || 435 (offset >= (addr_t) &dummy_per32->starting_addr && 436 offset <= (addr_t) &dummy_per32->ending_addr) || 437 offset == (addr_t) &dummy_per32->lowcore.words.address) 438 offset = offset*2 + 4; 439 else 440 offset = offset*2; 441 tmp = *(__u32 *)((addr_t) &child->thread.per_info + offset); 442 443 } else 444 tmp = 0; 445 446 return put_user(tmp, (__u32 __user *) data); 447 } 448 449 /* 450 * Same as poke_user but for a 31 bit program. 451 */ 452 static int 453 poke_user_emu31(struct task_struct *child, addr_t addr, addr_t data) 454 { 455 struct user32 *dummy32 = NULL; 456 per_struct32 *dummy_per32 = NULL; 457 addr_t offset; 458 __u32 tmp; 459 460 if (!test_thread_flag(TIF_31BIT) || 461 (addr & 3) || addr > sizeof(struct user32) - 3) 462 return -EIO; 463 464 tmp = (__u32) data; 465 466 if (addr < (addr_t) &dummy32->regs.acrs) { 467 /* 468 * psw, gprs, acrs and orig_gpr2 are stored on the stack 469 */ 470 if (addr == (addr_t) &dummy32->regs.psw.mask) { 471 /* Build a 64 bit psw mask from 31 bit mask. */ 472 if (tmp != PSW32_MASK_MERGE(PSW32_USER_BITS, tmp)) 473 /* Invalid psw mask. */ 474 return -EINVAL; 475 task_pt_regs(child)->psw.mask = 476 PSW_MASK_MERGE(PSW_USER32_BITS, (__u64) tmp << 32); 477 } else if (addr == (addr_t) &dummy32->regs.psw.addr) { 478 /* Build a 64 bit psw address from 31 bit address. */ 479 task_pt_regs(child)->psw.addr = 480 (__u64) tmp & PSW32_ADDR_INSN; 481 } else { 482 /* gpr 0-15 */ 483 *(__u32*)((addr_t) &task_pt_regs(child)->psw 484 + addr*2 + 4) = tmp; 485 } 486 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) { 487 /* 488 * access registers are stored in the thread structure 489 */ 490 offset = addr - (addr_t) &dummy32->regs.acrs; 491 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp; 492 493 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) { 494 /* 495 * orig_gpr2 is stored on the kernel stack 496 */ 497 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp; 498 499 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) { 500 /* 501 * floating point regs. are stored in the thread structure 502 */ 503 if (addr == (addr_t) &dummy32->regs.fp_regs.fpc && 504 (tmp & ~FPC_VALID_MASK) != 0) 505 /* Invalid floating point control. */ 506 return -EINVAL; 507 offset = addr - (addr_t) &dummy32->regs.fp_regs; 508 *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp; 509 510 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) { 511 /* 512 * per_info is found in the thread structure. 513 */ 514 offset = addr - (addr_t) &dummy32->regs.per_info; 515 /* 516 * This is magic. See per_struct and per_struct32. 517 * By incident the offsets in per_struct are exactly 518 * twice the offsets in per_struct32 for all fields. 519 * The 8 byte fields need special handling though, 520 * because the second half (bytes 4-7) is needed and 521 * not the first half. 522 */ 523 if ((offset >= (addr_t) &dummy_per32->control_regs && 524 offset < (addr_t) (&dummy_per32->control_regs + 1)) || 525 (offset >= (addr_t) &dummy_per32->starting_addr && 526 offset <= (addr_t) &dummy_per32->ending_addr) || 527 offset == (addr_t) &dummy_per32->lowcore.words.address) 528 offset = offset*2 + 4; 529 else 530 offset = offset*2; 531 *(__u32 *)((addr_t) &child->thread.per_info + offset) = tmp; 532 533 } 534 535 