1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Ptrace user space interface. 4 * 5 * Copyright IBM Corp. 1999, 2010 6 * Author(s): Denis Joseph Barrow 7 * Martin Schwidefsky (schwidefsky@de.ibm.com) 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/sched.h> 12 #include <linux/sched/task_stack.h> 13 #include <linux/cpufeature.h> 14 #include <linux/mm.h> 15 #include <linux/smp.h> 16 #include <linux/errno.h> 17 #include <linux/ptrace.h> 18 #include <linux/user.h> 19 #include <linux/security.h> 20 #include <linux/audit.h> 21 #include <linux/signal.h> 22 #include <linux/elf.h> 23 #include <linux/regset.h> 24 #include <linux/seccomp.h> 25 #include <trace/syscall.h> 26 #include <asm/guarded_storage.h> 27 #include <asm/access-regs.h> 28 #include <asm/page.h> 29 #include <linux/uaccess.h> 30 #include <asm/unistd.h> 31 #include <asm/runtime_instr.h> 32 #include <asm/facility.h> 33 #include <asm/machine.h> 34 #include <asm/ptrace.h> 35 #include <asm/rwonce.h> 36 #include <asm/fpu.h> 37 38 #include "entry.h" 39 40 void update_cr_regs(struct task_struct *task) 41 { 42 struct pt_regs *regs = task_pt_regs(task); 43 struct thread_struct *thread = &task->thread; 44 union ctlreg0 cr0_old, cr0_new; 45 union ctlreg2 cr2_old, cr2_new; 46 int cr0_changed, cr2_changed; 47 union { 48 struct ctlreg regs[3]; 49 struct { 50 struct ctlreg control; 51 struct ctlreg start; 52 struct ctlreg end; 53 }; 54 } old, new; 55 56 local_ctl_store(0, &cr0_old.reg); 57 local_ctl_store(2, &cr2_old.reg); 58 cr0_new = cr0_old; 59 cr2_new = cr2_old; 60 /* Take care of the enable/disable of transactional execution. */ 61 if (machine_has_tx()) { 62 /* Set or clear transaction execution TXC bit 8. */ 63 cr0_new.tcx = 1; 64 if (task->thread.per_flags & PER_FLAG_NO_TE) 65 cr0_new.tcx = 0; 66 /* Set or clear transaction execution TDC bits 62 and 63. */ 67 cr2_new.tdc = 0; 68 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) { 69 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND) 70 cr2_new.tdc = 1; 71 else 72 cr2_new.tdc = 2; 73 } 74 } 75 /* Take care of enable/disable of guarded storage. */ 76 if (cpu_has_gs()) { 77 cr2_new.gse = 0; 78 if (task->thread.gs_cb) 79 cr2_new.gse = 1; 80 } 81 /* Load control register 0/2 iff changed */ 82 cr0_changed = cr0_new.val != cr0_old.val; 83 cr2_changed = cr2_new.val != cr2_old.val; 84 if (cr0_changed) 85 local_ctl_load(0, &cr0_new.reg); 86 if (cr2_changed) 87 local_ctl_load(2, &cr2_new.reg); 88 /* Copy user specified PER registers */ 89 new.control.val = thread->per_user.control; 90 new.start.val = thread->per_user.start; 91 new.end.val = thread->per_user.end; 92 93 /* merge TIF_SINGLE_STEP into user specified PER registers. */ 94 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) || 95 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) { 96 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP)) 97 new.control.val |= PER_EVENT_BRANCH; 98 else 99 new.control.val |= PER_EVENT_IFETCH; 100 new.control.val |= PER_CONTROL_SUSPENSION; 101 new.control.val |= PER_EVENT_TRANSACTION_END; 102 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) 103 new.control.val |= PER_EVENT_IFETCH; 104 new.start.val = 0; 105 new.end.val = -1UL; 106 } 107 108 /* Take care of the PER enablement bit in the PSW. */ 109 if (!(new.control.val & PER_EVENT_MASK)) { 110 regs->psw.mask &= ~PSW_MASK_PER; 111 return; 112 } 113 regs->psw.mask |= PSW_MASK_PER; 114 __local_ctl_store(9, 11, old.regs); 115 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0) 116 __local_ctl_load(9, 11, new.regs); 117 } 118 119 void user_enable_single_step(struct task_struct *task) 120 { 121 clear_tsk_thread_flag(task, TIF_BLOCK_STEP); 122 set_tsk_thread_flag(task, TIF_SINGLE_STEP); 123 } 124 125 void user_disable_single_step(struct task_struct *task) 126 { 127 clear_tsk_thread_flag(task, TIF_BLOCK_STEP); 128 clear_tsk_thread_flag(task, TIF_SINGLE_STEP); 129 } 130 131 void user_enable_block_step(struct task_struct *task) 132 { 133 set_tsk_thread_flag(task, TIF_SINGLE_STEP); 134 set_tsk_thread_flag(task, TIF_BLOCK_STEP); 135 } 136 137 /* 138 * Called by kernel/ptrace.c when detaching.. 