1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Ptrace user space interface. 4 * 5 * Copyright IBM Corp. 1999, 2010 6 * Author(s): Denis Joseph Barrow 7 * Martin Schwidefsky (schwidefsky@de.ibm.com) 8 */ 9 10 #include "asm/ptrace.h" 11 #include <linux/kernel.h> 12 #include <linux/sched.h> 13 #include <linux/sched/task_stack.h> 14 #include <linux/mm.h> 15 #include <linux/smp.h> 16 #include <linux/errno.h> 17 #include <linux/ptrace.h> 18 #include <linux/user.h> 19 #include <linux/security.h> 20 #include <linux/audit.h> 21 #include <linux/signal.h> 22 #include <linux/elf.h> 23 #include <linux/regset.h> 24 #include <linux/seccomp.h> 25 #include <linux/compat.h> 26 #include <trace/syscall.h> 27 #include <asm/page.h> 28 #include <linux/uaccess.h> 29 #include <asm/unistd.h> 30 #include <asm/switch_to.h> 31 #include <asm/runtime_instr.h> 32 #include <asm/facility.h> 33 34 #include "entry.h" 35 36 #ifdef CONFIG_COMPAT 37 #include "compat_ptrace.h" 38 #endif 39 40 void update_cr_regs(struct task_struct *task) 41 { 42 struct pt_regs *regs = task_pt_regs(task); 43 struct thread_struct *thread = &task->thread; 44 struct per_regs old, new; 45 union ctlreg0 cr0_old, cr0_new; 46 union ctlreg2 cr2_old, cr2_new; 47 int cr0_changed, cr2_changed; 48 49 __ctl_store(cr0_old.val, 0, 0); 50 __ctl_store(cr2_old.val, 2, 2); 51 cr0_new = cr0_old; 52 cr2_new = cr2_old; 53 /* Take care of the enable/disable of transactional execution. */ 54 if (MACHINE_HAS_TE) { 55 /* Set or clear transaction execution TXC bit 8. */ 56 cr0_new.tcx = 1; 57 if (task->thread.per_flags & PER_FLAG_NO_TE) 58 cr0_new.tcx = 0; 59 /* Set or clear transaction execution TDC bits 62 and 63. */ 60 cr2_new.tdc = 0; 61 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) { 62 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND) 63 cr2_new.tdc = 1; 64 else 65 cr2_new.tdc = 2; 66 } 67 } 68 /* Take care of enable/disable of guarded storage. */ 69 if (MACHINE_HAS_GS) { 70 cr2_new.gse = 0; 71 if (task->thread.gs_cb) 72 cr2_new.gse = 1; 73 } 74 /* Load control register 0/2 iff changed */ 75 cr0_changed = cr0_new.val != cr0_old.val; 76 cr2_changed = cr2_new.val != cr2_old.val; 77 if (cr0_changed) 78 __ctl_load(cr0_new.val, 0, 0); 79 if (cr2_changed) 80 __ctl_load(cr2_new.val, 2, 2); 81 /* Copy user specified PER registers */ 82 new.control = thread->per_user.control; 83 new.start = thread->per_user.start; 84 new.end = thread->per_user.end; 85 86 /* merge TIF_SINGLE_STEP into user specified PER registers. */ 87 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) || 88 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) { 89 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP)) 90 new.control |= PER_EVENT_BRANCH; 91 else 92 new.control |= PER_EVENT_IFETCH; 93 new.control |= PER_CONTROL_SUSPENSION; 94 new.control |= PER_EVENT_TRANSACTION_END; 95 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) 96 new.control |= PER_EVENT_IFETCH; 97 new.start = 0; 98 new.end = -1UL; 99 } 100 101 /* Take care of the PER enablement bit in the PSW. */ 102 if (!(new.control & PER_EVENT_MASK)) { 103 regs->psw.mask &= ~PSW_MASK_PER; 104 return; 105 } 106 regs->psw.mask |= PSW_MASK_PER; 107 __ctl_store(old, 9, 11); 108 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0) 109 __ctl_load(new, 9, 11); 110 } 111 112 void user_enable_single_step(struct task_struct *task) 113 { 114 clear_tsk_thread_flag(task, TIF_BLOCK_STEP); 115 set_tsk_thread_flag(task, TIF_SINGLE_STEP); 116 } 117 118 void user_disable_single_step(struct task_struct *task) 119 { 120 clear_tsk_thread_flag(task, TIF_BLOCK_STEP); 121 clear_tsk_thread_flag(task, TIF_SINGLE_STEP); 122 } 123 124 void user_enable_block_step(struct task_struct *task) 125 { 126 set_tsk_thread_flag(task, TIF_SINGLE_STEP); 127 set_tsk_thread_flag(task, TIF_BLOCK_STEP); 128 } 129 130 /* 131 * Called by kernel/ptrace.c when detaching.. 132 * 133 * Clear all debugging related fields. 134 */ 135 void ptrace_disable(struct task_struct *task) 136 { 137 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user)); 138 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event)); 139 clear_tsk_thread_flag(task, TIF_SINGLE_STEP); 140 clear_tsk_thread_flag(task, TIF_PER_TRAP); 141 task->thread.per_flags = 0; 142 } 143 144 #define __ADDR_MASK 7 145 146 static inline unsigned long __peek_user_per(struct task_struct *child, 147 addr_t addr) 148 { 149 if (addr == offsetof(struct per_struct_kernel, cr9)) 150 /* Control bits of the active per set. */ 151 return test_thread_flag(TIF_SINGLE_STEP) ? 152 PER_EVENT_IFETCH : child->thread.per_user.control; 153 else if (addr == offsetof(struct per_struct_kernel, cr10)) 154 /* Start address of the active per set. */ 155 return test_thread_flag(TIF_SINGLE_STEP) ? 156 0 : child->thread.per_user.start; 157 else if (addr == offsetof(struct per_struct_kernel, cr11)) 158 /* End address of the active per set. */ 159 return test_thread_flag(TIF_SINGLE_STEP) ? 160 -1UL : child->thread.per_user.end; 161 else if (addr == offsetof(struct per_struct_kernel, bits)) 162 /* Single-step bit. */ 163 return test_thread_flag(TIF_SINGLE_STEP) ? 164 (1UL << (BITS_PER_LONG - 1)) : 0; 165 else if (addr == offsetof(struct per_struct_kernel, starting_addr)) 166 /* Start address of the user specified per set. */ 167 return child->thread.per_user.start; 168 else if (addr == offsetof(struct per_struct_kernel, ending_addr)) 169 /* End address of the user specified per set. */ 170 return child->thread.per_user.end; 171 else if (addr == offsetof(struct per_struct_kernel, perc_atmid)) 172 /* PER code, ATMID and AI of the last PER trap */ 173 return (unsigned long) 174 child->thread.per_event.cause << (BITS_PER_LONG - 16); 175 else if (addr == offsetof(struct per_struct_kernel, address)) 176 /* Address of the last PER trap */ 177 return child->thread.per_event.address; 178 else if (addr == offsetof(struct per_struct_kernel, access_id)) 179 /* Access id of the last PER trap */ 180 return (unsigned long) 181 child->thread.per_event.paid << (BITS_PER_LONG - 8); 182 return 0; 183 } 184 185 /* 186 * Read the word at offset addr from the user area of a process. The 187 * trouble here is that the information is littered over different 188 * locations. The process registers are found on the kernel stack, 189 * the floating point stuff and the trace settings are stored in 190 * the task structure. In addition the different structures in 191 * struct user contain pad bytes that should be read as zeroes. 