xref: /linux/arch/s390/kernel/ptrace.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  *  Ptrace user space interface.
3  *
4  *    Copyright IBM Corp. 1999,2010
5  *    Author(s): Denis Joseph Barrow
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <trace/syscall.h>
24 #include <asm/compat.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/system.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
32 #include "entry.h"
33 
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40 
41 enum s390_regset {
42 	REGSET_GENERAL,
43 	REGSET_FP,
44 	REGSET_LAST_BREAK,
45 	REGSET_SYSTEM_CALL,
46 	REGSET_GENERAL_EXTENDED,
47 };
48 
49 void update_per_regs(struct task_struct *task)
50 {
51 	struct pt_regs *regs = task_pt_regs(task);
52 	struct thread_struct *thread = &task->thread;
53 	struct per_regs old, new;
54 
55 	/* Copy user specified PER registers */
56 	new.control = thread->per_user.control;
57 	new.start = thread->per_user.start;
58 	new.end = thread->per_user.end;
59 
60 	/* merge TIF_SINGLE_STEP into user specified PER registers. */
61 	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
62 		new.control |= PER_EVENT_IFETCH;
63 		new.start = 0;
64 		new.end = PSW_ADDR_INSN;
65 	}
66 
67 	/* Take care of the PER enablement bit in the PSW. */
68 	if (!(new.control & PER_EVENT_MASK)) {
69 		regs->psw.mask &= ~PSW_MASK_PER;
70 		return;
71 	}
72 	regs->psw.mask |= PSW_MASK_PER;
73 	__ctl_store(old, 9, 11);
74 	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
75 		__ctl_load(new, 9, 11);
76 }
77 
78 void user_enable_single_step(struct task_struct *task)
79 {
80 	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
81 	if (task == current)
82 		update_per_regs(task);
83 }
84 
85 void user_disable_single_step(struct task_struct *task)
86 {
87 	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
88 	if (task == current)
89 		update_per_regs(task);
90 }
91 
92 /*
93  * Called by kernel/ptrace.c when detaching..
94  *
95  * Clear all debugging related fields.
96  */
97 void ptrace_disable(struct task_struct *task)
98 {
99 	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
100 	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
101 	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
102 	clear_tsk_thread_flag(task, TIF_PER_TRAP);
103 }
104 
105 #ifndef CONFIG_64BIT
106 # define __ADDR_MASK 3
107 #else
108 # define __ADDR_MASK 7
109 #endif
110 
111 static inline unsigned long __peek_user_per(struct task_struct *child,
112 					    addr_t addr)
113 {
114 	struct per_struct_kernel *dummy = NULL;
115 
116 	if (addr == (addr_t) &dummy->cr9)
117 		/* Control bits of the active per set. */
118 		return test_thread_flag(TIF_SINGLE_STEP) ?
119 			PER_EVENT_IFETCH : child->thread.per_user.control;
120 	else if (addr == (addr_t) &dummy->cr10)
121 		/* Start address of the active per set. */
122 		return test_thread_flag(TIF_SINGLE_STEP) ?
123 			0 : child->thread.per_user.start;
124 	else if (addr == (addr_t) &dummy->cr11)
125 		/* End address of the active per set. */
126 		return test_thread_flag(TIF_SINGLE_STEP) ?
127 			PSW_ADDR_INSN : child->thread.per_user.end;
128 	else if (addr == (addr_t) &dummy->bits)
129 		/* Single-step bit. */
130 		return test_thread_flag(TIF_SINGLE_STEP) ?
131 			(1UL << (BITS_PER_LONG - 1)) : 0;
132 	else if (addr == (addr_t) &dummy->starting_addr)
133 		/* Start address of the user specified per set. */
134 		return child->thread.per_user.start;
135 	else if (addr == (addr_t) &dummy->ending_addr)
136 		/* End address of the user specified per set. */
137 		return child->thread.per_user.end;
138 	else if (addr == (addr_t) &dummy->perc_atmid)
139 		/* PER code, ATMID and AI of the last PER trap */
140 		return (unsigned long)
141 			child->thread.per_event.cause << (BITS_PER_LONG - 16);
142 	else if (addr == (addr_t) &dummy->address)
143 		/* Address of the last PER trap */
144 		return child->thread.per_event.address;
145 	else if (addr == (addr_t) &dummy->access_id)
146 		/* Access id of the last PER trap */
147 		return (unsigned long)
148 			child->thread.per_event.paid << (BITS_PER_LONG - 8);
149 	return 0;
150 }
151 
152 /*
153  * Read the word at offset addr from the user area of a process. The
154  * trouble here is that the information is littered over different
155  * locations. The process registers are found on the kernel stack,
156  * the floating point stuff and the trace settings are stored in
157  * the task structure. In addition the different structures in
158  * struct user contain pad bytes that should be read as zeroes.
159  * Lovely...