139 * 140 * Clear all debugging related fields. 141 */ 142 void ptrace_disable(struct task_struct *task) 143 { 144 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user)); 145 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event)); 146 clear_tsk_thread_flag(task, TIF_SINGLE_STEP); 147 clear_tsk_thread_flag(task, TIF_PER_TRAP); 148 task->thread.per_flags = 0; 149 } 150 151 #define __ADDR_MASK 7 152 153 static inline unsigned long __peek_user_per(struct task_struct *child, 154 addr_t addr) 155 { 156 if (addr == offsetof(struct per_struct_kernel, cr9)) 157 /* Control bits of the active per set. */ 158 return test_thread_flag(TIF_SINGLE_STEP) ? 159 PER_EVENT_IFETCH : child->thread.per_user.control; 160 else if (addr == offsetof(struct per_struct_kernel, cr10)) 161 /* Start address of the active per set. */ 162 return test_thread_flag(TIF_SINGLE_STEP) ? 163 0 : child->thread.per_user.start; 164 else if (addr == offsetof(struct per_struct_kernel, cr11)) 165 /* End address of the active per set. */ 166 return test_thread_flag(TIF_SINGLE_STEP) ? 167 -1UL : child->thread.per_user.end; 168 else if (addr == offsetof(struct per_struct_kernel, bits)) 169 /* Single-step bit. */ 170 return test_thread_flag(TIF_SINGLE_STEP) ? 171 (1UL << (BITS_PER_LONG - 1)) : 0; 172 else if (addr == offsetof(struct per_struct_kernel, starting_addr)) 173 /* Start address of the user specified per set. */ 174 return child->thread.per_user.start; 175 else if (addr == offsetof(struct per_struct_kernel, ending_addr)) 176 /* End address of the user specified per set. */ 177 return child->thread.per_user.end; 178 else if (addr == offsetof(struct per_struct_kernel, perc_atmid)) 179 /* PER code, ATMID and AI of the last PER trap */ 180 return (unsigned long) 181 child->thread.per_event.cause << (BITS_PER_LONG - 16); 182 else if (addr == offsetof(struct per_struct_kernel, address)) 183 /* Address of the last PER trap */ 184 return child->thread.per_event.address; 185 else if (addr == offsetof(struct per_struct_kernel, access_id)) 186 /* Access id of the last PER trap */ 187 return (unsigned long) 188 child->thread.per_event.paid << (BITS_PER_LONG - 8); 189 return 0; 190 } 191 192 /* 193 * Read the word at offset addr from the user area of a process. The 194 * trouble here is that the information is littered over different 195 * locations. The process registers are found on the kernel stack, 196 * the floating point stuff and the trace settings are stored in 197 * the task structure. In addition the different structures in 198 * struct user contain pad bytes that should be read as zeroes. 199 * Lovely... 200 */ 201 static unsigned long __peek_user(struct task_struct *child, addr_t addr) 202 { 203 addr_t offset, tmp; 204 205 if (addr < offsetof(struct user, regs.acrs)) { 206 /* 207 * psw and gprs are stored on the stack 208 */ 209 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr); 210 if (addr == offsetof(struct user, regs.psw.mask)) { 211 /* Return a clean psw mask. */ 212 tmp &= PSW_MASK_USER | PSW_MASK_RI; 213 tmp |= PSW_USER_BITS; 214 } 215 216 } else if (addr < offsetof(struct user, regs.orig_gpr2)) { 217 /* 218 * access registers are stored in the thread structure 219 */ 220 offset = addr - offsetof(struct user, regs.acrs); 221 /* 222 * Very special case: old & broken 64 bit gdb reading 223 * from