1 /* 2 * This file handles the architecture dependent parts of process handling. 3 * 4 * Copyright IBM Corp. 1999,2009 5 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>, 6 * Hartmut Penner <hp@de.ibm.com>, 7 * Denis Joseph Barrow, 8 */ 9 10 #include <linux/compiler.h> 11 #include <linux/cpu.h> 12 #include <linux/sched.h> 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/elfcore.h> 16 #include <linux/smp.h> 17 #include <linux/slab.h> 18 #include <linux/interrupt.h> 19 #include <linux/tick.h> 20 #include <linux/personality.h> 21 #include <linux/syscalls.h> 22 #include <linux/compat.h> 23 #include <linux/kprobes.h> 24 #include <linux/random.h> 25 #include <linux/module.h> 26 #include <asm/system.h> 27 #include <asm/io.h> 28 #include <asm/processor.h> 29 #include <asm/irq.h> 30 #include <asm/timer.h> 31 #include <asm/nmi.h> 32 #include <asm/compat.h> 33 #include <asm/smp.h> 34 #include "entry.h" 35 36 asmlinkage void ret_from_fork(void) asm ("ret_from_fork"); 37 38 /* 39 * Return saved PC of a blocked thread. used in kernel/sched. 40 * resume in entry.S does not create a new stack frame, it 41 * just stores the registers %r6-%r15 to the frame given by 42 * schedule. We want to return the address of the caller of 43 * schedule, so we have to walk the backchain one time to 44 * find the frame schedule() store its return address. 45 */ 46 unsigned long thread_saved_pc(struct task_struct *tsk) 47 { 48 struct stack_frame *sf, *low, *high; 49 50 if (!tsk || !task_stack_page(tsk)) 51 return 0; 52 low = task_stack_page(tsk); 53 high = (struct stack_frame *) task_pt_regs(tsk); 54 sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN); 55 if (sf <= low || sf > high) 56 return 0; 57 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN); 58 if (sf <= low || sf > high) 59 return 0; 60 return sf->gprs[8]; 61 } 62 63 /* 64 * The idle loop on a S390... 65 */ 66 static void default_idle(void) 67 { 68 if (cpu_is_offline(smp_processor_id())) 69 cpu_die(); 70 local_irq_disable(); 71 if (need_resched()) { 72 local_irq_enable(); 73 return; 74 } 75 local_mcck_disable(); 76 if (test_thread_flag(TIF_MCCK_PENDING)) { 77 local_mcck_enable(); 78 local_irq_enable(); 79 s390_handle_mcck(); 80 return; 81 } 82 trace_hardirqs_on(); 83 /* Don't trace preempt off for idle. */ 84 stop_critical_timings(); 85 /* Stop virtual timer and halt the cpu. */ 86 vtime_stop_cpu(); 87 /* Reenable preemption tracer. */ 88 start_critical_timings(); 89 } 90 91 void cpu_idle(void) 92 { 93 for (;;) { 94 tick_nohz_idle_enter(); 95 rcu_idle_enter(); 96 while (!need_resched()) 97 default_idle(); 98 rcu_idle_exit(); 99 tick_nohz_idle_exit(); 100 preempt_enable_no_resched(); 101 schedule(); 102 preempt_disable(); 103 } 104 } 105 106 extern void __kprobes kernel_thread_starter(void); 107 108 asm( 109 ".section .kprobes.text, \"ax\"\n" 110 ".global kernel_thread_starter\n" 111 "kernel_thread_starter:\n" 112 " la 2,0(10)\n" 113 " basr 14,9\n" 114 " la 2,0\n" 115 " br 11\n" 116 ".previous\n"); 117 118 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 119 { 120 struct pt_regs regs; 121 122 memset(®s, 0, sizeof(regs)); 123 regs.psw.mask = psw_kernel_bits | 124 PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK; 125 regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE; 126 regs.gprs[9] = (unsigned long) fn; 127 regs.gprs[10] = (unsigned