160  */
161 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
162 {
163 	struct user *dummy = NULL;
164 	addr_t offset, tmp;
165 
166 	if (addr < (addr_t) &dummy->regs.acrs) {
167 		/*
168 		 * psw and gprs are stored on the stack
169 		 */
170 		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
171 		if (addr == (addr_t) &dummy->regs.psw.mask)
172 			/* Return a clean psw mask. */
173 			tmp = psw_user_bits | (tmp & PSW_MASK_USER);
174 
175 	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
176 		/*
177 		 * access registers are stored in the thread structure
178 		 */
179 		offset = addr - (addr_t) &dummy->regs.acrs;
180 #ifdef CONFIG_64BIT
181 		/*
182 		 * Very special case: old & broken 64 bit gdb reading
183 		 * from acrs[15]. Result is a 64 bit value. Read the
184 		 * 32 bit acrs[15] value and shift it by 32. Sick...
185 		 */
186 		if (addr == (addr_t) &dummy->regs.acrs[15])
187 			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
188 		else
189 #endif
190 		tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
191 
192 	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
193 		/*
194 		 * orig_gpr2 is stored on the kernel stack
195 		 */
196 		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
197 
198 	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
199 		/*
200 		 * prevent reads of padding hole between
201 		 * orig_gpr2 and fp_regs on s390.
202 		 */
203 		tmp = 0;
204 
205 	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
206 		/*
207 		 * floating point regs. are stored in the thread structure
208 		 */
209 		offset = addr - (addr_t) &dummy->regs.fp_regs;
210 		tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
211 		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
212 			tmp &= (unsigned long) FPC_VALID_MASK
213 				<< (BITS_PER_LONG - 32);
214 
215 	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
216 		/*
217 		 * Handle access to the per_info structure.
218 		 */
219 		addr -= (addr_t) &dummy->regs.per_info;
220 		tmp = __peek_user_per(child, addr);
221 
222 	} else
223 		tmp = 0;
224 
225 	return tmp;
226 }
227 
228 static int
229 peek_user(struct task_struct *child, addr_t addr, addr_t data)
230 {
231 	addr_t tmp, mask;
232 
233 	/*
234 	 * Stupid gdb peeks/pokes the access registers in 64 bit with
235 	 * an alignment of 4. Programmers from hell...
236 	 */
237 	mask = __ADDR_MASK;
238 #ifdef CONFIG_64BIT
239 	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
240 	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
241 		mask = 3;
242 #endif
243 	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
244 		return -EIO;
245 
246 	tmp = __peek_user(child, addr);
247 	return put_user(tmp, (addr_t __user *) data);
248 }
249 
250 static inline void __poke_user_per(struct task_struct *child,
251 				   addr_t addr, addr_t data)
252 {
253 	struct per_struct_kernel *dummy = NULL;
254 
255 	/*
256 	 * There are only three fields in the per_info struct that the
257 	 * debugger user can write to.
258 	 * 1) cr9: the debugger wants to set a new PER event mask
259 	 * 2) starting_addr: the debugger wants to set a new starting
260 	 *    address to use with the PER event mask.
261 	 * 3) ending_addr: the debugger wants to set a new ending
262 	 *    address to use with the PER event mask.
263 	 * The user specified PER event mask and the start and end
264 	 * addresses are used only if single stepping is not in effect.
265 	 * Writes to any other field in per_info are ignored.
266 	 */
267 	if (addr == (addr_t) &dummy->cr9)
268 		/* PER event mask of the user specified per set. */
269 		child->thread.per_user.control =
270 			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
271 	else if (addr == (addr_t) &dummy->starting_addr)
272 		/* Starting address of the user specified per set. */
273 		child->thread.per_user.start = data;
274 	else if (addr == (addr_t) &dummy->ending_addr)
275 		/* Ending address of the user specified per set. */
276 		child->thread.per_user.end = data;
277 }
278 
279 /*
280  * Write a word to the user area of a process at location addr. This
281  * operation does have an additional problem compared to peek_user.
282  * Stores to the program status word and on the floating point
283  * control register needs to get checked for validity.
284  */
285 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
286 {
287 	struct user *dummy = NULL;
288 	addr_t offset;
289 
290 	if (addr < (addr_t) &dummy->regs.acrs) {
291 		/*
292 		 * psw and gprs are stored on the stack
293 		 */
294 		if (addr == (addr_t) &dummy->regs.psw.mask &&
295 		    ((data & ~PSW_MASK_USER) != psw_user_bits ||
296 		     ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))))
297 			/* Invalid psw mask. */
298 			return -EINVAL;
299 		if (addr == (addr_t) &dummy->regs.psw.addr)
300 			/*
301 			 * The debugger changed the instruction address,
302 			 * reset system call restart, see signal.c:do_signal
303 			 */
304 			task_thread_info(child)->system_call = 0;
305 
306 		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
307 
308 	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
309 		/*
310 		 * access registers are stored in the thread structure
311 		 */
312 		offset = addr - (addr_t) &dummy->regs.acrs;
313 #ifdef CONFIG_64BIT
314 		/*
315 		 * Very special case: old & broken 64 bit gdb writing
316 		 * to acrs[15] with a 64 bit value. Ignore the lower
317 		 * half of the value and write the upper 32 bit to
318 		 * acrs[15]. Sick...