acrs[15]. Result is a 64 bit value. Read the 224 * 32 bit acrs[15] value and shift it by 32. Sick... 225 */ 226 if (addr == offsetof(struct user, regs.acrs[15])) 227 tmp = ((unsigned long) child->thread.acrs[15]) << 32; 228 else 229 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset); 230 231 } else if (addr == offsetof(struct user, regs.orig_gpr2)) { 232 /* 233 * orig_gpr2 is stored on the kernel stack 234 */ 235 tmp = (addr_t) task_pt_regs(child)->orig_gpr2; 236 237 } else if (addr < offsetof(struct user, regs.fp_regs)) { 238 /* 239 * prevent reads of padding hole between 240 * orig_gpr2 and fp_regs on s390. 241 */ 242 tmp = 0; 243 244 } else if (addr == offsetof(struct user, regs.fp_regs.fpc)) { 245 /* 246 * floating point control reg. is in the thread structure 247 */ 248 tmp = child->thread.ufpu.fpc; 249 tmp <<= BITS_PER_LONG - 32; 250 251 } else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) { 252 /* 253 * floating point regs. are in the child->thread.ufpu.vxrs array 254 */ 255 offset = addr - offsetof(struct user, regs.fp_regs.fprs); 256 tmp = *(addr_t *)((addr_t)child->thread.ufpu.vxrs + 2 * offset); 257 } else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) { 258 /* 259 * Handle access to the per_info structure. 260 */ 261 addr -= offsetof(struct user, regs.per_info); 262 tmp = __peek_user_per(child, addr); 263 264 } else 265 tmp = 0; 266 267 return tmp; 268 } 269 270 static int 271 peek_user(struct task_struct *child, addr_t addr, addr_t data) 272 { 273 addr_t tmp, mask; 274 275 /* 276 * Stupid gdb peeks/pokes the access registers in 64 bit with 277 * an alignment of 4. Programmers from hell... 278 */ 279 mask = __ADDR_MASK; 280 if (addr >= offsetof(struct user, regs.acrs) && 281 addr < offsetof(struct user, regs.orig_gpr2)) 282 mask = 3; 283 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK) 284 return -EIO; 285 286 tmp = __peek_user(child, addr); 287 return put_user(tmp, (addr_t __user *) data); 288 } 289 290 static inline void __poke_user_per(struct task_struct *child, 291 addr_t addr, addr_t data) 292 { 293 /* 294 * There are only three fields in the per_info struct that the 295 * debugger user can write to. 296 * 1) cr9: the debugger wants to set a new PER event mask 297 * 2) starting_addr: the debugger wants to set a new starting 298 * address to use with the PER event mask. 299 * 3) ending_addr: the debugger wants to set a new ending 300 * address to use with the PER event mask. 301 * The user specified PER event mask and the start and end 302 * addresses are used only if single stepping is not in effect. 303 * Writes to any other field in per_info are ignored. 304 */ 305 if (addr == offsetof(struct per_struct_kernel, cr9)) 306 /* PER event mask of the user specified per set. */ 307 child->thread.per_user.control = 308 data & (PER_EVENT_MASK | PER_CONTROL_MASK); 309 else if (addr == offsetof(struct per_struct_kernel, starting_addr)) 310 /* Starting address of the user specified per set. */ 311 child->thread.per_user.start = data; 312 else if (addr == offsetof(struct per_struct_kernel, ending_addr)) 313 /* Ending address of the user specified per set. */ 314 child->thread.per_user.end = data; 315 } 316 317 /* 318 * Write a word to the user area of a process at location addr. This 319 * operation does have an additional problem compared to peek_user. 320 * Stores to the program status word and on the floating point 321 * control register needs to get checked for validity. 