192 * Lovely... 193 */ 194 static unsigned long __peek_user(struct task_struct *child, addr_t addr) 195 { 196 addr_t offset, tmp; 197 198 if (addr < offsetof(struct user, regs.acrs)) { 199 /* 200 * psw and gprs are stored on the stack 201 */ 202 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr); 203 if (addr == offsetof(struct user, regs.psw.mask)) { 204 /* Return a clean psw mask. */ 205 tmp &= PSW_MASK_USER | PSW_MASK_RI; 206 tmp |= PSW_USER_BITS; 207 } 208 209 } else if (addr < offsetof(struct user, regs.orig_gpr2)) { 210 /* 211 * access registers are stored in the thread structure 212 */ 213 offset = addr - offsetof(struct user, regs.acrs); 214 /* 215 * Very special case: old & broken 64 bit gdb reading 216 * from acrs[15]. Result is a 64 bit value. Read the 217 * 32 bit acrs[15] value and shift it by 32. Sick... 218 */ 219 if (addr == offsetof(struct user, regs.acrs[15])) 220 tmp = ((unsigned long) child->thread.acrs[15]) << 32; 221 else 222 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset); 223 224 } else if (addr == offsetof(struct user, regs.orig_gpr2)) { 225 /* 226 * orig_gpr2 is stored on the kernel stack 227 */ 228 tmp = (addr_t) task_pt_regs(child)->orig_gpr2; 229 230 } else if (addr < offsetof(struct user, regs.fp_regs)) { 231 /* 232 * prevent reads of padding hole between 233 * orig_gpr2 and fp_regs on s390. 234 */ 235 tmp = 0; 236 237 } else if (addr == offsetof(struct user, regs.fp_regs.fpc)) { 238 /* 239 * floating point control reg. is in the thread structure 240 */ 241 tmp = child->thread.fpu.fpc; 242 tmp <<= BITS_PER_LONG - 32; 243 244 } else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) { 245 /* 246 * floating point regs. are either in child->thread.fpu 247 * or the child->thread.fpu.vxrs array 248 */ 249 offset = addr - offsetof(struct user, regs.fp_regs.fprs); 250 if (MACHINE_HAS_VX) 251 tmp = *(addr_t *) 252 ((addr_t) child->thread.fpu.vxrs + 2*offset); 253 else 254 tmp = *(addr_t *) 255 ((addr_t) child->thread.fpu.fprs + offset); 256 257 } else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) { 258 /* 259 * Handle access to the per_info structure. 260 */ 261 addr -= offsetof(struct user, regs.per_info); 262 tmp = __peek_user_per(child, addr); 263 264 } else 265 tmp = 0; 266 267 return tmp; 268 } 269 270 static int 271 peek_user(struct task_struct *child, addr_t addr, addr_t data) 272 { 273 addr_t tmp, mask; 274 275 /* 276 * Stupid gdb peeks/pokes the access registers in 64 bit with 277 * an alignment of 4. Programmers from hell... 278 */ 279 mask = __ADDR_MASK; 280 if (addr >= offsetof(struct user, regs.acrs) && 281 addr < offsetof(struct user, regs.orig_gpr2)) 282 mask = 3; 283 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK) 284 return -EIO; 285 286 tmp = __peek_user(child, addr); 287 return put_user(tmp, (addr_t __user *) data); 288 } 289 290 static inline void __poke_user_per(struct task_struct *child, 291 addr_t addr, addr_t data) 292 { 293 /* 294 * There are only three fields in the per_info struct that the 295 * debugger user can write to. 296 * 1) cr9: the debugger wants to set a new PER event mask 297 * 2) starting_addr: the debugger wants to set a new starting 298 * address to use with the PER event mask. 299 * 3) ending_addr: the debugger wants to set a new ending 300 * address to use with the PER event mask. 301 * The user specified PER event mask and the start and end 302 * addresses are used only if single stepping is not in effect. 303 * Writes to any other field in per_info are ignored. 304 */ 305 if (addr == offsetof(struct per_struct_kernel, cr9)) 306 /* PER event mask of the user specified per set. */ 307 child->thread.per_user.control = 308 data & (PER_EVENT_MASK | PER_CONTROL_MASK); 309 else if (addr == offsetof(struct per_struct_kernel, starting_addr)) 310 /* Starting address of the user specified per set. */ 311 child->thread.per_user.start = data; 312 else if (addr == offsetof(struct per_struct_kernel, ending_addr)) 313 /* Ending address of the user specified per set. */ 314 child->thread.per_user.end = data; 315 } 316 317 /* 318 * Write a word to the user area of a process at location addr. This 319 * operation does have an additional problem compared to peek_user. 320 * Stores to the program status word and on the floating point 321 * control register needs to get checked for validity. 322 */ 323 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data) 324 { 325 addr_t offset; 326 327 328 if (addr < offsetof(struct user, regs.acrs)) { 329 struct pt_regs *regs = task_pt_regs(child); 330 /* 331 * psw and gprs are stored on the stack 332 */ 333 if (addr == offsetof(struct user, regs.psw.mask)) { 334 unsigned long mask = PSW_MASK_USER; 335 336 mask |= is_ri_task(child) ? PSW_MASK_RI : 0; 337 if ((data ^ PSW_USER_BITS) & ~mask) 338 /* Invalid psw mask. */ 339 return -EINVAL; 340 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME) 341 /* Invalid address-space-control bits */ 342 return -EINVAL; 343 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA)) 344 /* Invalid addressing mode bits */ 345 return -EINVAL; 346 } 347 348 if (test_pt_regs_flag(regs, PIF_SYSCALL) && 349 addr == offsetof(struct user, regs.gprs[2])) { 350 struct pt_regs *regs = task_pt_regs(child); 351 352 regs->int_code = 0x20000 | (data & 0xffff); 353 } 354 *(addr_t *)((addr_t) ®s->psw + addr) = data; 355 } else if (addr < offsetof(struct user, regs.orig_gpr2)) { 356 /* 357 * access registers are stored in the thread structure 358 */ 359 offset = addr - offsetof(struct user, regs.acrs); 360 /* 361 * Very special case: old & broken 64 bit gdb writing 362 * to acrs[15] with a 64 bit value. Ignore the lower 363 * half of the value and write the upper 32 bit to 364 * acrs[15]. Sick... 365 */ 366 if (addr == offsetof(struct user, regs.acrs[15])) 367 child->thread.acrs[15] = (unsigned int) (data >> 32); 368 else 369 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data; 370 371 } else if (addr == offsetof(struct user, regs.orig_gpr2)) { 372 /* 373 * orig_gpr2 is stored on the kernel stack 374 */ 375 task_pt_regs(child)->orig_gpr2 = data; 376 377 } else if (addr < offsetof(struct user, regs.fp_regs)) { 378 /* 379 * prevent writes of padding hole between 380 * orig_gpr2 and fp_regs on s390. 