319 		 */
320 		if (addr == (addr_t) &dummy->regs.acrs[15])
321 			child->thread.acrs[15] = (unsigned int) (data >> 32);
322 		else
323 #endif
324 		*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
325 
326 	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
327 		/*
328 		 * orig_gpr2 is stored on the kernel stack
329 		 */
330 		task_pt_regs(child)->orig_gpr2 = data;
331 
332 	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
333 		/*
334 		 * prevent writes of padding hole between
335 		 * orig_gpr2 and fp_regs on s390.
336 		 */
337 		return 0;
338 
339 	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
340 		/*
341 		 * floating point regs. are stored in the thread structure
342 		 */
343 		if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
344 		    (data & ~((unsigned long) FPC_VALID_MASK
345 			      << (BITS_PER_LONG - 32))) != 0)
346 			return -EINVAL;
347 		offset = addr - (addr_t) &dummy->regs.fp_regs;
348 		*(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
349 
350 	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
351 		/*
352 		 * Handle access to the per_info structure.
353 		 */
354 		addr -= (addr_t) &dummy->regs.per_info;
355 		__poke_user_per(child, addr, data);
356 
357 	}
358 
359 	return 0;
360 }
361 
362 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
363 {
364 	addr_t mask;
365 
366 	/*
367 	 * Stupid gdb peeks/pokes the access registers in 64 bit with
368 	 * an alignment of 4. Programmers from hell indeed...
369 	 */
370 	mask = __ADDR_MASK;
371 #ifdef CONFIG_64BIT
372 	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
373 	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
374 		mask = 3;
375 #endif
376 	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
377 		return -EIO;
378 
379 	return __poke_user(child, addr, data);
380 }
381 
382 long arch_ptrace(struct task_struct *child, long request,
383 		 unsigned long addr, unsigned long data)
384 {
385 	ptrace_area parea;
386 	int copied, ret;
387 
388 	switch (request) {
389 	case PTRACE_PEEKUSR:
390 		/* read the word at location addr in the USER area. */
391 		return peek_user(child, addr, data);
392 
393 	case PTRACE_POKEUSR:
394 		/* write the word at location addr in the USER area */
395 		return poke_user(child, addr, data);
396 
397 	case PTRACE_PEEKUSR_AREA:
398 	case PTRACE_POKEUSR_AREA:
399 		if (copy_from_user(&parea, (void __force __user *) addr,
400 							sizeof(parea)))
401 			return -EFAULT;
402 		addr = parea.kernel_addr;
403 		data = parea.process_addr;
404 		copied = 0;
405 		while (copied < parea.len) {
406 			if (request == PTRACE_PEEKUSR_AREA)
407 				ret = peek_user(child, addr, data);
408 			else {
409 				addr_t utmp;
410 				if (get_user(utmp,
411 					     (addr_t __force __user *) data))
412 					return -EFAULT;
413 				ret = poke_user(child, addr, utmp);
414 			}
415 			if (ret)
416 				return ret;
417 			addr += sizeof(unsigned long);
418 			data += sizeof(unsigned long);
419 			copied += sizeof(unsigned long);
420 		}
421 		return 0;
422 	case PTRACE_GET_LAST_BREAK:
423 		put_user(task_thread_info(child)->last_break,
424 			 (unsigned long __user *) data);
425 		return 0;
426 	default:
427 		/* Removing high order bit from addr (only for 31 bit). */
428 		addr &= PSW_ADDR_INSN;
429 		return ptrace_request(child, request, addr, data);
430 	}
431 }
432 
433 #ifdef CONFIG_COMPAT
434 /*
435  * Now the fun part starts... a 31 bit program running in the
436  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
437  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
438  * to handle, the difference to the 64 bit versions of the requests
439  * is that the access is done in multiples of 4 byte instead of
440  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
441  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
442  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
443  * is a 31 bit program too, the content of struct user can be
444  * emulated. A 31 bit program peeking into the struct user of
445  * a 64 bit program is a no-no.
446  */
447 
448 /*
449  * Same as peek_user_per but for a 31 bit program.
450  */
451 static inline __u32 __peek_user_per_compat(struct task_struct *child,
452 					   addr_t addr)
453 {
454 	struct compat_per_struct_kernel *dummy32 = NULL;
455 
456 	if (addr == (addr_t) &dummy32->cr9)
457 		/* Control bits of the active per set. */
458 		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
459 			PER_EVENT_IFETCH : child->thread.per_user.control;
460 	else if (addr == (addr_t) &dummy32->cr10)
461 		/* Start address of the active per set. */
462 		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
463 			0 : child->thread.per_user.start;
464 	else if (addr == (addr_t) &dummy32->cr11)
465 		/* End address of the active per set. */
466 		return test_thread_flag(TIF_SINGLE_STEP) ?