322 */ 323 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data) 324 { 325 addr_t offset; 326 327 328 if (addr < offsetof(struct user, regs.acrs)) { 329 struct pt_regs *regs = task_pt_regs(child); 330 /* 331 * psw and gprs are stored on the stack 332 */ 333 if (addr == offsetof(struct user, regs.psw.mask)) { 334 unsigned long mask = PSW_MASK_USER; 335 336 mask |= is_ri_task(child) ? PSW_MASK_RI : 0; 337 if ((data ^ PSW_USER_BITS) & ~mask) 338 /* Invalid psw mask. */ 339 return -EINVAL; 340 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME) 341 /* Invalid address-space-control bits */ 342 return -EINVAL; 343 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA)) 344 /* Invalid addressing mode bits */ 345 return -EINVAL; 346 } 347 348 if (test_pt_regs_flag(regs, PIF_SYSCALL) && 349 addr == offsetof(struct user, regs.gprs[2])) { 350 struct pt_regs *regs = task_pt_regs(child); 351 352 regs->int_code = 0x20000 | (data & 0xffff); 353 } 354 *(addr_t *)((addr_t) ®s->psw + addr) = data; 355 } else if (addr < offsetof(struct user, regs.orig_gpr2)) { 356 /* 357 * access registers are stored in the thread structure 358 */ 359 offset = addr - offsetof(struct user, regs.acrs); 360 /* 361 * Very special case: old & broken 64 bit gdb writing 362 * to acrs[15] with a 64 bit value. Ignore the lower 363 * half of the value and write the upper 32 bit to 364 * acrs[15]. Sick... 365 */ 366 if (addr == offsetof(struct user, regs.acrs[15])) 367 child->thread.acrs[15] = (unsigned int) (data >> 32); 368 else 369 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data; 370 371 } else if (addr == offsetof(struct user, regs.orig_gpr2)) { 372 /* 373 * orig_gpr2 is stored on the kernel stack 374 */ 375 task_pt_regs(child)->orig_gpr2 = data; 376 377 } else if (addr < offsetof(struct user, regs.fp_regs)) { 378 /* 379 * prevent writes of padding hole between 380 * orig_gpr2 and fp_regs on s390. 381 */ 382 return 0; 383 384 } else if (addr == offsetof(struct user, regs.fp_regs.fpc)) { 385 /* 386 * floating point control reg. is in the thread structure 387 */ 388 if ((unsigned int)data != 0) 389 return -EINVAL; 390 child->thread.ufpu.fpc = data >> (BITS_PER_LONG - 32); 391 392 } else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) { 393 /* 394 * floating point regs. are in the child->thread.ufpu.vxrs array 395 */ 396 offset = addr - offsetof(struct user, regs.fp_regs.fprs); 397 *(addr_t *)((addr_t)child->thread.ufpu.vxrs + 2 * offset) = data; 398 } else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) { 399 /* 400 * Handle access to the per_info structure. 401 */ 402 addr -= offsetof(struct user, regs.per_info); 403 __poke_user_per(child, addr, data); 404 405 } 406 407 return 0; 408 } 409 410 static int poke_user(struct task_struct *child, addr_t addr, addr_t data) 411 { 412 addr_t mask; 413 414 /* 415 * Stupid gdb peeks/pokes the access registers in 64 bit with 416 * an alignment of 4. Programmers from hell indeed... 417 */ 418 mask = __ADDR_MASK; 419 if (addr >= offsetof(struct user, regs.acrs) && 420 addr < offsetof(struct user, regs.orig_gpr2)) 421 mask = 3; 422 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK) 423 return -EIO; 424 425 return __poke_user(child, addr, data); 426 } 427 428 long arch_ptrace(struct task_struct *child, long request, 429 unsigned long addr, unsigned long data) 430 { 431 ptrace_area parea; 432 int copied, ret; 433 434 switch (request) { 435 case PTRACE_PEEKUSR: 436 /* read the word at location addr in the USER area. */ 437 return peek_user(child, addr, data); 438 439 case PTRACE_POKEUSR: 440 /* write the word at location addr in the USER area */ 441 return poke_user(child, addr, data); 442 443 case PTRACE_PEEKUSR_AREA: 444 case PTRACE_POKEUSR_AREA: 445 if (copy_from_user(&parea, (void __force __user *) addr, 446 sizeof(parea))) 447 return -EFAULT; 448 addr = parea.kernel_addr; 449 data = parea.process_addr; 450 copied = 0; 451 while (copied < parea.len) { 452 if (request == PTRACE_PEEKUSR_AREA) 