381 */ 382 return 0; 383 384 } else if (addr == offsetof(struct user, regs.fp_regs.fpc)) { 385 /* 386 * floating point control reg. is in the thread structure 387 */ 388 if ((unsigned int) data != 0 || 389 test_fp_ctl(data >> (BITS_PER_LONG - 32))) 390 return -EINVAL; 391 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32); 392 393 } else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) { 394 /* 395 * floating point regs. are either in child->thread.fpu 396 * or the child->thread.fpu.vxrs array 397 */ 398 offset = addr - offsetof(struct user, regs.fp_regs.fprs); 399 if (MACHINE_HAS_VX) 400 *(addr_t *)((addr_t) 401 child->thread.fpu.vxrs + 2*offset) = data; 402 else 403 *(addr_t *)((addr_t) 404 child->thread.fpu.fprs + offset) = data; 405 406 } else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) { 407 /* 408 * Handle access to the per_info structure. 409 */ 410 addr -= offsetof(struct user, regs.per_info); 411 __poke_user_per(child, addr, data); 412 413 } 414 415 return 0; 416 } 417 418 static int poke_user(struct task_struct *child, addr_t addr, addr_t data) 419 { 420 addr_t mask; 421 422 /* 423 * Stupid gdb peeks/pokes the access registers in 64 bit with 424 * an alignment of 4. Programmers from hell indeed... 425 */ 426 mask = __ADDR_MASK; 427 if (addr >= offsetof(struct user, regs.acrs) && 428 addr < offsetof(struct user, regs.orig_gpr2)) 429 mask = 3; 430 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK) 431 return -EIO; 432 433 return __poke_user(child, addr, data); 434 } 435 436 long arch_ptrace(struct task_struct *child, long request, 437 unsigned long addr, unsigned long data) 438 { 439 ptrace_area parea; 440 int copied, ret; 441 442 switch (request) { 443 case PTRACE_PEEKUSR: 444 /* read the word at location addr in the USER area. */ 445 return peek_user(child, addr, data); 446 447 case PTRACE_POKEUSR: 448 /* write the word at location addr in the USER area */ 449 return poke_user(child, addr, data); 450 451 case PTRACE_PEEKUSR_AREA: 452 case PTRACE_POKEUSR_AREA: 453 if (copy_from_user(&parea, (void __force __user *) addr, 454 sizeof(parea))) 455 return -EFAULT; 456 addr = parea.kernel_addr; 457 data = parea.process_addr; 458 copied = 0; 459 while (copied < parea.len) { 460 if (request == PTRACE_PEEKUSR_AREA) 461 ret = peek_user(child, addr, data); 462 else { 463 addr_t utmp; 464 if (get_user(utmp, 465 (addr_t __force __user *) data)) 466 return -EFAULT; 467 ret = poke_user(child, addr, utmp); 468 } 469 if (ret) 470 return ret; 471 addr += sizeof(unsigned long); 472 data += sizeof(unsigned long); 473 copied += sizeof(unsigned long); 474 } 475 return 0; 476 case PTRACE_GET_LAST_BREAK: 477 put_user(child->thread.last_break, 478 (unsigned long __user *) data); 479 return 0; 480 case PTRACE_ENABLE_TE: 481 if (!MACHINE_HAS_TE) 482 return -EIO; 483 child->thread.per_flags &= ~PER_FLAG_NO_TE; 484 return 0; 485 case PTRACE_DISABLE_TE: 486 if (!MACHINE_HAS_TE) 487 return -EIO; 488 child->thread.per_flags |= PER_FLAG_NO_TE; 489 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND; 490 return 0; 491 case PTRACE_TE_ABORT_RAND: 492 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE)) 493 return -EIO; 494 switch (data) { 495 case 0UL: 496 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND; 497 break; 498 case 1UL: 499 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND; 500 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND; 501 break; 502 case 2UL: 503 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND; 504 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND; 505 break; 506 default: 507 return -EINVAL; 508 } 509 return 0; 510 default: 511 return ptrace_request(child, request, addr, data); 512 } 513 } 514 515 #ifdef CONFIG_COMPAT 516 /* 517 * Now the fun part starts... a 31 bit program running in the 518 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT, 519 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy 520 * to handle, the difference to the 64 bit versions of the requests 521 * is that the access is done in multiples of 4 byte instead of 522 * 8 bytes (sizeof(unsigned long) on 31/64 bit). 523 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA, 524 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program 525 * is a 31 bit program too, the content of struct user can be 526 * emulated. A 31 bit program peeking into the struct user of 527 * a 64 bit program is a no-no. 528 */ 529 530 /* 531 * Same as peek_user_per but for a 31 bit program. 532 */ 533 static inline __u32 __peek_user_per_compat(struct task_struct *child, 534 addr_t addr) 535 { 536 if (addr == offsetof(struct compat_per_struct_kernel, cr9)) 537 /* Control bits of the active per set. */ 538 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ? 539 PER_EVENT_IFETCH : child->thread.per_user.control; 540 else if (addr == offsetof(struct compat_per_struct_kernel, cr10)) 541 /* Start address of the active per set. */ 542 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ? 543 0 : child->thread.per_user.start; 544 else if (addr == offsetof(struct compat_per_struct_kernel, cr11)) 545 /* End address of the active per set. */ 546 return test_thread_flag(TIF_SINGLE_STEP) ? 547 PSW32_ADDR_INSN : child->thread.per_user.end; 548 else if (addr == offsetof(struct compat_per_struct_kernel, bits)) 549 /* Single-step bit. */ 550 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ? 