467 			PSW32_ADDR_INSN : child->thread.per_user.end;
468 	else if (addr == (addr_t) &dummy32->bits)
469 		/* Single-step bit. */
470 		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
471 			0x80000000 : 0;
472 	else if (addr == (addr_t) &dummy32->starting_addr)
473 		/* Start address of the user specified per set. */
474 		return (__u32) child->thread.per_user.start;
475 	else if (addr == (addr_t) &dummy32->ending_addr)
476 		/* End address of the user specified per set. */
477 		return (__u32) child->thread.per_user.end;
478 	else if (addr == (addr_t) &dummy32->perc_atmid)
479 		/* PER code, ATMID and AI of the last PER trap */
480 		return (__u32) child->thread.per_event.cause << 16;
481 	else if (addr == (addr_t) &dummy32->address)
482 		/* Address of the last PER trap */
483 		return (__u32) child->thread.per_event.address;
484 	else if (addr == (addr_t) &dummy32->access_id)
485 		/* Access id of the last PER trap */
486 		return (__u32) child->thread.per_event.paid << 24;
487 	return 0;
488 }
489 
490 /*
491  * Same as peek_user but for a 31 bit program.
492  */
493 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
494 {
495 	struct compat_user *dummy32 = NULL;
496 	addr_t offset;
497 	__u32 tmp;
498 
499 	if (addr < (addr_t) &dummy32->regs.acrs) {
500 		struct pt_regs *regs = task_pt_regs(child);
501 		/*
502 		 * psw and gprs are stored on the stack
503 		 */
504 		if (addr == (addr_t) &dummy32->regs.psw.mask) {
505 			/* Fake a 31 bit psw mask. */
506 			tmp = (__u32)(regs->psw.mask >> 32);
507 			tmp = psw32_user_bits | (tmp & PSW32_MASK_USER);
508 		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
509 			/* Fake a 31 bit psw address. */
510 			tmp = (__u32) regs->psw.addr |
511 				(__u32)(regs->psw.mask & PSW_MASK_BA);
512 		} else {
513 			/* gpr 0-15 */
514 			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
515 		}
516 	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
517 		/*
518 		 * access registers are stored in the thread structure
519 		 */
520 		offset = addr - (addr_t) &dummy32->regs.acrs;
521 		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
522 
523 	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
524 		/*
525 		 * orig_gpr2 is stored on the kernel stack
526 		 */
527 		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
528 
529 	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
530 		/*
531 		 * prevent reads of padding hole between
532 		 * orig_gpr2 and fp_regs on s390.
533 		 */
534 		tmp = 0;
535 
536 	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
537 		/*
538 		 * floating point regs. are stored in the thread structure
539 		 */
540 	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
541 		tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
542 
543 	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
544 		/*
545 		 * Handle access to the per_info structure.
546 		 */
547 		addr -= (addr_t) &dummy32->regs.per_info;
548 		tmp = __peek_user_per_compat(child, addr);
549 
550 	} else
551 		tmp = 0;
552 
553 	return tmp;
554 }
555 
556 static int peek_user_compat(struct task_struct *child,
557 			    addr_t addr, addr_t data)
558 {
559 	__u32 tmp;
560 
561 	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
562 		return -EIO;
563 
564 	tmp = __peek_user_compat(child, addr);
565 	return put_user(tmp, (__u32 __user *) data);
566 }
567 
568 /*
569  * Same as poke_user_per but for a 31 bit program.
570  */
571 static inline void __poke_user_per_compat(struct task_struct *child,
572 					  addr_t addr, __u32 data)
573 {
574 	struct compat_per_struct_kernel *dummy32 = NULL;
575 
576 	if (addr == (addr_t) &dummy32->cr9)
577 		/* PER event mask of the user specified per set. */
578 		child->thread.per_user.control =
579 			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
580 	else if (addr == (addr_t) &dummy32->starting_addr)
581 		/* Starting address of the user specified per set. */
582 		child->thread.per_user.start = data;
583 	else if (addr == (addr_t) &dummy32->ending_addr)
584 		/* Ending address of the user specified per set. */
585 		child->thread.per_user.end = data;
586 }
587 
588 /*
589  * Same as poke_user but for a 31 bit program.
590  */
591 static int __poke_user_compat(struct task_struct *child,
592 			      addr_t addr, addr_t data)
593 {
594 	struct compat_user *dummy32 = NULL;
595 	__u32 tmp = (__u32) data;
596 	addr_t offset;
597 
598 	if (addr < (addr_t) &dummy32->regs.acrs) {
599 		struct pt_regs *regs = task_pt_regs(child);
600 		/*
601 		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
602 		 */
603 		if (addr == (addr_t) &dummy32->regs.psw.mask) {
604 			/* Build a 64 bit psw mask from 31 bit mask. */
605 			if ((tmp & ~PSW32_MASK_USER) != psw32_user_bits)
606 				/* Invalid psw mask. */
607 				return -EINVAL;
608 			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
609 				(regs->psw.mask & PSW_MASK_BA) |
610 				(__u64)(tmp & PSW32_MASK_USER) << 32;
611 		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
612 			/* Build a 64 bit psw address from 31 bit address. */
613 			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
614 			/* Transfer 31 bit amode bit to psw mask. */
615 			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
616 				(__u64)(tmp & PSW32_ADDR_AMODE);
617 			/*
618 			 * The debugger changed the instruction address,
619 			 * reset system call restart, see signal.c:do_signal
620 			 */
621 			task_thread_info(child)->system_call = 0;
622 		} else {
623 			/* gpr 0-15 */
624 			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
625 		}
626 	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
627 		/*
628 		 * access registers are stored in the thread structure
629 		 */
630 		offset = addr - (addr_t) &dummy32->regs.acrs;
631 		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
632 
633 	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
634 		/*
635 		 * orig_gpr2 is stored on the kernel stack
636 		 */
637 		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
638 
639 	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
640 		/*
641 		 * prevent writess of padding hole between
642 		 * orig_gpr2 and fp_regs on s390.
