xref: /linux/arch/s390/kernel/process.c (revision 704bf317fd21683e5c71a542f5fb5f65271a1582)
1 /*
2  * This file handles the architecture dependent parts of process handling.
3  *
4  *    Copyright IBM Corp. 1999,2009
5  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6  *		 Hartmut Penner <hp@de.ibm.com>,
7  *		 Denis Joseph Barrow,
8  */
9 
10 #include <linux/compiler.h>
11 #include <linux/cpu.h>
12 #include <linux/errno.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/fs.h>
17 #include <linux/smp.h>
18 #include <linux/stddef.h>
19 #include <linux/slab.h>
20 #include <linux/unistd.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmalloc.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/notifier.h>
30 #include <linux/tick.h>
31 #include <linux/elfcore.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/syscalls.h>
34 #include <linux/compat.h>
35 #include <linux/kprobes.h>
36 #include <asm/compat.h>
37 #include <asm/uaccess.h>
38 #include <asm/pgtable.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/irq.h>
43 #include <asm/timer.h>
44 #include <asm/nmi.h>
45 #include <asm/smp.h>
46 #include "entry.h"
47 
48 asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
49 
50 /*
51  * Return saved PC of a blocked thread. used in kernel/sched.
52  * resume in entry.S does not create a new stack frame, it
53  * just stores the registers %r6-%r15 to the frame given by
54  * schedule. We want to return the address of the caller of
55  * schedule, so we have to walk the backchain one time to
56  * find the frame schedule() store its return address.
57  */
58 unsigned long thread_saved_pc(struct task_struct *tsk)
59 {
60 	struct stack_frame *sf, *low, *high;
61 
62 	if (!tsk || !task_stack_page(tsk))
63 		return 0;
64 	low = task_stack_page(tsk);
65 	high = (struct stack_frame *) task_pt_regs(tsk);
66 	sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
67 	if (sf <= low || sf > high)
68 		return 0;
69 	sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
70 	if (sf <= low || sf > high)
71 		return 0;
72 	return sf->gprs[8];
73 }
74 
75 /*
76  * The idle loop on a S390...
77  */
78 static void default_idle(void)
79 {
80 	if (cpu_is_offline(smp_processor_id()))
81 		cpu_die();
82 	local_irq_disable();
83 	if (need_resched()) {
84 		local_irq_enable();
85 		return;
86 	}
87 	local_mcck_disable();
88 	if (test_thread_flag(TIF_MCCK_PENDING)) {
89 		local_mcck_enable();
90 		local_irq_enable();
91 		s390_handle_mcck();
92 		return;
93 	}
94 	trace_hardirqs_on();
95 	/* Don't trace preempt off for idle. */
96 	stop_critical_timings();
97 	/* Stop virtual timer and halt the cpu. */
98 	vtime_stop_cpu();
99 	/* Reenable preemption tracer. */
100 	start_critical_timings();
101 }
102 
103 void cpu_idle(void)
104 {
105 	for (;;) {
106 		tick_nohz_stop_sched_tick(1);
107 		while (!need_resched())
108 			default_idle();
109 		tick_nohz_restart_sched_tick();
110 		preempt_enable_no_resched();
111 		schedule();
112 		preempt_disable();
113 	}
114 }
115 
116 extern void __kprobes kernel_thread_starter(void);
117 
118 asm(
119 	".section .kprobes.text, \"ax\"\n"
120 	".global kernel_thread_starter\n"
121 	"kernel_thread_starter:\n"
122 	"    la    2,0(10)\n"
123 	"    basr  14,9\n"
124 	"    la    2,0\n"
125 	"    br    11\n"
126 	".previous\n");
127 
128 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
129 {
130 	struct pt_regs regs;
131 
132 	memset(&regs, 0, sizeof(regs));
133 	regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT;
134 	regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
135 	regs.gprs[9] = (unsigned long) fn;
136 	regs.gprs[10] = (unsigned long) arg;
137 	regs.gprs[11] = (unsigned long) do_exit;
138 	regs.orig_gpr2 = -1;
139 
140 	/* Ok, create the new process.. */
141 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
142 		       0, &regs, 0, NULL, NULL);
143 }
144 EXPORT_SYMBOL(kernel_thread);
145 
146 /*
147  * Free current thread data structures etc..
148  */
149 void exit_thread(void)
150 {
151 }
152 
153 void flush_thread(void)
154 {
155 }
156 
157 void release_thread(struct task_struct *dead_task)
158 {
159 }
160 
161 int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
162 		unsigned long unused,
163 		struct task_struct *p, struct pt_regs *regs)
164 {
165 	struct thread_info *ti;
166 	struct fake_frame
167 	{
168 		struct stack_frame sf;
169 		struct pt_regs childregs;
170 	} *frame;
171 
172 	frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
173 	p->thread.ksp = (unsigned long) frame;
174 	/* Store access registers to kernel stack of new process. */
175 	frame->childregs = *regs;
176 	frame->childregs.gprs[2] = 0;	/* child returns 0 on fork. */
177 	frame->childregs.gprs[15] = new_stackp;
178 	frame->sf.back_chain = 0;
179 
180 	/* new return point is ret_from_fork */
181 	frame->sf.gprs[8] = (unsigned long) ret_from_fork;
182 
183 	/* fake return stack for resume(), don't go back to schedule */
184 	frame->sf.gprs[9] = (unsigned long) frame;
185 
186 	/* Save access registers to new thread structure. */
187 	save_access_regs(&p->thread.acrs[0]);
188 
189 #ifndef CONFIG_64BIT
190 	/*
191 	 * save fprs to current->thread.fp_regs to merge them with
192 	 * the emulated registers and then copy the result to the child.
