1 /* 2 * arch/s390/kernel/process.c 3 * 4 * S390 version 5 * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation 6 * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com), 7 * Hartmut Penner (hp@de.ibm.com), 8 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com), 9 * 10 * Derived from "arch/i386/kernel/process.c" 11 * Copyright (C) 1995, Linus Torvalds 12 */ 13 14 /* 15 * This file handles the architecture-dependent parts of process handling.. 16 */ 17 18 #include <linux/compiler.h> 19 #include <linux/cpu.h> 20 #include <linux/errno.h> 21 #include <linux/sched.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/fs.h> 25 #include <linux/smp.h> 26 #include <linux/stddef.h> 27 #include <linux/unistd.h> 28 #include <linux/ptrace.h> 29 #include <linux/slab.h> 30 #include <linux/vmalloc.h> 31 #include <linux/user.h> 32 #include <linux/a.out.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/reboot.h> 36 #include <linux/init.h> 37 #include <linux/module.h> 38 #include <linux/notifier.h> 39 40 #include <asm/uaccess.h> 41 #include <asm/pgtable.h> 42 #include <asm/system.h> 43 #include <asm/io.h> 44 #include <asm/processor.h> 45 #include <asm/irq.h> 46 #include <asm/timer.h> 47 #include <asm/cpu.h> 48 49 asmlinkage void ret_from_fork(void) asm ("ret_from_fork"); 50 51 /* 52 * Return saved PC of a blocked thread. used in kernel/sched. 53 * resume in entry.S does not create a new stack frame, it 54 * just stores the registers %r6-%r15 to the frame given by 55 * schedule. We want to return the address of the caller of 56 * schedule, so we have to walk the backchain one time to 57 * find the frame schedule() store its return address. 58 */ 59 unsigned long thread_saved_pc(struct task_struct *tsk) 60 { 61 struct stack_frame *sf, *low, *high; 62 63 if (!tsk || !task_stack_page(tsk)) 64 return 0; 65 low = task_stack_page(tsk); 66 high = (struct stack_frame *) task_pt_regs(tsk); 67 sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN); 68 if (sf <= low || sf > high) 69 return 0; 70 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN); 71 if (sf <= low || sf > high) 72 return 0; 73 return sf->gprs[8]; 74 } 75 76 /* 77 * Need to know about CPUs going idle? 78 */ 79 static ATOMIC_NOTIFIER_HEAD(idle_chain); 80 81 int register_idle_notifier(struct notifier_block *nb) 82 { 83 return atomic_notifier_chain_register(&idle_chain, nb); 84 } 85 EXPORT_SYMBOL(register_idle_notifier); 86 87 int unregister_idle_notifier(struct notifier_block *nb) 88 { 89 return atomic_notifier_chain_unregister(&idle_chain, nb); 90 } 91 EXPORT_SYMBOL(unregister_idle_notifier); 92 93 void do_monitor_call(struct pt_regs *regs, long interruption_code) 94 { 95 #ifdef CONFIG_SMP 96 struct s390_idle_data *idle; 97 98 idle = &__get_cpu_var(s390_idle); 99 spin_lock(&idle->lock); 100 idle->idle_time += get_clock() - idle->idle_enter; 101 idle->in_idle = 0; 102 spin_unlock(&idle->lock); 103 #endif 104 /* disable monitor call class 0 */ 105 __ctl_clear_bit(8, 15); 106 107 atomic_notifier_call_chain(&idle_chain, S390_CPU_NOT_IDLE, 108 (void *)(long) smp_processor_id()); 109 } 110 111 extern void s390_handle_mcck(void); 112 /* 113 * The idle loop on a S390... 