643 		 */
644 		return 0;
645 
646 	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
647 		/*
648 		 * floating point regs. are stored in the thread structure
649 		 */
650 		if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
651 		    (tmp & ~FPC_VALID_MASK) != 0)
652 			/* Invalid floating point control. */
653 			return -EINVAL;
654 	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
655 		*(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
656 
657 	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
658 		/*
659 		 * Handle access to the per_info structure.
660 		 */
661 		addr -= (addr_t) &dummy32->regs.per_info;
662 		__poke_user_per_compat(child, addr, data);
663 	}
664 
665 	return 0;
666 }
667 
668 static int poke_user_compat(struct task_struct *child,
669 			    addr_t addr, addr_t data)
670 {
671 	if (!is_compat_task() || (addr & 3) ||
672 	    addr > sizeof(struct compat_user) - 3)
673 		return -EIO;
674 
675 	return __poke_user_compat(child, addr, data);
676 }
677 
678 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
679 			compat_ulong_t caddr, compat_ulong_t cdata)
680 {
681 	unsigned long addr = caddr;
682 	unsigned long data = cdata;
683 	compat_ptrace_area parea;
684 	int copied, ret;
685 
686 	switch (request) {
687 	case PTRACE_PEEKUSR:
688 		/* read the word at location addr in the USER area. */
689 		return peek_user_compat(child, addr, data);
690 
691 	case PTRACE_POKEUSR:
692 		/* write the word at location addr in the USER area */
693 		return poke_user_compat(child, addr, data);
694 
695 	case PTRACE_PEEKUSR_AREA:
696 	case PTRACE_POKEUSR_AREA:
697 		if (copy_from_user(&parea, (void __force __user *) addr,
698 							sizeof(parea)))
699 			return -EFAULT;
700 		addr = parea.kernel_addr;
701 		data = parea.process_addr;
702 		copied = 0;
703 		while (copied < parea.len) {
704 			if (request == PTRACE_PEEKUSR_AREA)
705 				ret = peek_user_compat(child, addr, data);
706 			else {
707 				__u32 utmp;
708 				if (get_user(utmp,
709 					     (__u32 __force __user *) data))
710 					return -EFAULT;
711 				ret = poke_user_compat(child, addr, utmp);
712 			}
713 			if (ret)
714 				return ret;
715 			addr += sizeof(unsigned int);
716 			data += sizeof(unsigned int);
717 			copied += sizeof(unsigned int);
718 		}
719 		return 0;
720 	case PTRACE_GET_LAST_BREAK:
721 		put_user(task_thread_info(child)->last_break,
722 			 (unsigned int __user *) data);
723 		return 0;
724 	}
725 	return compat_ptrace_request(child, request, addr, data);
726 }
727 #endif
728 
729 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
730 {
731 	long ret = 0;
732 
733 	/* Do the secure computing check first. */
734 	secure_computing(regs->gprs[2]);
735 
736 	/*
737 	 * The sysc_tracesys code in entry.S stored the system
738 	 * call number to gprs[2].
739 	 */
740 	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
741 	    (tracehook_report_syscall_entry(regs) ||
742 	     regs->gprs[2] >= NR_syscalls)) {
743 		/*
744 		 * Tracing decided this syscall should not happen or the
745 		 * debugger stored an invalid system call number. Skip
746 		 * the system call and the system call restart handling.
747 		 */
748 		clear_thread_flag(TIF_SYSCALL);
749 		ret = -1;
750 	}
751 
752 	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
753 		trace_sys_enter(regs, regs->gprs[2]);
754 
755 	if (unlikely(current->audit_context))
756 		audit_syscall_entry(is_compat_task() ?
757 					AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
758 				    regs->gprs[2], regs->orig_gpr2,
759 				    regs->gprs[3], regs->gprs[4],
760 				    regs->gprs[5]);
761 	return ret ?: regs->gprs[2];
762 }
763 
764 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
765 {
766 	if (unlikely(current->audit_context))
767 		audit_syscall_exit(AUDITSC_RESULT(regs->gprs[2]),
768 				   regs->gprs[2]);
769 
770 	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
771 		trace_sys_exit(regs, regs->gprs[2]);
772 
773 	if (test_thread_flag(TIF_SYSCALL_TRACE))
774 		tracehook_report_syscall_exit(regs, 0);
775 }
776 
777 /*
778  * user_regset definitions.