551 0x80000000 : 0; 552 else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr)) 553 /* Start address of the user specified per set. */ 554 return (__u32) child->thread.per_user.start; 555 else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr)) 556 /* End address of the user specified per set. */ 557 return (__u32) child->thread.per_user.end; 558 else if (addr == offsetof(struct compat_per_struct_kernel, perc_atmid)) 559 /* PER code, ATMID and AI of the last PER trap */ 560 return (__u32) child->thread.per_event.cause << 16; 561 else if (addr == offsetof(struct compat_per_struct_kernel, address)) 562 /* Address of the last PER trap */ 563 return (__u32) child->thread.per_event.address; 564 else if (addr == offsetof(struct compat_per_struct_kernel, access_id)) 565 /* Access id of the last PER trap */ 566 return (__u32) child->thread.per_event.paid << 24; 567 return 0; 568 } 569 570 /* 571 * Same as peek_user but for a 31 bit program. 572 */ 573 static u32 __peek_user_compat(struct task_struct *child, addr_t addr) 574 { 575 addr_t offset; 576 __u32 tmp; 577 578 if (addr < offsetof(struct compat_user, regs.acrs)) { 579 struct pt_regs *regs = task_pt_regs(child); 580 /* 581 * psw and gprs are stored on the stack 582 */ 583 if (addr == offsetof(struct compat_user, regs.psw.mask)) { 584 /* Fake a 31 bit psw mask. */ 585 tmp = (__u32)(regs->psw.mask >> 32); 586 tmp &= PSW32_MASK_USER | PSW32_MASK_RI; 587 tmp |= PSW32_USER_BITS; 588 } else if (addr == offsetof(struct compat_user, regs.psw.addr)) { 589 /* Fake a 31 bit psw address. */ 590 tmp = (__u32) regs->psw.addr | 591 (__u32)(regs->psw.mask & PSW_MASK_BA); 592 } else { 593 /* gpr 0-15 */ 594 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4); 595 } 596 } else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) { 597 /* 598 * access registers are stored in the thread structure 599 */ 600 offset = addr - offsetof(struct compat_user, regs.acrs); 601 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset); 602 603 } else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) { 604 /* 605 * orig_gpr2 is stored on the kernel stack 606 */ 607 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4); 608 609 } else if (addr < offsetof(struct compat_user, regs.fp_regs)) { 610 /* 611 * prevent reads of padding hole between 612 * orig_gpr2 and fp_regs on s390. 613 */ 614 tmp = 0; 615 616 } else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) { 617 /* 618 * floating point control reg. is in the thread structure 619 */ 620 tmp = child->thread.fpu.fpc; 621 622 } else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) { 623 /* 624 * floating point regs. are either in child->thread.fpu 625 * or the child->thread.fpu.vxrs array 626 */ 627 offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs); 628 if (MACHINE_HAS_VX) 629 tmp = *(__u32 *) 630 ((addr_t) child->thread.fpu.vxrs + 2*offset); 631 else 632 tmp = *(__u32 *) 633 ((addr_t) child->thread.fpu.fprs + offset); 634 635 } else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) { 636 /* 637 * Handle access to the per_info structure. 638 */ 639 addr -= offsetof(struct compat_user, regs.per_info); 640 tmp = __peek_user_per_compat(child, addr); 641 642 } else 643 tmp = 0; 644 645 return tmp; 646 } 647 648 static int peek_user_compat(struct task_struct *child, 649 addr_t addr, addr_t data) 650 { 651 __u32 tmp; 652 653 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3) 654 return -EIO; 655 656 tmp = __peek_user_compat(child, addr); 657 return put_user(tmp, (__u32 __user *) data); 658 } 659 660 /* 661 * Same as poke_user_per but for a 31 bit program. 662 */ 663 static inline void __poke_user_per_compat(struct task_struct *child, 664 addr_t addr, __u32 data) 665 { 666 if (addr == offsetof(struct compat_per_struct_kernel, cr9)) 667 /* PER event mask of the user specified per set. */ 668 child->thread.per_user.control = 669 data & (PER_EVENT_MASK | PER_CONTROL_MASK); 670 else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr)) 671 /* Starting address of the user specified per set. */ 672 child->thread.per_user.start = data; 673 else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr)) 674 /* Ending address of the user specified per set. */ 675 child->thread.per_user.end = data; 676 } 677 678 /* 679 * Same as poke_user but for a 31 bit program. 680 */ 681 static int __poke_user_compat(struct task_struct *child, 682 addr_t addr, addr_t data) 683 { 684 __u32 tmp = (__u32) data; 685 addr_t offset; 686 687 if (addr < offsetof(struct compat_user, regs.acrs)) { 688 struct pt_regs *regs = task_pt_regs(child); 689 /* 690 * psw, gprs, acrs and orig_gpr2 are stored on the stack 691 */ 692 if (addr == offsetof(struct compat_user, regs.psw.mask)) { 693 __u32 mask = PSW32_MASK_USER; 694 695 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0; 696 /* Build a 64 bit psw mask from 31 bit mask. */ 697 if ((tmp ^ PSW32_USER_BITS) & ~mask) 698 /* Invalid psw mask. */ 699 return -EINVAL; 700 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME) 701 /* Invalid address-space-control bits */ 702 return -EINVAL; 703 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) | 704 (regs->psw.mask & PSW_MASK_BA) | 705 (__u64)(tmp & mask) << 32; 706 } else if (addr == offsetof(struct compat_user, regs.psw.addr)) { 707 /* Build a 64 bit psw address from 31 bit address. */ 708 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN; 709 /* Transfer 31 bit amode bit to psw mask. */ 710 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) | 711 (__u64)(tmp & PSW32_ADDR_AMODE); 712 } else { 713 if (test_pt_regs_flag(regs, PIF_SYSCALL) && 714 addr == offsetof(struct compat_user, regs.gprs[2])) { 715 struct pt_regs *regs = task_pt_regs(child); 716 717 regs->int_code = 0x20000 | (data & 0xffff); 718 } 719 /* gpr 0-15 */ 720 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp; 721 } 722 } else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) { 723 /* 724 * access registers are stored in the thread structure 725 */ 726 offset = addr - offsetof(struct compat_user, regs.acrs); 727 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp; 728 729 } else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) { 730 /* 731 * orig_gpr2 is stored on the kernel stack 732 */ 733 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp; 734 735 } else if (addr < offsetof(struct compat_user, regs.fp_regs)) { 736 /* 737 * prevent writess of padding hole between 738 * orig_gpr2 and fp_regs on s390. 