long) arg; 128 regs.gprs[11] = (unsigned long) do_exit; 129 regs.orig_gpr2 = -1; 130 131 /* Ok, create the new process.. */ 132 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 133 0, ®s, 0, NULL, NULL); 134 } 135 EXPORT_SYMBOL(kernel_thread); 136 137 /* 138 * Free current thread data structures etc.. 139 */ 140 void exit_thread(void) 141 { 142 } 143 144 void flush_thread(void) 145 { 146 } 147 148 void release_thread(struct task_struct *dead_task) 149 { 150 } 151 152 int copy_thread(unsigned long clone_flags, unsigned long new_stackp, 153 unsigned long unused, 154 struct task_struct *p, struct pt_regs *regs) 155 { 156 struct thread_info *ti; 157 struct fake_frame 158 { 159 struct stack_frame sf; 160 struct pt_regs childregs; 161 } *frame; 162 163 frame = container_of(task_pt_regs(p), struct fake_frame, childregs); 164 p->thread.ksp = (unsigned long) frame; 165 /* Store access registers to kernel stack of new process. */ 166 frame->childregs = *regs; 167 frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */ 168 frame->childregs.gprs[15] = new_stackp; 169 frame->sf.back_chain = 0; 170 171 /* new return point is ret_from_fork */ 172 frame->sf.gprs[8] = (unsigned long) ret_from_fork; 173 174 /* fake return stack for resume(), don't go back to schedule */ 175 frame->sf.gprs[9] = (unsigned long) frame; 176 177 /* Save access registers to new thread structure. */ 178 save_access_regs(&p->thread.acrs[0]); 179 180 #ifndef CONFIG_64BIT 181 /* 182 * save fprs to current->thread.fp_regs to merge them with 183 * the emulated registers and then copy the result to the child. 184 */ 185 save_fp_regs(¤t->thread.fp_regs); 186 memcpy(&p->thread.fp_regs, ¤t->thread.fp_regs, 187 sizeof(s390_fp_regs)); 188 /* Set a new TLS ? */ 189 if (clone_flags & CLONE_SETTLS) 190 p->thread.acrs[0] = regs->gprs[6]; 191 #else /* CONFIG_64BIT */ 192 /* Save the fpu registers to new thread structure. */ 193 save_fp_regs(&p->thread.fp_regs); 194 /* Set a new TLS ? */ 195 if (clone_flags & CLONE_SETTLS) { 196 if (is_compat_task()) { 197 p->thread.acrs[0] = (unsigned int) regs->gprs[6]; 198 } else { 199 p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32); 200 p->thread.acrs[1] = (unsigned int) regs->gprs[6]; 201 } 202 } 203 #endif /* CONFIG_64BIT */ 204 /* start new process with ar4 pointing to the correct address space */ 205 p->thread.mm_segment = get_fs(); 206 /* Don't copy debug registers */ 207 memset(&p->thread.per_user, 0, sizeof(p->thread.per_user)); 208 memset(&p->thread.per_event, 0, sizeof(p->thread.per_event)); 209 clear_tsk_thread_flag(p, TIF_SINGLE_STEP); 210 clear_tsk_thread_flag(p, TIF_PER_TRAP); 211 /* Initialize per thread user and system timer values */ 212 ti = task_thread_info(p); 213 ti->user_timer = 0; 214 ti->system_timer = 0; 215 return 0; 216 } 217 218 SYSCALL_DEFINE0(fork) 219 { 220 struct pt_regs *regs = task_pt_regs(current); 221 return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL); 222 } 223 224 SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags, 225 int __user *, parent_tidptr, int __user *, child_tidptr) 226 { 227 struct pt_regs *regs = task_pt_regs(current); 228 229 if (!newsp) 230 newsp = regs->gprs[15]; 231 return do_fork(clone_flags, newsp, regs, 0, 232 parent_tidptr, child_tidptr); 233 } 234 235 /* 236 * This is trivial, and on the face of it looks like it 237 * could equally well be done in user mode. 238 * 239 * Not so, for quite unobvious reasons - register pressure. 