779  */
780 
781 static int s390_regs_get(struct task_struct *target,
782 			 const struct user_regset *regset,
783 			 unsigned int pos, unsigned int count,
784 			 void *kbuf, void __user *ubuf)
785 {
786 	if (target == current)
787 		save_access_regs(target->thread.acrs);
788 
789 	if (kbuf) {
790 		unsigned long *k = kbuf;
791 		while (count > 0) {
792 			*k++ = __peek_user(target, pos);
793 			count -= sizeof(*k);
794 			pos += sizeof(*k);
795 		}
796 	} else {
797 		unsigned long __user *u = ubuf;
798 		while (count > 0) {
799 			if (__put_user(__peek_user(target, pos), u++))
800 				return -EFAULT;
801 			count -= sizeof(*u);
802 			pos += sizeof(*u);
803 		}
804 	}
805 	return 0;
806 }
807 
808 static int s390_regs_set(struct task_struct *target,
809 			 const struct user_regset *regset,
810 			 unsigned int pos, unsigned int count,
811 			 const void *kbuf, const void __user *ubuf)
812 {
813 	int rc = 0;
814 
815 	if (target == current)
816 		save_access_regs(target->thread.acrs);
817 
818 	if (kbuf) {
819 		const unsigned long *k = kbuf;
820 		while (count > 0 && !rc) {
821 			rc = __poke_user(target, pos, *k++);
822 			count -= sizeof(*k);
823 			pos += sizeof(*k);
824 		}
825 	} else {
826 		const unsigned long  __user *u = ubuf;
827 		while (count > 0 && !rc) {
828 			unsigned long word;
829 			rc = __get_user(word, u++);
830 			if (rc)
831 				break;
832 			rc = __poke_user(target, pos, word);
833 			count -= sizeof(*u);
834 			pos += sizeof(*u);
835 		}
836 	}
837 
838 	if (rc == 0 && target == current)
839 		restore_access_regs(target->thread.acrs);
840 
841 	return rc;
842 }
843 
844 static int s390_fpregs_get(struct task_struct *target,
845 			   const struct user_regset *regset, unsigned int pos,
846 			   unsigned int count, void *kbuf, void __user *ubuf)
847 {
848 	if (target == current)
849 		save_fp_regs(&target->thread.fp_regs);
850 
851 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
852 				   &target->thread.fp_regs, 0, -1);
853 }
854 
855 static int s390_fpregs_set(struct task_struct *target,
856 			   const struct user_regset *regset, unsigned int pos,
857 			   unsigned int count, const void *kbuf,
858 			   const void __user *ubuf)
859 {
860 	int rc = 0;
861 
862 	if (target == current)
863 		save_fp_regs(&target->thread.fp_regs);
864 
865 	/* If setting FPC, must validate it first. */
866 	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
867 		u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
868 		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
869 					0, offsetof(s390_fp_regs, fprs));
870 		if (rc)
871 			return rc;
872 		if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
873 			return -EINVAL;
874 		target->thread.fp_regs.fpc = fpc[0];
875 	}
876 
877 	if (rc == 0 && count > 0)
878 		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
879 					target->thread.fp_regs.fprs,
880 					offsetof(s390_fp_regs, fprs), -1);
881 
882 	if (rc == 0 && target == current)
883 		restore_fp_regs(&target->thread.fp_regs);
884 
885 	return rc;
886 }
887 
888 #ifdef CONFIG_64BIT
889 
890 static int s390_last_break_get(struct task_struct *target,
891 			       const struct user_regset *regset,
892 			       unsigned int pos, unsigned int count,
893 			       void *kbuf, void __user *ubuf)
894 {
895 	if (count > 0) {
896 		if (kbuf) {
897 			unsigned long *k = kbuf;
898 			*k = task_thread_info(target)->last_break;
899 		} else {
900 			unsigned long  __user *u = ubuf;
901 			if (__put_user(task_thread_info(target)->last_break, u))
902 				return -EFAULT;
903 		}
904 	}
905 	return 0;
906 }
907 
908 #endif
909 
910 static int s390_system_call_get(struct task_struct *target,
911 				const struct user_regset *regset,
912 				unsigned int pos, unsigned int count,
913 				void *kbuf, void __user *ubuf)
914 {
915 	unsigned int *data = &task_thread_info(target)->system_call;
916 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
917 				   data, 0, sizeof(unsigned int));
918 }
919 
920 static int s390_system_call_set(struct task_struct *target,
921 				const struct user_regset *regset,
922 				unsigned int pos, unsigned int count,
923 				const void *kbuf, const void __user *ubuf)
924 {
925 	unsigned int *data = &task_thread_info(target)->system_call;
926 	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