193 	 */
194 	save_fp_regs(&current->thread.fp_regs);
195 	memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
196 	       sizeof(s390_fp_regs));
197 	/* Set a new TLS ?  */
198 	if (clone_flags & CLONE_SETTLS)
199 		p->thread.acrs[0] = regs->gprs[6];
200 #else /* CONFIG_64BIT */
201 	/* Save the fpu registers to new thread structure. */
202 	save_fp_regs(&p->thread.fp_regs);
203 	/* Set a new TLS ?  */
204 	if (clone_flags & CLONE_SETTLS) {
205 		if (is_compat_task()) {
206 			p->thread.acrs[0] = (unsigned int) regs->gprs[6];
207 		} else {
208 			p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
209 			p->thread.acrs[1] = (unsigned int) regs->gprs[6];
210 		}
211 	}
212 #endif /* CONFIG_64BIT */
213 	/* start new process with ar4 pointing to the correct address space */
214 	p->thread.mm_segment = get_fs();
215 	/* Don't copy debug registers */
216 	memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
217 	memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
218 	clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
219 	clear_tsk_thread_flag(p, TIF_PER_TRAP);
220 	/* Initialize per thread user and system timer values */
221 	ti = task_thread_info(p);
222 	ti->user_timer = 0;
223 	ti->system_timer = 0;
224 	return 0;
225 }
226 
227 SYSCALL_DEFINE0(fork)
228 {
229 	struct pt_regs *regs = task_pt_regs(current);
230 	return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
231 }
232 
233 SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags,
234 		int __user *, parent_tidptr, int __user *, child_tidptr)
235 {
236 	struct pt_regs *regs = task_pt_regs(current);
237 
238 	if (!newsp)
239 		newsp = regs->gprs[15];
240 	return do_fork(clone_flags, newsp, regs, 0,
241 		       parent_tidptr, child_tidptr);
242 }
243 
244 /*
245  * This is trivial, and on the face of it looks like it
246  * could equally well be done in user mode.
247  *
248  * Not so, for quite unobvious reasons - register pressure.
249  * In user mode vfork() cannot have a stack frame, and if
250  * done by calling the "clone()" system call directly, you
251  * do not have enough call-clobbered registers to hold all
252  * the information you need.
253  */
254 SYSCALL_DEFINE0(vfork)
255 {
256 	struct pt_regs *regs = task_pt_regs(current);
257 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
258 		       regs->gprs[15], regs, 0, NULL, NULL);
259 }
260 
261 asmlinkage void execve_tail(void)
262 {
263 	current->thread.fp_regs.fpc = 0;
264 	if (MACHINE_HAS_IEEE)
265 		asm volatile("sfpc %0,%0" : : "d" (0));
266 }
267 
268 /*
269  * sys_execve() executes a new program.
270  */
271 SYSCALL_DEFINE3(execve, const char __user *, name,
272 		const char __user *const __user *, argv,
273 		const char __user *const __user *, envp)
274 {
275 	struct pt_regs *regs = task_pt_regs(current);
276 	char *filename;
277 	long rc;
278 
279 	filename = getname(name);
280 	rc = PTR_ERR(filename);
281 	if (IS_ERR(filename))
282 		return rc;
283 	rc = do_execve(filename, argv, envp, regs);
284 	if (rc)
285 		goto out;
286 	execve_tail();
287 	rc = regs->gprs[2];
288 out:
289 	putname(filename);
290 	return rc;
291 }
292 
293 /*
294  * fill in the FPU structure for a core dump.
295  */
296 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
297 {
298 #ifndef CONFIG_64BIT
299 	/*
300 	 * save fprs to current->thread.fp_regs to merge them with
301 	 * the emulated registers and then copy the result to the dump.
302 	 */
303 	save_fp_regs(&current->thread.fp_regs);
304 	memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
305 #else /* CONFIG_64BIT */
306 	save_fp_regs(fpregs);
307 #endif /* CONFIG_64BIT */
308 	return 1;
309 }
310 EXPORT_SYMBOL(dump_fpu);
311 
312 unsigned long get_wchan(struct task_struct *p)
313 {
314 	struct stack_frame *sf, *low, *high;
315 	unsigned long return_address;
316 	int count;
317 
318 	if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
319 		return 0;
320 	low = task_stack_page(p);
321 	high = (struct stack_frame *) task_pt_regs(p);
322 	sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
323 	if (sf <= low || sf > high)
324 		return 0;
325 	for (count = 0; count < 16; count++) {
326 		sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
327 		if (sf <= low || sf > high)
328 			return 0;
329 		return_address = sf->gprs[8] & PSW_ADDR_INSN;
330 		if (!in_sched_functions(return_address))
331 			return return_address;
332 	}
333 	return 0;
334 }
335