453 ret = peek_user(child, addr, data); 454 else { 455 addr_t utmp; 456 if (get_user(utmp, 457 (addr_t __force __user *) data)) 458 return -EFAULT; 459 ret = poke_user(child, addr, utmp); 460 } 461 if (ret) 462 return ret; 463 addr += sizeof(unsigned long); 464 data += sizeof(unsigned long); 465 copied += sizeof(unsigned long); 466 } 467 return 0; 468 case PTRACE_GET_LAST_BREAK: 469 return put_user(child->thread.last_break, (unsigned long __user *)data); 470 case PTRACE_ENABLE_TE: 471 if (!machine_has_tx()) 472 return -EIO; 473 child->thread.per_flags &= ~PER_FLAG_NO_TE; 474 return 0; 475 case PTRACE_DISABLE_TE: 476 if (!machine_has_tx()) 477 return -EIO; 478 child->thread.per_flags |= PER_FLAG_NO_TE; 479 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND; 480 return 0; 481 case PTRACE_TE_ABORT_RAND: 482 if (!machine_has_tx() || (child->thread.per_flags & PER_FLAG_NO_TE)) 483 return -EIO; 484 switch (data) { 485 case 0UL: 486 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND; 487 break; 488 case 1UL: 489 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND; 490 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND; 491 break; 492 case 2UL: 493 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND; 494 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND; 495 break; 496 default: 497 return -EINVAL; 498 } 499 return 0; 500 default: 501 return ptrace_request(child, request, addr, data); 502 } 503 } 504 505 /* 506 * user_regset definitions. 507 */ 508 509 static int s390_regs_get(struct task_struct *target, 510 const struct user_regset *regset, 511 struct membuf to) 512 { 513 unsigned pos; 514 if (target == current) 515 save_access_regs(target->thread.acrs); 516 517 for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long)) 518 membuf_store(&to, __peek_user(target, pos)); 519 return 0; 520 } 521 522 static int s390_regs_set(struct task_struct *target, 523 const struct user_regset *regset, 524 unsigned int pos, unsigned int count, 525 const void *kbuf, const void __user *ubuf) 526 { 527 int rc = 0; 528 529 if (target == current) 530 save_access_regs(target->thread.acrs); 531 532 if (kbuf) { 533 const unsigned long *k = kbuf; 534 while (count > 0 && !rc) { 535 rc = __poke_user(target, pos, *k++); 536 count -= sizeof(*k); 537 pos += sizeof(*k); 538 } 539 } else { 540 const unsigned long __user *u = ubuf; 541 while (count > 0 && !rc) { 542 unsigned long word; 543 rc = __get_user(word, u++); 544 if (rc) 545 break; 546 rc = __poke_user(target, pos, word); 547 count -= sizeof(*u); 548 pos += sizeof(*u); 549 } 550 } 551 552 if (rc == 0 && target == current) 553 restore_access_regs(target->thread.acrs); 554 555 return rc; 556 } 557 558 static int s390_fpregs_get(struct task_struct *target, 559 const struct user_regset *regset, 560 struct membuf to) 561 { 562 _s390_fp_regs fp_regs; 563 564 if (target == current) 565 save_user_fpu_regs(); 566 567 fp_regs.fpc = target->thread.ufpu.fpc; 568 fpregs_store(&fp_regs, &target->thread.ufpu); 569 570 return membuf_write(&to, &fp_regs, sizeof(fp_regs)); 571 } 572 573 static int s390_fpregs_set(struct task_struct *target, 574 const struct user_regset *regset, unsigned int pos, 575 unsigned int count, const void *kbuf, 576 const void __user *ubuf) 577 { 578 int rc = 0; 579 freg_t fprs[__NUM_FPRS]; 580 581 if (target == current) 582 save_user_fpu_regs(); 583 convert_vx_to_fp(fprs, target->thread.ufpu.vxrs); 584 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) { 585 u32 ufpc[2] = { target->thread.ufpu.fpc, 0 }; 586 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc, 587 0, offsetof(s390_fp_regs, fprs)); 588 if (rc) 589 return rc; 590 if (ufpc[1] != 0) 591 return -EINVAL; 592 target->thread.ufpu.fpc = ufpc[0]; 593 } 594 595 if (rc == 0 && count > 0) 596 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 597 fprs, offsetof(s390_fp_regs, fprs), -1); 598 if (rc) 599 return rc; 600 convert_fp_to_vx(target->thread.ufpu.vxrs, fprs); 601 return rc; 602 } 603 604 static int s390_last_break_get(struct task_struct *target, 605 const struct user_regset *regset, 606 struct membuf to) 607 { 608 return membuf_store(&to, target->thread.last_break); 609 } 610 611 static int s390_last_break_set(struct task_struct *target, 612 const struct user_regset *regset, 613 unsigned int pos, unsigned int count, 614 const void *kbuf, const void __user *ubuf) 615 { 616 return 0; 617 } 618 619 static int s390_tdb_get(struct task_struct *target, 620 const struct user_regset *regset, 621 struct membuf to) 622 { 623 struct pt_regs *regs = task_pt_regs(target); 624 size_t size; 625 626 if (!(regs->int_code & 0x200)) 627 return -ENODATA; 628 size = sizeof(target->thread.trap_tdb.data); 629 return membuf_write(&to, target->thread.trap_tdb.data, size); 630 } 631 632 static int s390_tdb_set(struct task_struct *target, 633 const struct user_regset *regset, 634 unsigned int pos, unsigned int count, 635 const void *kbuf, const void __user *ubuf) 636 { 637 return 0; 638 } 639 640 static int s390_vxrs_low_get(struct task_struct *target, 641 const struct user_regset *regset, 642 struct membuf to) 643 { 644 __u64 vxrs[__NUM_VXRS_LOW]; 645 int i; 646 647 if (!cpu_has_vx()) 648 return -ENODEV; 649 if (target == current) 650 save_user_fpu_regs(); 651 for (i = 0; i < __NUM_VXRS_LOW; i++) 652 vxrs[i] = target->thread.ufpu.vxrs[i].low; 653 return membuf_write(&to, vxrs, sizeof(vxrs)); 654 } 655 656 static int s390_vxrs_low_set(struct task_struct *target, 657 const struct user_regset *regset, 658 unsigned int pos, unsigned int count, 659 const void *kbuf, const void __user *ubuf) 660 { 661 __u64 vxrs[__NUM_VXRS_LOW]; 662 int i, rc; 663 664 if (!cpu_has_vx()) 665 return -ENODEV; 666 if (target == current) 667 save_user_fpu_regs(); 668 669 for (i = 0; i < __NUM_VXRS_LOW; i++) 670 vxrs[i] = target->thread.ufpu.vxrs[i].low; 671 672 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1); 673 if (rc == 0) 674 for (i = 0; i < __NUM_VXRS_LOW; i++) 675 target->thread.ufpu.vxrs[i].low = vxrs[i]; 676 677 return rc; 678 } 679 680 static int s390_vxrs_high_get(struct task_struct *target, 681 const struct user_regset *regset, 682 struct membuf to) 683 { 684 if (!cpu_has_vx()) 685 return -ENODEV; 686 if (target == current) 687 save_user_fpu_regs(); 688 return membuf_write(&to, target->thread.ufpu.vxrs + __NUM_VXRS_LOW, 689 __NUM_VXRS_HIGH * sizeof(__vector128)); 690 } 691 692 static int s390_vxrs_high_set(struct task_struct *target, 693 const struct user_regset *regset, 694 unsigned int pos, unsigned int count, 695 const void *kbuf, const void __user *ubuf) 696 { 697 int rc; 698 699 if (!cpu_has_vx()) 700 return -ENODEV; 701 if (target == current) 702 save_user_fpu_regs(); 703 704 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 705 target->thread.ufpu.vxrs + __NUM_VXRS_LOW, 0, -1); 706 return rc; 707 } 708 709 static int s390_system_call_get(struct task_struct *target, 710 const struct user_regset *regset, 711 struct membuf to) 712 { 713 return membuf_store(&to, target->thread.system_call); 714 } 715 716 static int s390_system_call_set(struct task_struct *target, 717 const struct user_regset *regset, 718 unsigned int pos, unsigned int count, 719 const void *kbuf, const void __user *ubuf) 720 { 721 unsigned int *data = &target->thread.system_call; 722 return user_regset_copyin(&pos, &count, &kbuf, &ubuf, 723 data, 0, sizeof(unsigned int)); 724 } 725 726 static int s390_gs_cb_get(struct task_struct *target, 727 const