927 				  data, 0, sizeof(unsigned int));
928 }
929 
930 static const struct user_regset s390_regsets[] = {
931 	[REGSET_GENERAL] = {
932 		.core_note_type = NT_PRSTATUS,
933 		.n = sizeof(s390_regs) / sizeof(long),
934 		.size = sizeof(long),
935 		.align = sizeof(long),
936 		.get = s390_regs_get,
937 		.set = s390_regs_set,
938 	},
939 	[REGSET_FP] = {
940 		.core_note_type = NT_PRFPREG,
941 		.n = sizeof(s390_fp_regs) / sizeof(long),
942 		.size = sizeof(long),
943 		.align = sizeof(long),
944 		.get = s390_fpregs_get,
945 		.set = s390_fpregs_set,
946 	},
947 #ifdef CONFIG_64BIT
948 	[REGSET_LAST_BREAK] = {
949 		.core_note_type = NT_S390_LAST_BREAK,
950 		.n = 1,
951 		.size = sizeof(long),
952 		.align = sizeof(long),
953 		.get = s390_last_break_get,
954 	},
955 #endif
956 	[REGSET_SYSTEM_CALL] = {
957 		.core_note_type = NT_S390_SYSTEM_CALL,
958 		.n = 1,
959 		.size = sizeof(unsigned int),
960 		.align = sizeof(unsigned int),
961 		.get = s390_system_call_get,
962 		.set = s390_system_call_set,
963 	},
964 };
965 
966 static const struct user_regset_view user_s390_view = {
967 	.name = UTS_MACHINE,
968 	.e_machine = EM_S390,
969 	.regsets = s390_regsets,
970 	.n = ARRAY_SIZE(s390_regsets)
971 };
972 
973 #ifdef CONFIG_COMPAT
974 static int s390_compat_regs_get(struct task_struct *target,
975 				const struct user_regset *regset,
976 				unsigned int pos, unsigned int count,
977 				void *kbuf, void __user *ubuf)
978 {
979 	if (target == current)
980 		save_access_regs(target->thread.acrs);
981 
982 	if (kbuf) {
983 		compat_ulong_t *k = kbuf;
984 		while (count > 0) {
985 			*k++ = __peek_user_compat(target, pos);
986 			count -= sizeof(*k);
987 			pos += sizeof(*k);
988 		}
989 	} else {
990 		compat_ulong_t __user *u = ubuf;
991 		while (count > 0) {
992 			if (__put_user(__peek_user_compat(target, pos), u++))
993 				return -EFAULT;
994 			count -= sizeof(*u);
995 			pos += sizeof(*u);
996 		}
997 	}
998 	return 0;
999 }
1000 
1001 static int s390_compat_regs_set(struct task_struct *target,
1002 				const struct user_regset *regset,
1003 				unsigned int pos, unsigned int count,
1004 				const void *kbuf, const void __user *ubuf)
1005 {
1006 	int rc = 0;
1007 
1008 	if (target == current)
1009 		save_access_regs(target->thread.acrs);
1010 
1011 	if (kbuf) {
1012 		const compat_ulong_t *k = kbuf;
1013 		while (count > 0 && !rc) {
1014 			rc = __poke_user_compat(target, pos, *k++);
1015 			count -= sizeof(*k);
1016 			pos += sizeof(*k);
1017 		}
1018 	} else {
1019 		const compat_ulong_t  __user *u = ubuf;
1020 		while (count > 0 && !rc) {
1021 			compat_ulong_t word;
1022 			rc = __get_user(word, u++);
1023 			if (rc)
1024 				break;
1025 			rc = __poke_user_compat(target, pos, word);
1026 			count -= sizeof(*u);
1027 			pos += sizeof(*u);
1028 		}
1029 	}
1030 
1031 	if (rc == 0 && target == current)
1032 		restore_access_regs(target->thread.acrs);
1033 
1034 	return rc;
1035 }
1036 
1037 static int s390_compat_regs_high_get(struct task_struct *target,
1038 				     const struct user_regset *regset,
1039 				     unsigned int pos, unsigned int count,
1040 				     void *kbuf, void __user *ubuf)
1041 {
1042 	compat_ulong_t *gprs_high;
1043 
1044 	gprs_high = (compat_ulong_t *)
1045 		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1046 	if (kbuf) {
1047 		compat_ulong_t *k = kbuf;
1048 		while (count > 0) {
1049 			*k++ = *gprs_high;
1050 			gprs_high += 2;
1051 			count -= sizeof(*k);
1052 		}
1053 	} else {
1054 		compat_ulong_t __user *u = ubuf;
1055 		while (count > 0) {
1056 			if (__put_user(*gprs_high, u++))
1057 				return -EFAULT;
1058 			gprs_high += 2;
1059 			count -= sizeof(*u);
1060 		}
1061 	}
1062 	return 0;
1063 }
1064 
1065 static int s390_compat_regs_high_set(struct task_struct *target,
1066 				     const struct user_regset *regset,
1067 				     unsigned int pos, unsigned int count,
1068 				     const void *kbuf, const void __user *ubuf)
1069 {
1070 	compat_ulong_t *gprs_high;
1071 	int rc = 0;
1072 
1073 	gprs_high = (compat_ulong_t *)
1074 		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1075 	if (kbuf) {
1076 		const compat_ulong_t *k = kbuf;
1077 		while (count > 0) {
1078 			*gprs_high = *k++;
1079 			*gprs_high += 2;
1080 			count -= sizeof(*k);
1081 		}
1082 	} else {
