1 /* 2 * arch/s390/kernel/process.c 3 * 4 * S390 version 5 * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation 6 * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com), 7 * Hartmut Penner (hp@de.ibm.com), 8 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com), 9 * 10 * Derived from "arch/i386/kernel/process.c" 11 * Copyright (C) 1995, Linus Torvalds 12 */ 13 14 /* 15 * This file handles the architecture-dependent parts of process handling.. 16 */ 17 18 #include <linux/compiler.h> 19 #include <linux/cpu.h> 20 #include <linux/errno.h> 21 #include <linux/sched.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/fs.h> 25 #include <linux/smp.h> 26 #include <linux/stddef.h> 27 #include <linux/unistd.h> 28 #include <linux/ptrace.h> 29 #include <linux/slab.h> 30 #include <linux/vmalloc.h> 31 #include <linux/user.h> 32 #include <linux/a.out.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/reboot.h> 36 #include <linux/init.h> 37 #include <linux/module.h> 38 #include <linux/notifier.h> 39 #include <linux/utsname.h> 40 #include <asm/uaccess.h> 41 #include <asm/pgtable.h> 42 #include <asm/system.h> 43 #include <asm/io.h> 44 #include <asm/processor.h> 45 #include <asm/irq.h> 46 #include <asm/timer.h> 47 #include <asm/cpu.h> 48 49 asmlinkage void ret_from_fork(void) asm ("ret_from_fork"); 50 51 /* 52 * Return saved PC of a blocked thread. used in kernel/sched. 53 * resume in entry.S does not create a new stack frame, it 54 * just stores the registers %r6-%r15 to the frame given by 55 * schedule. We want to return the address of the caller of 56 * schedule, so we have to walk the backchain one time to 57 * find the frame schedule() store its return address. 58 */ 59 unsigned long thread_saved_pc(struct task_struct *tsk) 60 { 61 struct stack_frame *sf, *low, *high; 62 63 if (!tsk || !task_stack_page(tsk)) 64 return 0; 65 low = task_stack_page(tsk); 66 high = (struct stack_frame *) task_pt_regs(tsk); 67 sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN); 68 if (sf <= low || sf > high) 69 return 0; 70 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN); 71 if (sf <= low || sf > high) 72 return 0; 73 return sf->gprs[8]; 74 } 75 76 /* 77 * Need to know about CPUs going idle? 78 */ 79 static ATOMIC_NOTIFIER_HEAD(idle_chain); 80 81 int register_idle_notifier(struct notifier_block *nb) 82 { 83 return atomic_notifier_chain_register(&idle_chain, nb); 84 } 85 EXPORT_SYMBOL(register_idle_notifier); 86 87 int unregister_idle_notifier(struct notifier_block *nb) 88 { 89 return atomic_notifier_chain_unregister(&idle_chain, nb); 90 } 91 EXPORT_SYMBOL(unregister_idle_notifier); 92 93 void do_monitor_call(struct pt_regs *regs, long interruption_code) 94 { 95 #ifdef CONFIG_SMP 96 struct s390_idle_data *idle; 97 98 idle = &__get_cpu_var(s390_idle); 99 spin_lock(&idle->lock); 100 idle->idle_time += get_clock() - idle->idle_enter; 101 idle->in_idle = 0; 102 spin_unlock(&idle->lock); 103 #endif 104 /* disable monitor call class 0 */ 105 __ctl_clear_bit(8, 15); 106 107 atomic_notifier_call_chain(&idle_chain, S390_CPU_NOT_IDLE, 108 (void *)(long) smp_processor_id()); 109 } 110 111 extern void s390_handle_mcck(void); 112 /* 113 * The idle loop on a S390... 114 */ 115 static void default_idle(void) 116 { 117 int cpu, rc; 118 #ifdef CONFIG_SMP 119 struct s390_idle_data *idle; 120 #endif 121 122 /* CPU is going idle. */ 123 cpu = smp_processor_id(); 124 125 local_irq_disable(); 126 if (need_resched()) { 127 local_irq_enable(); 128 return; 129 } 130 131 rc = atomic_notifier_call_chain(&idle_chain, 132 S390_CPU_IDLE, (void *)(long) cpu); 133 if (rc != NOTIFY_OK && rc != NOTIFY_DONE) 134 BUG(); 135 if (rc != NOTIFY_OK) { 136 local_irq_enable(); 137 return; 138 } 139 140 /* enable monitor call class 0 */ 141 __ctl_set_bit(8, 15); 142 143 #ifdef CONFIG_HOTPLUG_CPU 144 if (cpu_is_offline(cpu)) { 145 preempt_enable_no_resched(); 146 cpu_die(); 