114 */ 115 static void default_idle(void) 116 { 117 int cpu, rc; 118 #ifdef CONFIG_SMP 119 struct s390_idle_data *idle; 120 #endif 121 122 /* CPU is going idle. */ 123 cpu = smp_processor_id(); 124 125 local_irq_disable(); 126 if (need_resched()) { 127 local_irq_enable(); 128 return; 129 } 130 131 rc = atomic_notifier_call_chain(&idle_chain, 132 S390_CPU_IDLE, (void *)(long) cpu); 133 if (rc != NOTIFY_OK && rc != NOTIFY_DONE) 134 BUG(); 135 if (rc != NOTIFY_OK) { 136 local_irq_enable(); 137 return; 138 } 139 140 /* enable monitor call class 0 */ 141 __ctl_set_bit(8, 15); 142 143 #ifdef CONFIG_HOTPLUG_CPU 144 if (cpu_is_offline(cpu)) { 145 preempt_enable_no_resched(); 146 cpu_die(); 147 } 148 #endif 149 150 local_mcck_disable(); 151 if (test_thread_flag(TIF_MCCK_PENDING)) { 152 local_mcck_enable(); 153 local_irq_enable(); 154 s390_handle_mcck(); 155 return; 156 } 157 #ifdef CONFIG_SMP 158 idle = &__get_cpu_var(s390_idle); 159 spin_lock(&idle->lock); 160 idle->idle_count++; 161 idle->in_idle = 1; 162 idle->idle_enter = get_clock(); 163 spin_unlock(&idle->lock); 164 #endif 165 trace_hardirqs_on(); 166 /* Wait for external, I/O or machine check interrupt. */ 167 __load_psw_mask(psw_kernel_bits | PSW_MASK_WAIT | 168 PSW_MASK_IO | PSW_MASK_EXT); 169 } 170 171 void cpu_idle(void) 172 { 173 for (;;) { 174 while (!need_resched()) 175 default_idle(); 176 177 preempt_enable_no_resched(); 178 schedule(); 179 preempt_disable(); 180 } 181 } 182 183 void show_regs(struct pt_regs *regs) 184 { 185 struct task_struct *tsk = current; 186 187 printk("CPU: %d %s\n", task_thread_info(tsk)->cpu, print_tainted()); 188 printk("Process %s (pid: %d, task: %p, ksp: %p)\n", 189 current->comm, task_pid_nr(current), (void *) tsk, 190 (void *) tsk->thread.ksp); 191 192 show_registers(regs); 193 /* Show stack backtrace if pt_regs is from kernel mode */ 194 if (!(regs->psw.mask & PSW_MASK_PSTATE)) 195 show_trace(NULL, (unsigned long *) regs->gprs[15]); 196 } 197 198 extern void kernel_thread_starter(void); 199 200 asm( 201 ".align 4\n" 202 "kernel_thread_starter:\n" 203 " la 2,0(10)\n" 204 " basr 14,9\n" 205 " la 2,0\n" 206 " br 11\n"); 207 208 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 209 { 210 struct pt_regs regs; 211 212 memset(®s, 0, sizeof(regs)); 213 regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT; 214 regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE; 215 regs.gprs[9] = (unsigned long) fn; 216 regs.gprs[10] = (unsigned long) arg; 217 regs.gprs[11] = (unsigned long) do_exit; 218 regs.orig_gpr2 = -1; 219 220 /* Ok, create the new process.. */ 221 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 222 0, ®s, 0, NULL, NULL); 223 } 224 225 /* 226 * Free current thread data structures etc.. 227 */ 228 void exit_thread(void) 229 { 230 } 231 232 void flush_thread(void) 233 { 234 clear_used_math(); 235 clear_tsk_thread_flag(current, TIF_USEDFPU); 236 } 237 238 void release_thread(struct task_struct *dead_task) 239 { 240 } 241 242 int copy_thread(int nr, unsigned long clone_flags, unsigned long new_stackp, 243 unsigned long unused, 244 struct task_struct * p, struct pt_regs * regs) 245 { 246 struct fake_frame 247 { 248 struct stack_frame sf; 249 struct pt_regs childregs; 250 } *frame; 251 252 frame = container_of(task_pt_regs(p), struct fake_frame, childregs); 253 p->thread.ksp = (unsigned long) frame; 254 /* Store access registers to kernel stack of new