FixPerRegisters(child); 536 return 0; 537 } 538 539 static int 540 do_ptrace_emu31(struct task_struct *child, long request, long addr, long data) 541 { 542 unsigned int tmp; /* 4 bytes !! */ 543 ptrace_area_emu31 parea; 544 int copied, ret; 545 546 switch (request) { 547 case PTRACE_PEEKTEXT: 548 case PTRACE_PEEKDATA: 549 /* read word at location addr. */ 550 copied = access_process_vm(child, addr, &tmp, sizeof(tmp), 0); 551 if (copied != sizeof(tmp)) 552 return -EIO; 553 return put_user(tmp, (unsigned int __user *) data); 554 555 case PTRACE_PEEKUSR: 556 /* read the word at location addr in the USER area. */ 557 return peek_user_emu31(child, addr, data); 558 559 case PTRACE_POKETEXT: 560 case PTRACE_POKEDATA: 561 /* write the word at location addr. */ 562 tmp = data; 563 copied = access_process_vm(child, addr, &tmp, sizeof(tmp), 1); 564 if (copied != sizeof(tmp)) 565 return -EIO; 566 return 0; 567 568 case PTRACE_POKEUSR: 569 /* write the word at location addr in the USER area */ 570 return poke_user_emu31(child, addr, data); 571 572 case PTRACE_PEEKUSR_AREA: 573 case PTRACE_POKEUSR_AREA: 574 if (copy_from_user(&parea, (void __user *) addr, 575 sizeof(parea))) 576 return -EFAULT; 577 addr = parea.kernel_addr; 578 data = parea.process_addr; 579 copied = 0; 580 while (copied < parea.len) { 581 if (request == PTRACE_PEEKUSR_AREA) 582 ret = peek_user_emu31(child, addr, data); 583 else { 584 __u32 tmp; 585 if (get_user (tmp, (__u32 __user *) data)) 586 return -EFAULT; 587 ret = poke_user_emu31(child, addr, tmp); 588 } 589 if (ret) 590 return ret; 591 addr += sizeof(unsigned int); 592 data += sizeof(unsigned int); 593 copied += sizeof(unsigned int); 594 } 595 return 0; 596 case PTRACE_GETEVENTMSG: 597 return put_user((__u32) child->ptrace_message, 598 (unsigned int __user *) data); 599 case PTRACE_GETSIGINFO: 600 if (child->last_siginfo == NULL) 601 return -EINVAL; 602 return copy_siginfo_to_user32((compat_siginfo_t __user *) data, 603 child->last_siginfo); 604 case PTRACE_SETSIGINFO: 605 if (child->last_siginfo == NULL) 606 return -EINVAL; 607 return copy_siginfo_from_user32(child->last_siginfo, 608 (compat_siginfo_t __user *) data); 609 } 610 return ptrace_request(child, request, addr, data); 611 } 612 #endif 613 614 #define PT32_IEEE_IP 0x13c 615 616 static int 617 do_ptrace(struct task_struct *child, long request, long addr, long data) 618 { 619 int ret; 620 621 if (request == PTRACE_ATTACH) 622 return ptrace_attach(child); 623 624 /* 625 * Special cases to get/store the ieee instructions pointer. 626 */ 627 if (child == current) { 628 if (request == PTRACE_PEEKUSR && addr == PT_IEEE_IP) 629 return peek_user(child, addr, data); 630 if (request == PTRACE_POKEUSR && addr == PT_IEEE_IP) 631 return poke_user(child, addr, data); 632 #ifdef CONFIG_COMPAT 633 if (request == PTRACE_PEEKUSR && 634 addr == PT32_IEEE_IP && test_thread_flag(TIF_31BIT)) 635 return peek_user_emu31(child, addr, data); 636 if (request == PTRACE_POKEUSR && 637 addr == PT32_IEEE_IP && test_thread_flag(TIF_31BIT)) 638 return poke_user_emu31(child, addr, data); 639 #endif 640 } 641 642 ret = ptrace_check_attach(child, request == PTRACE_KILL); 643 if (ret < 0) 644 return ret; 645 646 switch (request) { 647 case PTRACE_SYSCALL: 648 /* continue and stop at next (return from) syscall */ 649 case PTRACE_CONT: 650 /* restart after signal. */ 651 if (!valid_signal(data)) 652 return -EIO; 653 if (request == PTRACE_SYSCALL) 654 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE); 655 else 656 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); 657 child->exit_code = data; 658 /* make sure the single step bit is not set. */ 659 clear_single_step(child); 660 wake_up_process(child); 661 return 0; 662 663 case PTRACE_KILL: 664 /* 665 * make the child exit. Best I can do is send it a sigkill. 666 * perhaps it should be put in the status that it wants to 667 * exit. 668 */ 669 if (child->exit_state == EXIT_ZOMBIE) /* already dead */ 670 return 0; 671 child->exit_code = SIGKILL; 672 /* make sure the single step bit is not set. */ 673 clear_single_step(child); 674 wake_up_process(child); 675 return 0; 676 677 case PTRACE_SINGLESTEP: 678 /* set the trap flag. */ 679 if (!valid_signal(data)) 680 return -EIO; 681 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); 682 child->exit_code = data; 683 if (data) 684 set_tsk_thread_flag(child, TIF_SINGLE_STEP); 685 else 686 set_single_step(child); 687 /* give it a chance to run. */ 688 wake_up_process(child); 689 return 0; 690 691 case PTRACE_DETACH: 692 /* detach a process that was attached. */ 693 return ptrace_detach(child, data); 694 695 696 /* Do requests that differ for 31/64 bit */ 697 default: 698 #ifdef CONFIG_COMPAT 699 if (test_thread_flag(TIF_31BIT)) 700 return do_ptrace_emu31(child, request, addr, data); 701 #endif 702 return do_ptrace_normal(child, request, addr, data); 703 } 704 /* Not reached. */ 705 return -EIO; 706 } 707 708 asmlinkage long 709 sys_ptrace(long request, long pid, long addr, long data) 710 { 711 struct task_struct *child; 712 int ret; 713 714 lock_kernel(); 715 if (request == PTRACE_TRACEME) { 716 ret = ptrace_traceme(); 717 goto out; 718 } 719 720 child = ptrace_get_task_struct(pid); 721 if (IS_ERR(child)) { 722 ret = PTR_ERR(child); 723 goto out; 724 } 725 726 ret = do_ptrace(child, request, addr, data); 727 put_task_struct(child); 728 out: 729 unlock_kernel(); 730 return ret; 731 } 732 733 asmlinkage void 734 syscall_trace(struct pt_regs *regs, int entryexit) 735 { 736 if (unlikely(current->audit_context) && entryexit) 737 audit_syscall_exit(AUDITSC_RESULT(regs->gprs[2]), regs->gprs[2]); 738 739 if (!test_thread_flag(TIF_SYSCALL_TRACE)) 740 goto out; 741 if (!(current->ptrace & PT_PTRACED)) 742 goto out; 743 ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) 744 ? 0x80 : 0)); 745 746 /* 747 * If the debuffer has set an invalid system call number, 748 * we prepare to skip the system call restart handling. 749 */ 750 if (!entryexit && regs->gprs[2] >= NR_syscalls) 751 regs->trap = -1; 752 753 /* 754 * this isn't the same as continuing with a signal, but it will do 755 * for normal use. strace only continues with a signal if the 756 * stopping signal is not SIGTRAP. -brl 757 */ 758 if (current->exit_code) { 759 send_sig(current->exit_code, current, 1); 760 current->exit_code = 0; 761 } 762 out: 763 if (unlikely(current->audit_context) && !entryexit) 764 audit_syscall_entry(test_thread_flag(TIF_31BIT)?AUDIT_ARCH_S390:AUDIT_ARCH_S390X, 765 regs->gprs[2], regs->orig_gpr2, regs->gprs[3], 766 regs->gprs[4], regs->gprs[5]); 767 } 768