739 */ 740 return 0; 741 742 } else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) { 743 /* 744 * floating point control reg. is in the thread structure 745 */ 746 if (test_fp_ctl(tmp)) 747 return -EINVAL; 748 child->thread.fpu.fpc = data; 749 750 } else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) { 751 /* 752 * floating point regs. are either in child->thread.fpu 753 * or the child->thread.fpu.vxrs array 754 */ 755 offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs); 756 if (MACHINE_HAS_VX) 757 *(__u32 *)((addr_t) 758 child->thread.fpu.vxrs + 2*offset) = tmp; 759 else 760 *(__u32 *)((addr_t) 761 child->thread.fpu.fprs + offset) = tmp; 762 763 } else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) { 764 /* 765 * Handle access to the per_info structure. 766 */ 767 addr -= offsetof(struct compat_user, regs.per_info); 768 __poke_user_per_compat(child, addr, data); 769 } 770 771 return 0; 772 } 773 774 static int poke_user_compat(struct task_struct *child, 775 addr_t addr, addr_t data) 776 { 777 if (!is_compat_task() || (addr & 3) || 778 addr > sizeof(struct compat_user) - 3) 779 return -EIO; 780 781 return __poke_user_compat(child, addr, data); 782 } 783 784 long compat_arch_ptrace(struct task_struct *child, compat_long_t request, 785 compat_ulong_t caddr, compat_ulong_t cdata) 786 { 787 unsigned long addr = caddr; 788 unsigned long data = cdata; 789 compat_ptrace_area parea; 790 int copied, ret; 791 792 switch (request) { 793 case PTRACE_PEEKUSR: 794 /* read the word at location addr in the USER area. */ 795 return peek_user_compat(child, addr, data); 796 797 case PTRACE_POKEUSR: 798 /* write the word at location addr in the USER area */ 799 return poke_user_compat(child, addr, data); 800 801 case PTRACE_PEEKUSR_AREA: 802 case PTRACE_POKEUSR_AREA: 803 if (copy_from_user(&parea, (void __force __user *) addr, 804 sizeof(parea))) 805 return -EFAULT; 806 addr = parea.kernel_addr; 807 data = parea.process_addr; 808 copied = 0; 809 while (copied < parea.len) { 810 if (request == PTRACE_PEEKUSR_AREA) 811 ret = peek_user_compat(child, addr, data); 812 else { 813 __u32 utmp; 814 if (get_user(utmp, 815 (__u32 __force __user *) data)) 816 return -EFAULT; 817 ret = poke_user_compat(child, addr, utmp); 818 } 819 if (ret) 820 return ret; 821 addr += sizeof(unsigned int); 822 data += sizeof(unsigned int); 823 copied += sizeof(unsigned int); 824 } 825 return 0; 826 case PTRACE_GET_LAST_BREAK: 827 put_user(child->thread.last_break, 828 (unsigned int __user *) data); 829 return 0; 830 } 831 return compat_ptrace_request(child, request, addr, data); 832 } 833 #endif 834 835 /* 836 * user_regset definitions. 837 */ 838 839 static int s390_regs_get(struct task_struct *target, 840 const struct user_regset *regset, 841 struct membuf to) 842 { 843 unsigned pos; 844 if (target == current) 845 save_access_regs(target->thread.acrs); 846 847 for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long)) 848 membuf_store(&to, __peek_user(target, pos)); 849 return 0; 850 } 851 852 static int s390_regs_set(struct task_struct *target, 853 const struct user_regset *regset, 854 unsigned int pos, unsigned int count, 855 const void *kbuf, const void __user *ubuf) 856 { 857 int rc = 0; 858 859 if (target == current) 860 save_access_regs(target->thread.acrs); 861 862 if (kbuf) { 863 const unsigned long *k = kbuf; 864 while (count > 0 && !rc) { 865 rc = __poke_user(target, pos, *k++); 866 count -= sizeof(*k); 867 pos += sizeof(*k); 868 } 869 } else { 870 const unsigned long __user *u = ubuf; 871 while (count > 0 && !rc) { 872 unsigned long word; 873 rc = __get_user(word, u++); 874 if (rc) 875 break; 876 rc = __poke_user(target, pos, word); 877 count -= sizeof(*u); 878 pos += sizeof(*u); 879 } 880 } 881 882 if (rc == 0 && target == current) 883 restore_access_regs(target->thread.acrs); 884 885 return rc; 886 } 887 888 static int s390_fpregs_get(struct task_struct *target, 889 const struct user_regset *regset, 890 struct membuf to) 891 { 892 _s390_fp_regs fp_regs; 893 894 if (target == current) 895 save_fpu_regs(); 896 897 fp_regs.fpc = target->thread.fpu.fpc; 898 fpregs_store(&fp_regs, &target->thread.fpu); 899 900 return membuf_write(&to, &fp_regs, sizeof(fp_regs)); 901 } 902 903 static int s390_fpregs_set(struct task_struct *target, 904 const struct user_regset *regset, unsigned int pos, 905 unsigned int count, const void *kbuf, 906 const void __user *ubuf) 907 { 908 int rc = 0; 909 freg_t fprs[__NUM_FPRS]; 910 911 if (target == current) 912 save_fpu_regs(); 913 914 if (MACHINE_HAS_VX) 915 convert_vx_to_fp(fprs, target->thread.fpu.vxrs); 916 else 917 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs)); 918 919 /* If setting FPC, must validate it first. */ 920 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) { 921 u32 ufpc[2] = { target->thread.fpu.fpc, 0 }; 922 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc, 923 0, offsetof(s390_fp_regs, fprs)); 924 if (rc) 925 return rc; 926 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0])) 927 return -EINVAL; 928 target->thread.fpu.fpc = ufpc[0]; 929 } 930 931 if (rc == 0 && count > 0) 932 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 933 fprs, offsetof(s390_fp_regs, fprs), -1); 934 if (rc) 935 return rc; 936 937 if (MACHINE_HAS_VX) 938 convert_fp_to_vx(target->thread.fpu.vxrs, fprs); 939 else 940 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs)); 941 942 return rc; 943 } 944 945 static int s390_last_break_get(struct task_struct *target, 946 const struct user_regset *regset, 947 struct membuf to) 948 { 949 return membuf_store(&to, target->thread.last_break); 950 } 951 952 static int s390_last_break_set(struct task_struct *target, 953 const struct user_regset *regset, 954 unsigned int pos, unsigned int count, 955 const void *kbuf, const void __user *ubuf) 956 { 957 return 0; 958 } 959 960 static int s390_tdb_get(struct task_struct *target, 961 const struct user_regset *regset, 962 struct membuf to) 963 { 964 struct pt_regs *regs = task_pt_regs(target); 965 size_t size; 966 967 if (!