240 * In user mode vfork() cannot have a stack frame, and if 241 * done by calling the "clone()" system call directly, you 242 * do not have enough call-clobbered registers to hold all 243 * the information you need. 244 */ 245 SYSCALL_DEFINE0(vfork) 246 { 247 struct pt_regs *regs = task_pt_regs(current); 248 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 249 regs->gprs[15], regs, 0, NULL, NULL); 250 } 251 252 asmlinkage void execve_tail(void) 253 { 254 current->thread.fp_regs.fpc = 0; 255 if (MACHINE_HAS_IEEE) 256 asm volatile("sfpc %0,%0" : : "d" (0)); 257 } 258 259 /* 260 * sys_execve() executes a new program. 261 */ 262 SYSCALL_DEFINE3(execve, const char __user *, name, 263 const char __user *const __user *, argv, 264 const char __user *const __user *, envp) 265 { 266 struct pt_regs *regs = task_pt_regs(current); 267 char *filename; 268 long rc; 269 270 filename = getname(name); 271 rc = PTR_ERR(filename); 272 if (IS_ERR(filename)) 273 return rc; 274 rc = do_execve(filename, argv, envp, regs); 275 if (rc) 276 goto out; 277 execve_tail(); 278 rc = regs->gprs[2]; 279 out: 280 putname(filename); 281 return rc; 282 } 283 284 /* 285 * fill in the FPU structure for a core dump. 286 */ 287 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs) 288 { 289 #ifndef CONFIG_64BIT 290 /* 291 * save fprs to current->thread.fp_regs to merge them with 292 * the emulated registers and then copy the result to the dump. 293 */ 294 save_fp_regs(¤t->thread.fp_regs); 295 memcpy(fpregs, ¤t->thread.fp_regs, sizeof(s390_fp_regs)); 296 #else /* CONFIG_64BIT */ 297 save_fp_regs(fpregs); 298 #endif /* CONFIG_64BIT */ 299 return 1; 300 } 301 EXPORT_SYMBOL(dump_fpu); 302 303 unsigned long get_wchan(struct task_struct *p) 304 { 305 struct stack_frame *sf, *low, *high; 306 unsigned long return_address; 307 int count; 308 309 if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p)) 310 return 0; 311 low = task_stack_page(p); 312 high = (struct stack_frame *) task_pt_regs(p); 313 sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN); 314 if (sf <= low || sf > high) 315 return 0; 316 for (count = 0; count < 16; count++) { 317 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN); 318 if (sf <= low || sf > high) 319 return 0; 320 return_address = sf->gprs[8] & PSW_ADDR_INSN; 321 if (!in_sched_functions(return_address)) 322 return return_address; 323 } 324 return 0; 325 } 326 327 unsigned long arch_align_stack(unsigned long sp) 328 { 329 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 330 sp -= get_random_int() & ~PAGE_MASK; 331 return sp & ~0xf; 332 } 333 334 static inline unsigned long brk_rnd(void) 335 { 336 /* 8MB for 32bit, 1GB for 64bit */ 337 if (is_32bit_task()) 338 return (get_random_int() & 0x7ffUL) << PAGE_SHIFT; 339 else 340 return (get_random_int() & 0x3ffffUL) << PAGE_SHIFT; 341 } 342 343 unsigned long arch_randomize_brk(struct mm_struct *mm) 344 { 345 unsigned long ret = PAGE_ALIGN(mm->brk + brk_rnd()); 346 347 if (ret < mm->brk) 348 return mm->brk; 349 return ret; 350 } 351 352 unsigned long randomize_et_dyn(unsigned long base) 353 { 354 unsigned long ret = PAGE_ALIGN(base + brk_rnd()); 355 356 if (!(current->flags & PF_RANDOMIZE)) 357 return base; 358 if (ret < base) 359 return base; 360 return ret; 361 } 362