struct user_regset *regset, 728 struct membuf to) 729 { 730 struct gs_cb *data = target->thread.gs_cb; 731 732 if (!cpu_has_gs()) 733 return -ENODEV; 734 if (!data) 735 return -ENODATA; 736 if (target == current) 737 save_gs_cb(data); 738 return membuf_write(&to, data, sizeof(struct gs_cb)); 739 } 740 741 static int s390_gs_cb_set(struct task_struct *target, 742 const struct user_regset *regset, 743 unsigned int pos, unsigned int count, 744 const void *kbuf, const void __user *ubuf) 745 { 746 struct gs_cb gs_cb = { }, *data = NULL; 747 int rc; 748 749 if (!cpu_has_gs()) 750 return -ENODEV; 751 if (!target->thread.gs_cb) { 752 data = kzalloc(sizeof(*data), GFP_KERNEL); 753 if (!data) 754 return -ENOMEM; 755 } 756 if (!target->thread.gs_cb) 757 gs_cb.gsd = 25; 758 else if (target == current) 759 save_gs_cb(&gs_cb); 760 else 761 gs_cb = *target->thread.gs_cb; 762 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 763 &gs_cb, 0, sizeof(gs_cb)); 764 if (rc) { 765 kfree(data); 766 return -EFAULT; 767 } 768 preempt_disable(); 769 if (!target->thread.gs_cb) 770 target->thread.gs_cb = data; 771 *target->thread.gs_cb = gs_cb; 772 if (target == current) { 773 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT); 774 restore_gs_cb(target->thread.gs_cb); 775 } 776 preempt_enable(); 777 return rc; 778 } 779 780 static int s390_gs_bc_get(struct task_struct *target, 781 const struct user_regset *regset, 782 struct membuf to) 783 { 784 struct gs_cb *data = target->thread.gs_bc_cb; 785 786 if (!cpu_has_gs()) 787 return -ENODEV; 788 if (!data) 789 return -ENODATA; 790 return membuf_write(&to, data, sizeof(struct gs_cb)); 791 } 792 793 static int s390_gs_bc_set(struct task_struct *target, 794 const struct user_regset *regset, 795 unsigned int pos, unsigned int count, 796 const void *kbuf, const void __user *ubuf) 797 { 798 struct gs_cb *data = target->thread.gs_bc_cb; 799 800 if (!cpu_has_gs()) 801 return -ENODEV; 802 if (!data) { 803 data = kzalloc(sizeof(*data), GFP_KERNEL); 804 if (!data) 805 return -ENOMEM; 806 target->thread.gs_bc_cb = data; 807 } 808 return user_regset_copyin(&pos, &count, &kbuf, &ubuf, 809 data, 0, sizeof(struct gs_cb)); 810 } 811 812 static bool is_ri_cb_valid(struct runtime_instr_cb *cb) 813 { 814 return (cb->rca & 0x1f) == 0 && 815 (cb->roa & 0xfff) == 0 && 816 (cb->rla & 0xfff) == 0xfff && 817 cb->s == 1 && 818 cb->k == 1 && 819 cb->h == 0 && 820 cb->reserved1 == 0 && 821 cb->ps == 1 && 822 cb->qs == 0 && 823 cb->pc == 1 && 824 cb->qc == 0 && 825 cb->reserved2 == 0 && 826 cb->reserved3 == 0 && 827 cb->reserved4 == 0 && 828 cb->reserved5 == 0 && 829 cb->reserved6 == 0 && 830 cb->reserved7 == 0 && 831 cb->reserved8 == 0 && 832 cb->rla >= cb->roa && 833 cb->rca >= cb->roa && 834 cb->rca <= cb->rla+1 && 835 cb->m < 3; 836 } 837 838 static int s390_runtime_instr_get(struct task_struct *target, 839 const struct user_regset *regset, 840 struct membuf to) 841 { 842 struct runtime_instr_cb *data = target->thread.ri_cb; 843 844 if (!test_facility(64)) 845 return -ENODEV; 846 if (!data) 847 return -ENODATA; 848 849 return membuf_write(&to, data, sizeof(struct runtime_instr_cb)); 850 } 851 852 static int s390_runtime_instr_set(struct task_struct *target, 853 const struct user_regset *regset, 854 unsigned int pos, unsigned int count, 855 const void *kbuf, const void __user *ubuf) 856 { 857 struct runtime_instr_cb ri_cb = { }, *data = NULL; 858 int rc; 859 860 if (!test_facility(64)) 861 return -ENODEV; 862 863 if (!target->thread.ri_cb) { 864 data = kzalloc(sizeof(*data), GFP_KERNEL); 865 if (!data) 866 return -ENOMEM; 867 } 868 869 if (target->thread.ri_cb) { 870 if (target == current) 871 store_runtime_instr_cb(&ri_cb); 872 else 873 ri_cb = *target->thread.ri_cb; 