1 /* 2 * arch/s390/kernel/process.c 3 * 4 * S390 version 5 * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation 6 * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com), 7 * Hartmut Penner (hp@de.ibm.com), 8 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com), 9 * 10 * Derived from "arch/i386/kernel/process.c" 11 * Copyright (C) 1995, Linus Torvalds 12 */ 13 14 /* 15 * This file handles the architecture-dependent parts of process handling.. 16 */ 17 18 #include <linux/compiler.h> 19 #include <linux/cpu.h> 20 #include <linux/errno.h> 21 #include <linux/sched.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/fs.h> 25 #include <linux/smp.h> 26 #include <linux/stddef.h> 27 #include <linux/unistd.h> 28 #include <linux/ptrace.h> 29 #include <linux/slab.h> 30 #include <linux/vmalloc.h> 31 #include <linux/user.h> 32 #include <linux/interrupt.h> 33 #include <linux/delay.h> 34 #include <linux/reboot.h> 35 #include <linux/init.h> 36 #include <linux/module.h> 37 #include <linux/notifier.h> 38 #include <linux/utsname.h> 39 #include <linux/tick.h> 40 #include <linux/elfcore.h> 41 #include <linux/kernel_stat.h> 42 #include <asm/uaccess.h> 43 #include <asm/pgtable.h> 44 #include <asm/system.h> 45 #include <asm/io.h> 46 #include <asm/processor.h> 47 #include <asm/irq.h> 48 #include <asm/timer.h> 49 #include "entry.h" 50 51 asmlinkage void ret_from_fork(void) asm ("ret_from_fork"); 52 53 /* 54 * Return saved PC of a blocked thread. used in kernel/sched. 55 * resume in entry.S does not create a new stack frame, it 56 * just stores the registers %r6-%r15 to the frame given by 57 * schedule. We want to return the address of the caller of 58 * schedule, so we have to walk the backchain one time to 59 * find the frame schedule() store its return address. 60 */ 61 unsigned long thread_saved_pc(struct task_struct *tsk) 62 { 63 struct stack_frame *sf, *low, *high; 64 65 if (!tsk || !task_stack_page(tsk)) 66 return 0; 67 low = task_stack_page(tsk); 68 high = (struct stack_frame *) task_pt_regs(tsk); 69 sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN); 70 if (sf <= low || sf > high) 71 return 0; 72 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN); 73 if (sf <= low || sf > high) 74 return 0; 75 return sf->gprs[8]; 76 } 77 78 extern void s390_handle_mcck(void); 79 /* 80 * The idle loop on a S390... 81 */ 82 static void default_idle(void) 83 { 84 /* CPU is going idle. */ 85 local_irq_disable(); 86 if (need_resched()) { 87 local_irq_enable(); 88 return; 89 } 90 #ifdef CONFIG_HOTPLUG_CPU 91 if (cpu_is_offline(smp_processor_id())) { 92 preempt_enable_no_resched(); 93 cpu_die(); 94 } 95 #endif 96 local_mcck_disable(); 97 if (test_thread_flag(TIF_MCCK_PENDING)) { 98 local_mcck_enable(); 99 local_irq_enable(); 100 s390_handle_mcck(); 101 return; 102 } 103 trace_hardirqs_on(); 104 /* Don't trace preempt off for idle. */ 105 stop_critical_timings(); 106 /* Stop virtual timer and halt the cpu. */ 107 vtime_stop_cpu(); 108 /* Reenable preemption tracer. */ 109 start_critical_timings(); 110 } 111 112 void cpu_idle(void) 113 { 114 for (;;) { 115 tick_nohz_stop_sched_tick(1); 116 while (!need_resched()) 117 default_idle(); 118 tick_nohz_restart_sched_tick(); 119 preempt_enable_no_resched(); 120 schedule(); 121 preempt_disable(); 122 } 123 } 124 125 extern void kernel_thread_starter(void); 126 127 asm( 128 ".align 4\n" 129 "kernel_thread_starter:\n" 130 " la 2,0(10)\n" 131 " basr 14,9\n" 132 " la 2,0\n" 133 " br 11\n"); 134 135 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 136 { 137 struct pt_regs regs; 138 139 memset(®s, 0, sizeof(regs)); 140 regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT; 141 regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE; 142 regs.gprs[9] = (unsigned long) fn; 143 regs.gprs[10] = (unsigned long) arg; 144 regs.gprs[11] = (unsigned long) do_exit; 145 regs.orig_gpr2 = -1; 146 147 /* Ok, create the new process.. */ 148 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 149 0, ®s, 0, NULL, NULL); 150 } 151 152 /* 153 * Free current thread data structures etc.. 154 */ 155 void exit_thread(void) 156 { 157 } 158 159 void flush_thread(void) 160 { 161 clear_used_math(); 162 clear_tsk_thread_flag(current, TIF_USEDFPU); 163 } 164 165 void release_thread(struct task_struct *dead_task) 166 { 167 } 168 169 int copy_thread(int nr, unsigned long clone_flags, unsigned long new_stackp, 170 unsigned long unused, 171 struct task_struct * p, struct pt_regs * regs) 172 { 173 struct fake_frame 174 { 175 struct stack_frame sf; 176 struct pt_regs childregs; 177 } *frame; 178 179 frame = container_of(task_pt_regs(p), struct fake_frame, childregs); 180 p->thread.ksp = (unsigned long) frame; 181 /* Store access registers to kernel stack of new process. */ 182 frame->childregs = *regs; 183 frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */ 184 frame->childregs.gprs[15] = new_stackp; 185 frame->sf.back_chain = 0; 186 187 /* new return point is ret_from_fork */ 188 frame->sf.gprs[8] = (unsigned long) ret_from_fork; 189 190 /* fake return stack for resume(), don't go back to schedule */ 191 frame->sf.gprs[9] = (unsigned long) frame; 192 193 /* Save access registers to new thread structure. */ 194 save_access_regs(&p->thread.acrs[0]); 195 196 #ifndef CONFIG_64BIT 197 /* 198 * save fprs to current->thread.fp_regs to merge them with 199 * the emulated registers and then copy the result to the child. 