1083 		const compat_ulong_t  __user *u = ubuf;
1084 		while (count > 0 && !rc) {
1085 			unsigned long word;
1086 			rc = __get_user(word, u++);
1087 			if (rc)
1088 				break;
1089 			*gprs_high = word;
1090 			*gprs_high += 2;
1091 			count -= sizeof(*u);
1092 		}
1093 	}
1094 
1095 	return rc;
1096 }
1097 
1098 static int s390_compat_last_break_get(struct task_struct *target,
1099 				      const struct user_regset *regset,
1100 				      unsigned int pos, unsigned int count,
1101 				      void *kbuf, void __user *ubuf)
1102 {
1103 	compat_ulong_t last_break;
1104 
1105 	if (count > 0) {
1106 		last_break = task_thread_info(target)->last_break;
1107 		if (kbuf) {
1108 			unsigned long *k = kbuf;
1109 			*k = last_break;
1110 		} else {
1111 			unsigned long  __user *u = ubuf;
1112 			if (__put_user(last_break, u))
1113 				return -EFAULT;
1114 		}
1115 	}
1116 	return 0;
1117 }
1118 
1119 static const struct user_regset s390_compat_regsets[] = {
1120 	[REGSET_GENERAL] = {
1121 		.core_note_type = NT_PRSTATUS,
1122 		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1123 		.size = sizeof(compat_long_t),
1124 		.align = sizeof(compat_long_t),
1125 		.get = s390_compat_regs_get,
1126 		.set = s390_compat_regs_set,
1127 	},
1128 	[REGSET_FP] = {
1129 		.core_note_type = NT_PRFPREG,
1130 		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1131 		.size = sizeof(compat_long_t),
1132 		.align = sizeof(compat_long_t),
1133 		.get = s390_fpregs_get,
1134 		.set = s390_fpregs_set,
1135 	},
1136 	[REGSET_LAST_BREAK] = {
1137 		.core_note_type = NT_S390_LAST_BREAK,
1138 		.n = 1,
1139 		.size = sizeof(long),
1140 		.align = sizeof(long),
1141 		.get = s390_compat_last_break_get,
1142 	},
1143 	[REGSET_SYSTEM_CALL] = {
1144 		.core_note_type = NT_S390_SYSTEM_CALL,
1145 		.n = 1,
1146 		.size = sizeof(compat_uint_t),
1147 		.align = sizeof(compat_uint_t),
1148 		.get = s390_system_call_get,
1149 		.set = s390_system_call_set,
1150 	},
1151 	[REGSET_GENERAL_EXTENDED] = {
1152 		.core_note_type = NT_S390_HIGH_GPRS,
1153 		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1154 		.size = sizeof(compat_long_t),
1155 		.align = sizeof(compat_long_t),
1156 		.get = s390_compat_regs_high_get,
1157 		.set = s390_compat_regs_high_set,
1158 	},
1159 };
1160 
1161 static const struct user_regset_view user_s390_compat_view = {
1162 	.name = "s390",
1163 	.e_machine = EM_S390,
1164 	.regsets = s390_compat_regsets,
1165 	.n = ARRAY_SIZE(s390_compat_regsets)
1166 };
1167 #endif
1168 
1169 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1170 {
1171 #ifdef CONFIG_COMPAT
1172 	if (test_tsk_thread_flag(task, TIF_31BIT))
1173 		return &user_s390_compat_view;
1174 #endif
1175 	return &user_s390_view;
1176 }
1177 
1178 static const char *gpr_names[NUM_GPRS] = {
1179 	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1180 	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1181 };
1182 
1183 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1184 {
1185 	if (offset >= NUM_GPRS)
1186 		return 0;
1187 	return regs->gprs[offset];
1188 }
1189 
1190 int regs_query_register_offset(const char *name)
1191 {
1192 	unsigned long offset;
1193 
1194 	if (!name || *name != 'r')
1195 		return -EINVAL;
1196 	if (strict_strtoul(name + 1, 10, &offset))
1197 		return -EINVAL;
1198 	if (offset >= NUM_GPRS)
1199 		return -EINVAL;
1200 	return offset;
1201 }
1202 
1203 const char *regs_query_register_name(unsigned int offset)
1204 {
1205 	if (offset >= NUM_GPRS)
1206 		return NULL;
1207 	return gpr_names[offset];
1208 }
1209 
1210 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1211 {
1212 	unsigned long ksp = kernel_stack_pointer(regs);
1213 
1214 	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1215 }
1216 
1217 /**
1218  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1219  * @regs:pt_regs which contains kernel stack pointer.
1220  * @n:stack entry number.
1221  *
1222  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1223  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1224  * this returns 0.
1225  */
1226 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1227 {
1228 	unsigned long addr;
1229 
1230 	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1231 	if (!regs_within_kernel_stack(regs, addr))
1232 		return 0;
1233 	return *(unsigned long *)addr;
1234 }
1235