(regs->int_code & 0x200)) 968 return -ENODATA; 969 size = sizeof(target->thread.trap_tdb.data); 970 return membuf_write(&to, target->thread.trap_tdb.data, size); 971 } 972 973 static int s390_tdb_set(struct task_struct *target, 974 const struct user_regset *regset, 975 unsigned int pos, unsigned int count, 976 const void *kbuf, const void __user *ubuf) 977 { 978 return 0; 979 } 980 981 static int s390_vxrs_low_get(struct task_struct *target, 982 const struct user_regset *regset, 983 struct membuf to) 984 { 985 __u64 vxrs[__NUM_VXRS_LOW]; 986 int i; 987 988 if (!MACHINE_HAS_VX) 989 return -ENODEV; 990 if (target == current) 991 save_fpu_regs(); 992 for (i = 0; i < __NUM_VXRS_LOW; i++) 993 vxrs[i] = target->thread.fpu.vxrs[i].low; 994 return membuf_write(&to, vxrs, sizeof(vxrs)); 995 } 996 997 static int s390_vxrs_low_set(struct task_struct *target, 998 const struct user_regset *regset, 999 unsigned int pos, unsigned int count, 1000 const void *kbuf, const void __user *ubuf) 1001 { 1002 __u64 vxrs[__NUM_VXRS_LOW]; 1003 int i, rc; 1004 1005 if (!MACHINE_HAS_VX) 1006 return -ENODEV; 1007 if (target == current) 1008 save_fpu_regs(); 1009 1010 for (i = 0; i < __NUM_VXRS_LOW; i++) 1011 vxrs[i] = target->thread.fpu.vxrs[i].low; 1012 1013 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1); 1014 if (rc == 0) 1015 for (i = 0; i < __NUM_VXRS_LOW; i++) 1016 target->thread.fpu.vxrs[i].low = vxrs[i]; 1017 1018 return rc; 1019 } 1020 1021 static int s390_vxrs_high_get(struct task_struct *target, 1022 const struct user_regset *regset, 1023 struct membuf to) 1024 { 1025 if (!MACHINE_HAS_VX) 1026 return -ENODEV; 1027 if (target == current) 1028 save_fpu_regs(); 1029 return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW, 1030 __NUM_VXRS_HIGH * sizeof(__vector128)); 1031 } 1032 1033 static int s390_vxrs_high_set(struct task_struct *target, 1034 const struct user_regset *regset, 1035 unsigned int pos, unsigned int count, 1036 const void *kbuf, const void __user *ubuf) 1037 { 1038 int rc; 1039 1040 if (!MACHINE_HAS_VX) 1041 return -ENODEV; 1042 if (target == current) 1043 save_fpu_regs(); 1044 1045 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1046 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1); 1047 return rc; 1048 } 1049 1050 static int s390_system_call_get(struct task_struct *target, 1051 const struct user_regset *regset, 1052 struct membuf to) 1053 { 1054 return membuf_store(&to, target->thread.system_call); 1055 } 1056 1057 static int s390_system_call_set(struct task_struct *target, 1058 const struct user_regset *regset, 1059 unsigned int pos, unsigned int count, 1060 const void *kbuf, const void __user *ubuf) 1061 { 1062 unsigned int *data = &target->thread.system_call; 1063 return user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1064 data, 0, sizeof(unsigned int)); 1065 } 1066 1067 static int s390_gs_cb_get(struct task_struct *target, 1068 const struct user_regset *regset, 1069 struct membuf to) 1070 { 1071 struct gs_cb *data = target->thread.gs_cb; 1072 1073 if (!MACHINE_HAS_GS) 1074 return -ENODEV; 1075 if (!data) 1076 return -ENODATA; 1077 if (target == current) 1078 save_gs_cb(data); 1079 return membuf_write(&to, data, sizeof(struct gs_cb)); 1080 } 1081 1082 static int s390_gs_cb_set(struct task_struct *target, 1083 const struct user_regset *regset, 1084 unsigned int pos, unsigned int count, 1085 const void *kbuf, const void __user *ubuf) 1086 { 1087 struct gs_cb gs_cb = { }, *data = NULL; 1088 int rc; 1089 1090 if (!MACHINE_HAS_GS) 1091 return -ENODEV; 1092 if (!target->thread.gs_cb) { 1093 data = kzalloc(sizeof(*data), GFP_KERNEL); 1094 if (!data) 1095 return -ENOMEM; 1096 } 1097 if (!target->thread.gs_cb) 1098 gs_cb.gsd = 25; 1099 else if (target == current) 1100 save_gs_cb(&gs_cb); 1101 else 1102 gs_cb = *target->thread.gs_cb; 1103 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1104 &gs_cb, 0, sizeof(gs_cb)); 1105 if (rc) { 1106 kfree(data); 1107 return -EFAULT; 1108 } 1109 preempt_disable(); 1110 if (!target->thread.gs_cb) 1111 target->thread.gs_cb = data; 1112 *target->thread.gs_cb = gs_cb; 1113 if (target == current) { 1114 __ctl_set_bit(2, 4); 1115 restore_gs_cb(target->thread.gs_cb); 1116 } 1117 preempt_enable(); 1118 return rc; 1119 } 1120 1121 static int s390_gs_bc_get(struct task_struct *target, 1122 const struct user_regset *regset, 1123 struct membuf to) 1124 { 1125 struct gs_cb *data = target->thread.gs_bc_cb; 1126 1127 if (!MACHINE_HAS_GS) 1128 return -ENODEV; 1129 if (!data) 1130 return -ENODATA; 1131 return membuf_write(&to, data, sizeof(struct gs_cb)); 1132 } 1133 1134 static int s390_gs_bc_set(struct task_struct *target, 1135 const struct user_regset *regset, 1136 unsigned int pos, unsigned int count, 1137 const void *kbuf, const void __user *ubuf) 1138 { 1139 struct gs_cb *data = target->thread.gs_bc_cb; 1140 1141 if (!MACHINE_HAS_GS) 1142 return -ENODEV; 1143 if (!data) { 1144 data = kzalloc(sizeof(*data), GFP_KERNEL); 1145 if (!data) 1146 return -ENOMEM; 1147 target->thread.gs_bc_cb = data; 1148 } 1149 return user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1150 data, 0, sizeof(struct gs_cb)); 1151 } 1152 1153 static bool is_ri_cb_valid(struct runtime_instr_cb *cb) 1154 { 1155 return (cb->rca & 0x1f) == 0 && 1156 (cb->roa & 0xfff) == 0 && 1157 (cb->rla & 0xfff) == 0xfff && 1158 cb->s == 1 && 1159 cb->k == 1 && 1160 cb->h == 0 && 1161 cb->reserved1 == 0 && 1162 cb->ps == 1 && 1163 