200 */ 201 save_fp_regs(¤t->thread.fp_regs); 202 memcpy(&p->thread.fp_regs, ¤t->thread.fp_regs, 203 sizeof(s390_fp_regs)); 204 /* Set a new TLS ? */ 205 if (clone_flags & CLONE_SETTLS) 206 p->thread.acrs[0] = regs->gprs[6]; 207 #else /* CONFIG_64BIT */ 208 /* Save the fpu registers to new thread structure. */ 209 save_fp_regs(&p->thread.fp_regs); 210 /* Set a new TLS ? */ 211 if (clone_flags & CLONE_SETTLS) { 212 if (test_thread_flag(TIF_31BIT)) { 213 p->thread.acrs[0] = (unsigned int) regs->gprs[6]; 214 } else { 215 p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32); 216 p->thread.acrs[1] = (unsigned int) regs->gprs[6]; 217 } 218 } 219 #endif /* CONFIG_64BIT */ 220 /* start new process with ar4 pointing to the correct address space */ 221 p->thread.mm_segment = get_fs(); 222 /* Don't copy debug registers */ 223 memset(&p->thread.per_info,0,sizeof(p->thread.per_info)); 224 225 return 0; 226 } 227 228 asmlinkage long sys_fork(void) 229 { 230 struct pt_regs *regs = task_pt_regs(current); 231 return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL); 232 } 233 234 asmlinkage long sys_clone(void) 235 { 236 struct pt_regs *regs = task_pt_regs(current); 237 unsigned long clone_flags; 238 unsigned long newsp; 239 int __user *parent_tidptr, *child_tidptr; 240 241 clone_flags = regs->gprs[3]; 242 newsp = regs->orig_gpr2; 243 parent_tidptr = (int __user *) regs->gprs[4]; 244 child_tidptr = (int __user *) regs->gprs[5]; 245 if (!newsp) 246 newsp = regs->gprs[15]; 247 return do_fork(clone_flags, newsp, regs, 0, 248 parent_tidptr, child_tidptr); 249 } 250 251 /* 252 * This is trivial, and on the face of it looks like it 253 * could equally well be done in user mode. 254 * 255 * Not so, for quite unobvious reasons - register pressure. 256 * In user mode vfork() cannot have a stack frame, and if 257 * done by calling the "clone()" system call directly, you 258 * do not have enough call-clobbered registers to hold all 259 * the information you need. 260 */ 261 asmlinkage long sys_vfork(void) 262 { 263 struct pt_regs *regs = task_pt_regs(current); 264 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 265 regs->gprs[15], regs, 0, NULL, NULL); 266 } 267 268 asmlinkage void execve_tail(void) 269 { 270 task_lock(current); 271 current->ptrace &= ~PT_DTRACE; 272 task_unlock(current); 273 current->thread.fp_regs.fpc = 0; 274 if (MACHINE_HAS_IEEE) 275 asm volatile("sfpc %0,%0" : : "d" (0)); 276 } 277 278 /* 279 * sys_execve() executes a new program. 280 */ 281 asmlinkage long sys_execve(void) 282 { 283 struct pt_regs *regs = task_pt_regs(current); 284 char *filename; 285 unsigned long result; 286 int rc; 287 288 filename = getname((char __user *) regs->orig_gpr2); 289 if (IS_ERR(filename)) { 290 result = PTR_ERR(filename); 291 goto out; 292 } 293 rc = do_execve(filename, (char __user * __user *) regs->gprs[3], 294 (char __user * __user *) regs->gprs[4], regs); 295 if (rc) { 296 result = rc; 297 goto out_putname; 298 } 299 execve_tail(); 300 result = regs->gprs[2]; 301 out_putname: 302 putname(filename); 303 out: 304 return result; 305 } 306 307 /* 308 * fill in the FPU structure for a core dump. 309 */ 310 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs) 311 { 312 #ifndef CONFIG_64BIT 313 /* 314 * save fprs to current->thread.fp_regs to merge them with 315 * the emulated registers and then copy the result to the dump. 316 */ 317 save_fp_regs(¤t->thread.fp_regs); 318 memcpy(fpregs, ¤t->thread.fp_regs, sizeof(s390_fp_regs)); 319 #else /* CONFIG_64BIT */ 320 save_fp_regs(fpregs); 321 #endif /* CONFIG_64BIT */ 322 return 1; 323 } 324 325 unsigned long get_wchan(struct task_struct *p) 326 { 327 struct stack_frame *sf, *low, *high; 328 unsigned long return_address; 329 int count; 330 331 if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p)) 332 return 0; 333 low = task_stack_page(p); 334 high = (struct stack_frame *) task_pt_regs(p); 335 sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN); 336 if (sf <= low || sf > high) 337 return 0; 338 for (count = 0; count < 16; count++) { 339 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN); 340 if (sf <= low || sf > high) 341 return 0; 342 return_address = sf->gprs[8] & PSW_ADDR_INSN; 343 if (!in_sched_functions(return_address)) 344 return return_address; 345 } 346 return 0; 347 } 348 349