1 /* 2 * arch/s390/kernel/process.c 3 * 4 * S390 version 5 * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation 6 * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com), 7 * Hartmut Penner (hp@de.ibm.com), 8 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com), 9 * 10 * Derived from "arch/i386/kernel/process.c" 11 * Copyright (C) 1995, Linus Torvalds 12 */ 13 14 /* 15 * This file handles the architecture-dependent parts of process handling.. 16 */ 17 18 #include <linux/compiler.h> 19 #include <linux/cpu.h> 20 #include <linux/errno.h> 21 #include <linux/sched.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/fs.h> 25 #include <linux/smp.h> 26 #include <linux/stddef.h> 27 #include <linux/unistd.h> 28 #include <linux/ptrace.h> 29 #include <linux/slab.h> 30 #include <linux/vmalloc.h> 31 #include <linux/user.h> 32 #include <linux/interrupt.h> 33 #include <linux/delay.h> 34 #include <linux/reboot.h> 35 #include <linux/init.h> 36 #include <linux/module.h> 37 #include <linux/notifier.h> 38 #include <linux/utsname.h> 39 #include <linux/tick.h> 40 #include <linux/elfcore.h> 41 #include <linux/kernel_stat.h> 42 #include <linux/syscalls.h> 43 #include <asm/uaccess.h> 44 #include <asm/pgtable.h> 45 #include <asm/system.h> 46 #include <asm/io.h> 47 #include <asm/processor.h> 48 #include <asm/irq.h> 49 #include <asm/timer.h> 50 #include "entry.h" 51 52 asmlinkage void ret_from_fork(void) asm ("ret_from_fork"); 53 54 /* 55 * Return saved PC of a blocked thread. used in kernel/sched. 56 * resume in entry.S does not create a new stack frame, it 57 * just stores the registers %r6-%r15 to the frame given by 58 * schedule. We want to return the address of the caller of 59 * schedule, so we have to walk the backchain one time to 60 * find the frame schedule() store its return address. 61 */ 62 unsigned long thread_saved_pc(struct task_struct *tsk) 63 { 64 struct stack_frame *sf, *low, *high; 65 66 if (!tsk || !task_stack_page(tsk)) 67 return 0; 68 low = task_stack_page(tsk); 69 high = (struct stack_frame *) task_pt_regs(tsk); 70 sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN); 71 if (sf <= low || sf > high) 72 return 0; 73 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN); 74 if (sf <= low || sf > high) 75 return 0; 76 return sf->gprs[8]; 77 } 78 79 extern void s390_handle_mcck(void); 80 /* 81 * The idle loop on a S390... 82 */ 83 static void default_idle(void) 84 { 85 /* CPU is going idle. */ 86 local_irq_disable(); 87 if (need_resched()) { 88 local_irq_enable(); 89 return; 90 } 91 #ifdef CONFIG_HOTPLUG_CPU 92 if (cpu_is_offline(smp_processor_id())) { 93 preempt_enable_no_resched(); 94 cpu_die(); 95 } 96 #endif 97 local_mcck_disable(); 98 if (test_thread_flag(TIF_MCCK_PENDING)) { 99 local_mcck_enable(); 100 local_irq_enable(); 101 s390_handle_mcck(); 102 return; 103 } 104 trace_hardirqs_on(); 105 /* Don't trace preempt off for idle. */ 106 stop_critical_timings(); 107 /* Stop virtual timer and halt the cpu. */ 108 vtime_stop_cpu(); 109 /* Reenable preemption tracer. */ 110 start_critical_timings(); 111 } 112 113 void cpu_idle(void) 114 { 115 for (;;) { 116 tick_nohz_stop_sched_tick(1); 117 while (!need_resched()) 118 default_idle(); 119 tick_nohz_restart_sched_tick(); 120 preempt_enable_no_resched(); 121 schedule(); 122 preempt_disable(); 123 } 124 } 125 126 extern void kernel_thread_starter(void); 127 128 asm( 129 ".align 4\n" 130 "kernel_thread_starter:\n" 131 " la 2,0(10)\n" 132 " basr 14,9\n" 133 " la 2,0\n" 134 " br 11\n"); 135 136 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 137 { 138 struct pt_regs regs; 139 140 memset(®s, 0, sizeof(regs)); 141 regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT; 142 regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE; 143 regs.gprs[9] = (unsigned long) fn; 144 regs.gprs[10] = (unsigned long) arg; 145 regs.gprs[11] = (unsigned long) do_exit; 146 regs.orig_gpr2 = -1; 147 148 /* Ok, create the new process.. */ 149 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 150 0, ®s, 0, NULL, NULL); 151 } 152 153 /* 154 * Free current thread data structures etc.. 155 */ 156 void exit_thread(void) 157 { 158 } 159 160 void flush_thread(void) 161 { 162 clear_used_math(); 163 clear_tsk_thread_flag(current, TIF_USEDFPU); 164 } 165 166 void release_thread(struct task_struct *dead_task) 167 { 168 } 169 170 int copy_thread(int nr, unsigned long clone_flags, unsigned long new_stackp, 171 unsigned long unused, 172 struct task_struct * p, struct pt_regs * regs) 173 { 174 struct fake_frame 175 { 176 struct stack_frame sf; 177 struct pt_regs childregs; 178 } *frame; 179 180 frame = container_of(task_pt_regs(p), struct fake_frame, childregs); 181 p->thread.ksp = (unsigned long) frame; 182 /* Store access registers to kernel stack of new process. */ 183 frame->childregs = *regs; 184 frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */ 185 frame->childregs.gprs[15] = new_stackp; 186 frame->sf.back_chain = 0; 187 188 /* new return point is ret_from_fork */ 189 frame->sf.gprs[8] = (unsigned long) ret_from_fork; 190 191 /* fake return stack for resume(), don't go back to schedule */ 192 frame->sf.gprs[9] = (unsigned long) frame; 193 194 /* Save access registers to new thread structure. */ 195 save_access_regs(&p->thread.acrs[0]); 196 197 #ifndef CONFIG_64BIT 198 /* 199 * save fprs to current->thread.fp_regs to merge them with 200 * the emulated registers and then copy the result to the child. 