cb->qs == 0 && 1164 cb->pc == 1 && 1165 cb->qc == 0 && 1166 cb->reserved2 == 0 && 1167 cb->reserved3 == 0 && 1168 cb->reserved4 == 0 && 1169 cb->reserved5 == 0 && 1170 cb->reserved6 == 0 && 1171 cb->reserved7 == 0 && 1172 cb->reserved8 == 0 && 1173 cb->rla >= cb->roa && 1174 cb->rca >= cb->roa && 1175 cb->rca <= cb->rla+1 && 1176 cb->m < 3; 1177 } 1178 1179 static int s390_runtime_instr_get(struct task_struct *target, 1180 const struct user_regset *regset, 1181 struct membuf to) 1182 { 1183 struct runtime_instr_cb *data = target->thread.ri_cb; 1184 1185 if (!test_facility(64)) 1186 return -ENODEV; 1187 if (!data) 1188 return -ENODATA; 1189 1190 return membuf_write(&to, data, sizeof(struct runtime_instr_cb)); 1191 } 1192 1193 static int s390_runtime_instr_set(struct task_struct *target, 1194 const struct user_regset *regset, 1195 unsigned int pos, unsigned int count, 1196 const void *kbuf, const void __user *ubuf) 1197 { 1198 struct runtime_instr_cb ri_cb = { }, *data = NULL; 1199 int rc; 1200 1201 if (!test_facility(64)) 1202 return -ENODEV; 1203 1204 if (!target->thread.ri_cb) { 1205 data = kzalloc(sizeof(*data), GFP_KERNEL); 1206 if (!data) 1207 return -ENOMEM; 1208 } 1209 1210 if (target->thread.ri_cb) { 1211 if (target == current) 1212 store_runtime_instr_cb(&ri_cb); 1213 else 1214 ri_cb = *target->thread.ri_cb; 1215 } 1216 1217 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1218 &ri_cb, 0, sizeof(struct runtime_instr_cb)); 1219 if (rc) { 1220 kfree(data); 1221 return -EFAULT; 1222 } 1223 1224 if (!is_ri_cb_valid(&ri_cb)) { 1225 kfree(data); 1226 return -EINVAL; 1227 } 1228 /* 1229 * Override access key in any case, since user space should 1230 * not be able to set it, nor should it care about it. 1231 */ 1232 ri_cb.key = PAGE_DEFAULT_KEY >> 4; 1233 preempt_disable(); 1234 if (!target->thread.ri_cb) 1235 target->thread.ri_cb = data; 1236 *target->thread.ri_cb = ri_cb; 1237 if (target == current) 1238 load_runtime_instr_cb(target->thread.ri_cb); 1239 preempt_enable(); 1240 1241 return 0; 1242 } 1243 1244 static const struct user_regset s390_regsets[] = { 1245 { 1246 .core_note_type = NT_PRSTATUS, 1247 .n = sizeof(s390_regs) / sizeof(long), 1248 .size = sizeof(long), 1249 .align = sizeof(long), 1250 .regset_get = s390_regs_get, 1251 .set = s390_regs_set, 1252 }, 1253 { 1254 .core_note_type = NT_PRFPREG, 1255 .n = sizeof(s390_fp_regs) / sizeof(long), 1256 .size = sizeof(long), 1257 .align = sizeof(long), 1258 .regset_get = s390_fpregs_get, 1259 .set = s390_fpregs_set, 1260 }, 1261 { 1262 .core_note_type = NT_S390_SYSTEM_CALL, 1263 .n = 1, 1264 .size = sizeof(unsigned int), 1265 .align = sizeof(unsigned int), 1266 .regset_get = s390_system_call_get, 1267 .set = s390_system_call_set, 1268 }, 1269 { 1270 .core_note_type = NT_S390_LAST_BREAK, 1271 .n = 1, 1272 .size = sizeof(long), 1273 .align = sizeof(long), 1274 .regset_get = s390_last_break_get, 1275 .set = s390_last_break_set, 1276 }, 1277 { 1278 .core_note_type = NT_S390_TDB, 1279 .n = 1, 1280 .size = 256, 1281 .align = 1, 1282 .regset_get = s390_tdb_get, 1283 .set = s390_tdb_set, 1284 }, 1285 { 1286 .core_note_type = NT_S390_VXRS_LOW, 1287 .n = __NUM_VXRS_LOW, 1288 .size = sizeof(__u64), 1289 .align = sizeof(__u64), 1290 .regset_get = s390_vxrs_low_get, 1291 .set = s390_vxrs_low_set, 1292 }, 1293 { 1294 .core_note_type = NT_S390_VXRS_HIGH, 1295 .n = __NUM_VXRS_HIGH, 1296 .size = sizeof(__vector128), 1297 .align = sizeof(__vector128), 1298 .regset_get = s390_vxrs_high_get, 1299 .set = s390_vxrs_high_set, 1300 }, 1301 { 1302 .core_note_type = NT_S390_GS_CB, 1303 .n = sizeof(struct gs_cb) / sizeof(__u64), 1304 .size = sizeof(__u64), 1305 .align = sizeof(__u64), 1306 .regset_get = s390_gs_cb_get, 1307 .set = s390_gs_cb_set, 1308 }, 1309 { 1310 .core_note_type = NT_S390_GS_BC, 1311 .n = sizeof(struct gs_cb) / sizeof(__u64), 1312 .size = sizeof(__u64), 1313 .align = sizeof(__u64), 1314 .regset_get = s390_gs_bc_get, 1315 .set = s390_gs_bc_set, 1316 }, 1317 { 1318 .core_note_type = NT_S390_RI_CB, 1319 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64), 1320 .size = sizeof(__u64), 1321 .align = sizeof(__u64), 1322 .regset_get = s390_runtime_instr_get, 1323 .set = s390_runtime_instr_set, 1324 }, 1325 }; 1326 1327 static const struct user_regset_view user_s390_view = { 1328 .name = "s390x", 1329 .e_machine = EM_S390, 1330 .regsets = s390_regsets, 1331 .n = ARRAY_SIZE(s390_regsets) 1332 }; 1333 1334 #ifdef CONFIG_COMPAT 1335 static int s390_compat_regs_get(struct task_struct *target, 1336 const struct user_regset *regset, 1337 struct membuf to) 1338 { 1339 unsigned n; 1340 1341 if (target == current) 1342 save_access_regs(target->thread.acrs); 1343 1344 for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t)) 1345 membuf_store(&to, __peek_user_compat(target, n)); 1346 return 0; 1347 } 1348 1349 static int s390_compat_regs_set(struct task_struct *target, 1350 const struct user_regset *regset, 1351 unsigned int pos, unsigned int count, 1352 const void *kbuf, const void __user *ubuf) 1353 { 1354 int rc = 0; 1355 1356 if (target == current) 1357 save_access_regs(target->thread.acrs); 1358 1359 if (kbuf) { 1360 const compat_ulong_t *k = kbuf; 1361 while (count > 0 && !rc) { 1362 rc = __poke_user_compat(target, pos, *k++); 1363 count -= sizeof(*k); 1364 pos += sizeof(*k); 1365 } 1366 } else { 1367 const compat_ulong_t __user *u = ubuf; 1368 while (count > 0 && !rc) { 1369 compat_ulong_t word; 1370 rc = __get_user(word, u++); 1371 if (rc) 1372 break; 1373 rc = __poke_user_compat(target, pos, word); 1374 count -= sizeof(*u); 1375 pos += sizeof(*u); 1376 } 1377 } 1378 1379 if (rc == 0 && target == current) 1380 restore_access_regs(target->thread.acrs); 1381 1382 return rc; 1383 } 1384 1385 static int s390_compat_regs_high_get(struct task_struct *target, 1386 const struct user_regset *regset, 1387 struct membuf to) 1388 { 1389 compat_ulong_t *gprs_high; 1390 int i; 1391 1392 gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs; 1393 for (i = 0; i < NUM_GPRS; i++, gprs_high += 2) 1394 membuf_store(&to, *gprs_high); 1395 return 0; 1396 } 1397 1398 static int s390_compat_regs_high_set(struct task_struct *target, 1399 const struct user_regset *regset, 1400 unsigned int pos, unsigned int count, 1401 const void *kbuf, const void __user *ubuf) 1402 { 1403 compat_ulong_t *gprs_high; 1404 int rc = 0; 1405 1406 gprs_high = (compat_ulong_t *) 1407 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)]; 1408 if (kbuf) { 1409 const compat_ulong_t *k = kbuf; 1410 while (count > 0) { 1411 *gprs_high = *k++; 1412 *gprs_high += 2; 1413 count -= sizeof(*k); 1414 } 1415 } else { 1416 const compat_ulong_t __user *u = ubuf; 1417 while (count > 0 && !rc) { 1418 unsigned long word; 1419 rc = __get_user(word, u++); 1420 if (rc) 1421 break; 1422 *gprs_high = word; 1423 *gprs_high += 2; 1424 count -= sizeof(*u); 1425 } 1426 } 1427 1428 return rc; 1429 } 1430 1431 static int s390_compat_last_break_get(struct task_struct *target, 1432 const struct user_regset *regset, 1433 struct membuf to) 1434 { 1435 compat_ulong_t last_break = target->thread.last_break; 1436 1437 return membuf_store(&to, (unsigned long)last_break); 1438 } 1439 1440 static int s390_compat_last_break_set(struct task_struct *target, 1441 const struct user_regset *regset, 1442 unsigned int pos, unsigned int count, 1443 const void *kbuf, const void __user *ubuf) 1444 { 1445 return 0; 1446 } 1447 1448 static const struct user_regset s390_compat_regsets[] = { 1449 { 1450 .core_note_type = NT_PRSTATUS, 1451 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t), 1452 .size = sizeof(compat_long_t), 1453 .align = sizeof(compat_long_t), 1454 .regset_get = s390_compat_regs_get, 1455 .set = s390_compat_regs_set, 1456 }, 1457 { 1458 .core_note_type = NT_PRFPREG, 1459 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t), 1460 .size = sizeof(compat_long_t), 1461 .align = sizeof(compat_long_t), 1462 .regset_get = s390_fpregs_get, 1463 .set = s390_fpregs_set, 1464 }, 1465 { 1466 .core_note_type = NT_S390_SYSTEM_CALL, 1467 .n = 1, 1468 .size = sizeof(compat_uint_t), 1469 .align = sizeof(compat_uint_t), 1470 .regset_get = s390_system_call_get, 1471 .set = s390_system_call_set, 1472 }, 1473 { 1474 .core_note_type = NT_S390_LAST_BREAK, 1475 .n = 1, 1476 .size = sizeof(long), 1477 .align = sizeof(long), 1478 .regset_get = s390_compat_last_break_get, 1479 .set = s390_compat_last_break_set, 1480 }, 1481 { 1482 .core_note_type = NT_S390_TDB, 1483 .n = 1, 1484 .size = 256, 1485 .align = 1, 1486 .regset_get = s390_tdb_get, 1487 .set = s390_tdb_set, 1488 }, 1489 { 1490 .core_note_type = NT_S390_VXRS_LOW, 1491 .n = __NUM_VXRS_LOW, 1492 .size = sizeof(__u64), 1493 .align = sizeof(__u64), 1494 .regset_get = s390_vxrs_low_get, 1495 .set = s390_vxrs_low_set, 1496 }, 1497 { 1498 .core_note_type = NT_S390_VXRS_HIGH, 1499 .n = __NUM_VXRS_HIGH, 1500 .size = sizeof(__vector128), 1501 .align = sizeof(__vector128), 1502 .regset_get = s390_vxrs_high_get, 1503 .set = s390_vxrs_high_set, 1504 }, 1505 { 1506 .core_note_type = NT_S390_HIGH_GPRS, 1507 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t), 1508 .size = sizeof(compat_long_t), 1509 .align = sizeof(compat_long_t), 1510 .regset_get = s390_compat_regs_high_get, 1511 .set = s390_compat_regs_high_set, 1512 }, 1513 { 1514 .core_note_type = NT_S390_GS_CB, 1515 .n = sizeof(struct gs_cb) / sizeof(__u64), 1516 .size = sizeof(__u64), 1517 .align = sizeof(__u64), 1518 .regset_get = s390_gs_cb_get, 1519 .set = s390_gs_cb_set, 1520 }, 1521 { 1522 .core_note_type = NT_S390_GS_BC, 1523 .n = sizeof(struct gs_cb) / sizeof(__u64), 1524 .size = sizeof(__u64), 1525 .align = sizeof(__u64), 1526 .regset_get = s390_gs_bc_get, 1527 .set = s390_gs_bc_set, 1528 }, 1529 { 1530 .core_note_type = NT_S390_RI_CB, 1531 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64), 1532 .size = sizeof(__u64), 1533 .align = sizeof(__u64), 1534 .regset_get = s390_runtime_instr_get, 1535 .set = s390_runtime_instr_set, 1536 }, 1537 }; 1538 1539 static const struct user_regset_view user_s390_compat_view = { 1540 .name = "s390", 1541 .e_machine = EM_S390, 1542 .regsets = s390_compat_regsets, 1543 .n = ARRAY_SIZE(s390_compat_regsets) 1544 }; 1545 #endif 1546 1547 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 1548 { 1549 #ifdef CONFIG_COMPAT 1550 if (test_tsk_thread_flag(task, TIF_31BIT)) 1551 return &user_s390_compat_view; 1552 #endif 1553 return &user_s390_view; 1554 } 1555 1556 static const char *gpr_names[NUM_GPRS] = { 1557 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 1558 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 1559 }; 1560 1561 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset) 1562 { 1563 if (offset >= NUM_GPRS) 1564 return 0; 1565 return regs->gprs[offset]; 1566 } 1567 1568 int regs_query_register_offset(const char *name) 1569 { 1570 unsigned long offset; 1571 1572 if (!name || *name != 'r') 1573 return -EINVAL; 1574 if (kstrtoul(name + 1, 10, &offset)) 1575 return -EINVAL; 1576 if (offset >= NUM_GPRS) 1577 return -EINVAL; 1578 return offset; 1579 } 1580 1581 const char *regs_query_register_name(unsigned int offset) 1582 { 1583 if (offset >= NUM_GPRS) 1584 return NULL; 1585 return gpr_names[offset]; 1586 } 1587 1588 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 1589 { 1590 unsigned long ksp = kernel_stack_pointer(regs); 1591 1592 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1)); 1593 } 1594 1595 /** 1596 * regs_get_kernel_stack_nth() - get Nth entry of the stack 1597 * @regs:pt_regs which contains kernel stack pointer. 1598 * @n:stack entry number. 1599 * 1600 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 1601 * is specifined by @regs. If the @n th entry is NOT in the kernel stack, 1602 * this returns 0. 1603 */ 1604 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 1605 { 1606 unsigned long addr; 1607 1608 addr = kernel_stack_pointer(regs) + n * sizeof(long); 1609 if (!regs_within_kernel_stack(regs, addr)) 1610 return 0; 1611 return *(unsigned long *)addr; 1612 } 1613