147 } 148 #endif 149 150 local_mcck_disable(); 151 if (test_thread_flag(TIF_MCCK_PENDING)) { 152 local_mcck_enable(); 153 local_irq_enable(); 154 s390_handle_mcck(); 155 return; 156 } 157 #ifdef CONFIG_SMP 158 idle = &__get_cpu_var(s390_idle); 159 spin_lock(&idle->lock); 160 idle->idle_count++; 161 idle->in_idle = 1; 162 idle->idle_enter = get_clock(); 163 spin_unlock(&idle->lock); 164 #endif 165 trace_hardirqs_on(); 166 /* Wait for external, I/O or machine check interrupt. */ 167 __load_psw_mask(psw_kernel_bits | PSW_MASK_WAIT | 168 PSW_MASK_IO | PSW_MASK_EXT); 169 } 170 171 void cpu_idle(void) 172 { 173 for (;;) { 174 while (!need_resched()) 175 default_idle(); 176 177 preempt_enable_no_resched(); 178 schedule(); 179 preempt_disable(); 180 } 181 } 182 183 void show_regs(struct pt_regs *regs) 184 { 185 print_modules(); 186 printk("CPU: %d %s %s %.*s\n", 187 task_thread_info(current)->cpu, print_tainted(), 188 init_utsname()->release, 189 (int)strcspn(init_utsname()->version, " "), 190 init_utsname()->version); 191 printk("Process %s (pid: %d, task: %p, ksp: %p)\n", 192 current->comm, current->pid, current, 193 (void *) current->thread.ksp); 194 show_registers(regs); 195 /* Show stack backtrace if pt_regs is from kernel mode */ 196 if (!(regs->psw.mask & PSW_MASK_PSTATE)) 197 show_trace(NULL, (unsigned long *) regs->gprs[15]); 198 } 199 200 extern void kernel_thread_starter(void); 201 202 asm( 203 ".align 4\n" 204 "kernel_thread_starter:\n" 205 " la 2,0(10)\n" 206 " basr 14,9\n" 207 " la 2,0\n" 208 " br 11\n"); 209 210 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 211 { 212 struct pt_regs regs; 213 214 memset(®s, 0, sizeof(regs)); 215 regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT; 216 regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE; 217 regs.gprs[9] = (unsigned long) fn; 218 regs.gprs[10] = (unsigned long) arg; 219 regs.gprs[11] = (unsigned long) do_exit; 220 regs.orig_gpr2 = -1; 221 222 /* Ok, create the new process.. */ 223 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 224 0, ®s, 0, NULL, NULL); 225 } 226 227 /* 228 * Free current thread data structures etc.. 229 */ 230 void exit_thread(void) 231 { 232 } 233 234 void flush_thread(void) 235 { 236 clear_used_math(); 237 clear_tsk_thread_flag(current, TIF_USEDFPU); 238 } 239 240 void release_thread(struct task_struct *dead_task) 241 { 242 } 243 244 int copy_thread(int nr, unsigned long clone_flags, unsigned long new_stackp, 245 unsigned long unused, 246 struct task_struct * p, struct pt_regs * regs) 247 { 248 struct fake_frame 249 { 250 struct stack_frame sf; 251 struct pt_regs childregs; 252 } *frame; 253 254 frame = container_of(task_pt_regs(p), struct fake_frame, childregs); 255 p->thread.ksp = (unsigned long) frame; 256 /* Store access registers to kernel stack of new process. */ 257 frame->childregs = *regs; 258 frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */ 259 frame->childregs.gprs[15] = new_stackp; 260 frame->sf.back_chain = 0; 261 262 /* new return point is ret_from_fork */ 263 frame->sf.gprs[8] = (unsigned long) ret_from_fork; 264 265 /* fake return stack for resume(), don't go back to schedule */ 266 frame->sf.gprs[9] = (unsigned long) frame; 267 268 /* Save access registers to new thread structure. */ 269 save_access_regs(&p->thread.acrs[0]); 270 271 #ifndef CONFIG_64BIT 272 /* 273 * save fprs to current->thread.fp_regs to merge them with 274 * the emulated registers and then copy the result to the child. 