201 */ 202 save_fp_regs(¤t->thread.fp_regs); 203 memcpy(&p->thread.fp_regs, ¤t->thread.fp_regs, 204 sizeof(s390_fp_regs)); 205 /* Set a new TLS ? */ 206 if (clone_flags & CLONE_SETTLS) 207 p->thread.acrs[0] = regs->gprs[6]; 208 #else /* CONFIG_64BIT */ 209 /* Save the fpu registers to new thread structure. */ 210 save_fp_regs(&p->thread.fp_regs); 211 /* Set a new TLS ? */ 212 if (clone_flags & CLONE_SETTLS) { 213 if (test_thread_flag(TIF_31BIT)) { 214 p->thread.acrs[0] = (unsigned int) regs->gprs[6]; 215 } else { 216 p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32); 217 p->thread.acrs[1] = (unsigned int) regs->gprs[6]; 218 } 219 } 220 #endif /* CONFIG_64BIT */ 221 /* start new process with ar4 pointing to the correct address space */ 222 p->thread.mm_segment = get_fs(); 223 /* Don't copy debug registers */ 224 memset(&p->thread.per_info,0,sizeof(p->thread.per_info)); 225 226 return 0; 227 } 228 229 SYSCALL_DEFINE0(fork) 230 { 231 struct pt_regs *regs = task_pt_regs(current); 232 return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL); 233 } 234 235 SYSCALL_DEFINE0(clone) 236 { 237 struct pt_regs *regs = task_pt_regs(current); 238 unsigned long clone_flags; 239 unsigned long newsp; 240 int __user *parent_tidptr, *child_tidptr; 241 242 clone_flags = regs->gprs[3]; 243 newsp = regs->orig_gpr2; 244 parent_tidptr = (int __user *) regs->gprs[4]; 245 child_tidptr = (int __user *) regs->gprs[5]; 246 if (!newsp) 247 newsp = regs->gprs[15]; 248 return do_fork(clone_flags, newsp, regs, 0, 249 parent_tidptr, child_tidptr); 250 } 251 252 /* 253 * This is trivial, and on the face of it looks like it 254 * could equally well be done in user mode. 255 * 256 * Not so, for quite unobvious reasons - register pressure. 257 * In user mode vfork() cannot have a stack frame, and if 258 * done by calling the "clone()" system call directly, you 259 * do not have enough call-clobbered registers to hold all 260 * the information you need. 261 */ 262 SYSCALL_DEFINE0(vfork) 263 { 264 struct pt_regs *regs = task_pt_regs(current); 265 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 266 regs->gprs[15], regs, 0, NULL, NULL); 267 } 268 269 asmlinkage void execve_tail(void) 270 { 271 task_lock(current); 272 current->ptrace &= ~PT_DTRACE; 273 task_unlock(current); 274 current->thread.fp_regs.fpc = 0; 275 if (MACHINE_HAS_IEEE) 276 asm volatile("sfpc %0,%0" : : "d" (0)); 277 } 278 279 /* 280 * sys_execve() executes a new program. 281 */ 282 SYSCALL_DEFINE0(execve) 283 { 284 struct pt_regs *regs = task_pt_regs(current); 285 char *filename; 286 unsigned long result; 287 int rc; 288 289 filename = getname((char __user *) regs->orig_gpr2); 290 if (IS_ERR(filename)) { 291 result = PTR_ERR(filename); 292 goto out; 293 } 294 rc = do_execve(filename, (char __user * __user *) regs->gprs[3], 295 (char __user * __user *) regs->gprs[4], regs); 296 if (rc) { 297 result = rc; 298 goto out_putname; 299 } 300 execve_tail(); 301 result = regs->gprs[2]; 302 out_putname: 303 putname(filename); 304 out: 305 return result; 306 } 307 308 /* 309 * fill in the FPU structure for a core dump. 310 */ 311 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs) 312 { 313 #ifndef CONFIG_64BIT 314 /* 315 * save fprs to current->thread.fp_regs to merge them with 316 * the emulated registers and then copy the result to the dump. 317 */ 318 save_fp_regs(¤t->thread.fp_regs); 319 memcpy(fpregs, ¤t->thread.fp_regs, sizeof(s390_fp_regs)); 320 #else /* CONFIG_64BIT */ 321 save_fp_regs(fpregs); 322 #endif /* CONFIG_64BIT */ 323 return 1; 324 } 325 326 unsigned long get_wchan(struct task_struct *p) 327 { 328 struct stack_frame *sf, *low, *high; 329 unsigned long return_address; 330 int count; 331 332 if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p)) 333 return 0; 334 low = task_stack_page(p); 335 high = (struct stack_frame *) task_pt_regs(p); 336 sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN); 337 if (sf <= low || sf > high) 338 return 0; 339 for (count = 0; count < 16; count++) { 340 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN); 341 if (sf <= low || sf > high) 342 return 0; 343 return_address = sf->gprs[8] & PSW_ADDR_INSN; 344 if (!in_sched_functions(return_address)) 345 return return_address; 346 } 347 return 0; 348 } 349 350