874 } 875 876 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 877 &ri_cb, 0, sizeof(struct runtime_instr_cb)); 878 if (rc) { 879 kfree(data); 880 return -EFAULT; 881 } 882 883 if (!is_ri_cb_valid(&ri_cb)) { 884 kfree(data); 885 return -EINVAL; 886 } 887 /* 888 * Override access key in any case, since user space should 889 * not be able to set it, nor should it care about it. 890 */ 891 ri_cb.key = PAGE_DEFAULT_KEY >> 4; 892 preempt_disable(); 893 if (!target->thread.ri_cb) 894 target->thread.ri_cb = data; 895 *target->thread.ri_cb = ri_cb; 896 if (target == current) 897 load_runtime_instr_cb(target->thread.ri_cb); 898 preempt_enable(); 899 900 return 0; 901 } 902 903 static const struct user_regset s390_regsets[] = { 904 { 905 USER_REGSET_NOTE_TYPE(PRSTATUS), 906 .n = sizeof(s390_regs) / sizeof(long), 907 .size = sizeof(long), 908 .align = sizeof(long), 909 .regset_get = s390_regs_get, 910 .set = s390_regs_set, 911 }, 912 { 913 USER_REGSET_NOTE_TYPE(PRFPREG), 914 .n = sizeof(s390_fp_regs) / sizeof(long), 915 .size = sizeof(long), 916 .align = sizeof(long), 917 .regset_get = s390_fpregs_get, 918 .set = s390_fpregs_set, 919 }, 920 { 921 USER_REGSET_NOTE_TYPE(S390_SYSTEM_CALL), 922 .n = 1, 923 .size = sizeof(unsigned int), 924 .align = sizeof(unsigned int), 925 .regset_get = s390_system_call_get, 926 .set = s390_system_call_set, 927 }, 928 { 929 USER_REGSET_NOTE_TYPE(S390_LAST_BREAK), 930 .n = 1, 931 .size = sizeof(long), 932 .align = sizeof(long), 933 .regset_get = s390_last_break_get, 934 .set = s390_last_break_set, 935 }, 936 { 937 USER_REGSET_NOTE_TYPE(S390_TDB), 938 .n = 1, 939 .size = 256, 940 .align = 1, 941 .regset_get = s390_tdb_get, 942 .set = s390_tdb_set, 943 }, 944 { 945 USER_REGSET_NOTE_TYPE(S390_VXRS_LOW), 946 .n = __NUM_VXRS_LOW, 947 .size = sizeof(__u64), 948 .align = sizeof(__u64), 949 .regset_get = s390_vxrs_low_get, 950 .set = s390_vxrs_low_set, 951 }, 952 { 953 USER_REGSET_NOTE_TYPE(S390_VXRS_HIGH), 954 .n = __NUM_VXRS_HIGH, 955 .size = sizeof(__vector128), 956 .align = sizeof(__vector128), 957 .regset_get = s390_vxrs_high_get, 958 .set = s390_vxrs_high_set, 959 }, 960 { 961 USER_REGSET_NOTE_TYPE(S390_GS_CB), 962 .n = sizeof(struct gs_cb) / sizeof(__u64), 963 .size = sizeof(__u64), 964 .align = sizeof(__u64), 965 .regset_get = s390_gs_cb_get, 966 .set = s390_gs_cb_set, 967 }, 968 { 969 USER_REGSET_NOTE_TYPE(S390_GS_BC), 970 .n = sizeof(struct gs_cb) / sizeof(__u64), 971 .size = sizeof(__u64), 972 .align = sizeof(__u64), 973 .regset_get = s390_gs_bc_get, 974 .set = s390_gs_bc_set, 975 }, 976 { 977 USER_REGSET_NOTE_TYPE(S390_RI_CB), 978 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64), 979 .size = sizeof(__u64), 980 .align = sizeof(__u64), 981 .regset_get = s390_runtime_instr_get, 982 .set = s390_runtime_instr_set, 983 }, 984 }; 985 986 static const struct user_regset_view user_s390_view = { 987 .name = "s390x", 988 .e_machine = EM_S390, 989 .regsets = s390_regsets, 990 .n = ARRAY_SIZE(s390_regsets) 991 }; 992 993 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 994 { 995 return &user_s390_view; 996 } 997 998 static const char *gpr_names[NUM_GPRS] = { 999 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 1000 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 1001 }; 1002 1003 int regs_query_register_offset(const char *name) 1004 { 1005 unsigned long offset; 1006 1007 if (!name || *name != 'r') 1008 return -EINVAL; 1009 if (kstrtoul(name + 1, 10, &offset)) 1010 return -EINVAL; 1011 if (offset >= NUM_GPRS) 1012 return -EINVAL; 1013 return offset; 1014 } 1015 1016 const char *regs_query_register_name(unsigned int offset) 1017 { 1018 if (offset >= NUM_GPRS) 1019 return NULL; 1020 return gpr_names[offset]; 1021 } 1022