275 */ 276 save_fp_regs(¤t->thread.fp_regs); 277 memcpy(&p->thread.fp_regs, ¤t->thread.fp_regs, 278 sizeof(s390_fp_regs)); 279 /* Set a new TLS ? */ 280 if (clone_flags & CLONE_SETTLS) 281 p->thread.acrs[0] = regs->gprs[6]; 282 #else /* CONFIG_64BIT */ 283 /* Save the fpu registers to new thread structure. */ 284 save_fp_regs(&p->thread.fp_regs); 285 /* Set a new TLS ? */ 286 if (clone_flags & CLONE_SETTLS) { 287 if (test_thread_flag(TIF_31BIT)) { 288 p->thread.acrs[0] = (unsigned int) regs->gprs[6]; 289 } else { 290 p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32); 291 p->thread.acrs[1] = (unsigned int) regs->gprs[6]; 292 } 293 } 294 #endif /* CONFIG_64BIT */ 295 /* start new process with ar4 pointing to the correct address space */ 296 p->thread.mm_segment = get_fs(); 297 /* Don't copy debug registers */ 298 memset(&p->thread.per_info,0,sizeof(p->thread.per_info)); 299 300 return 0; 301 } 302 303 asmlinkage long sys_fork(void) 304 { 305 struct pt_regs *regs = task_pt_regs(current); 306 return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL); 307 } 308 309 asmlinkage long sys_clone(void) 310 { 311 struct pt_regs *regs = task_pt_regs(current); 312 unsigned long clone_flags; 313 unsigned long newsp; 314 int __user *parent_tidptr, *child_tidptr; 315 316 clone_flags = regs->gprs[3]; 317 newsp = regs->orig_gpr2; 318 parent_tidptr = (int __user *) regs->gprs[4]; 319 child_tidptr = (int __user *) regs->gprs[5]; 320 if (!newsp) 321 newsp = regs->gprs[15]; 322 return do_fork(clone_flags, newsp, regs, 0, 323 parent_tidptr, child_tidptr); 324 } 325 326 /* 327 * This is trivial, and on the face of it looks like it 328 * could equally well be done in user mode. 329 * 330 * Not so, for quite unobvious reasons - register pressure. 331 * In user mode vfork() cannot have a stack frame, and if 332 * done by calling the "clone()" system call directly, you 333 * do not have enough call-clobbered registers to hold all 334 * the information you need. 335 */ 336 asmlinkage long sys_vfork(void) 337 { 338 struct pt_regs *regs = task_pt_regs(current); 339 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 340 regs->gprs[15], regs, 0, NULL, NULL); 341 } 342 343 asmlinkage void execve_tail(void) 344 { 345 task_lock(current); 346 current->ptrace &= ~PT_DTRACE; 347 task_unlock(current); 348 current->thread.fp_regs.fpc = 0; 349 if (MACHINE_HAS_IEEE) 350 asm volatile("sfpc %0,%0" : : "d" (0)); 351 } 352 353 /* 354 * sys_execve() executes a new program. 355 */ 356 asmlinkage long sys_execve(void) 357 { 358 struct pt_regs *regs = task_pt_regs(current); 359 char *filename; 360 unsigned long result; 361 int rc; 362 363 filename = getname((char __user *) regs->orig_gpr2); 364 if (IS_ERR(filename)) { 365 result = PTR_ERR(filename); 366 goto out; 367 } 368 rc = do_execve(filename, (char __user * __user *) regs->gprs[3], 369 (char __user * __user *) regs->gprs[4], regs); 370 if (rc) { 371 result = rc; 372 goto out_putname; 373 } 374 execve_tail(); 375 result = regs->gprs[2]; 376 out_putname: 377 putname(filename); 378 out: 379 return result; 380 } 381 382 /* 383 * fill in the FPU structure for a core dump. 384 */ 385 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs) 386 { 387 #ifndef CONFIG_64BIT 388 /* 389 * save fprs to current->thread.fp_regs to merge them with 390 * the emulated registers and then copy the result to the dump. 391 */ 392 save_fp_regs(¤t->thread.fp_regs); 393 memcpy(fpregs, ¤t->thread.fp_regs, sizeof(s390_fp_regs)); 394 #else /* CONFIG_64BIT */ 395 save_fp_regs(fpregs); 396 #endif /* CONFIG_64BIT */ 397 return 1; 398 } 399 400 unsigned long get_wchan(struct task_struct *p) 401 { 402 struct stack_frame *sf, *low, *high; 403 unsigned long return_address; 404 int count; 405 406 if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p)) 407 return 0; 408 low = task_stack_page(p); 409 high = (struct stack_frame *) task_pt_regs(p); 410 sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN); 411 if (sf <= low || sf > high) 412 return 0; 413 for (count = 0; count < 16; count++) { 414 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN); 415 if (sf <= low || sf > high) 416 return 0; 417 return_address = sf->gprs[8] & PSW_ADDR_INSN; 418 if (!in_sched_functions(return_address)) 419 return return_address; 420 } 421 return 0; 422 } 423 424