process. */ 255 frame->childregs = *regs; 256 frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */ 257 frame->childregs.gprs[15] = new_stackp; 258 frame->sf.back_chain = 0; 259 260 /* new return point is ret_from_fork */ 261 frame->sf.gprs[8] = (unsigned long) ret_from_fork; 262 263 /* fake return stack for resume(), don't go back to schedule */ 264 frame->sf.gprs[9] = (unsigned long) frame; 265 266 /* Save access registers to new thread structure. */ 267 save_access_regs(&p->thread.acrs[0]); 268 269 #ifndef CONFIG_64BIT 270 /* 271 * save fprs to current->thread.fp_regs to merge them with 272 * the emulated registers and then copy the result to the child. 273 */ 274 save_fp_regs(¤t->thread.fp_regs); 275 memcpy(&p->thread.fp_regs, ¤t->thread.fp_regs, 276 sizeof(s390_fp_regs)); 277 /* Set a new TLS ? */ 278 if (clone_flags & CLONE_SETTLS) 279 p->thread.acrs[0] = regs->gprs[6]; 280 #else /* CONFIG_64BIT */ 281 /* Save the fpu registers to new thread structure. */ 282 save_fp_regs(&p->thread.fp_regs); 283 /* Set a new TLS ? */ 284 if (clone_flags & CLONE_SETTLS) { 285 if (test_thread_flag(TIF_31BIT)) { 286 p->thread.acrs[0] = (unsigned int) regs->gprs[6]; 287 } else { 288 p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32); 289 p->thread.acrs[1] = (unsigned int) regs->gprs[6]; 290 } 291 } 292 #endif /* CONFIG_64BIT */ 293 /* start new process with ar4 pointing to the correct address space */ 294 p->thread.mm_segment = get_fs(); 295 /* Don't copy debug registers */ 296 memset(&p->thread.per_info,0,sizeof(p->thread.per_info)); 297 298 return 0; 299 } 300 301 asmlinkage long sys_fork(void) 302 { 303 struct pt_regs *regs = task_pt_regs(current); 304 return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL); 305 } 306 307 asmlinkage long sys_clone(void) 308 { 309 struct pt_regs *regs = task_pt_regs(current); 310 unsigned long clone_flags; 311 unsigned long newsp; 312 int __user *parent_tidptr, *child_tidptr; 313 314 clone_flags = regs->gprs[3]; 315 newsp = regs->orig_gpr2; 316 parent_tidptr = (int __user *) regs->gprs[4]; 317 child_tidptr = (int __user *) regs->gprs[5]; 318 if (!newsp) 319 newsp = regs->gprs[15]; 320 return do_fork(clone_flags, newsp, regs, 0, 321 parent_tidptr, child_tidptr); 322 } 323 324 /* 325 * This is trivial, and on the face of it looks like it 326 * could equally well be done in user mode. 327 * 328 * Not so, for quite unobvious reasons - register pressure. 329 * In user mode vfork() cannot have a stack frame, and if 330 * done by calling the "clone()" system call directly, you 331 * do not have enough call-clobbered registers to hold all 332 * the information you need. 333 */ 334 asmlinkage long sys_vfork(void) 335 { 336 struct pt_regs *regs = task_pt_regs(current); 337 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 338 regs->gprs[15], regs, 0, NULL, NULL); 339 } 340 341 asmlinkage void execve_tail(void) 342 { 343 task_lock(current); 344 current->ptrace &= ~PT_DTRACE; 345 task_unlock(current); 346 current->thread.fp_regs.fpc = 0; 347 if (MACHINE_HAS_IEEE) 348 asm volatile("sfpc %0,%0" : : "d" (0)); 349 } 350 351 /* 352 * sys_execve() executes a new program. 353 */ 354 asmlinkage long sys_execve(void) 355 { 356 struct pt_regs *regs = task_pt_regs(current); 357 char *filename; 358 unsigned long result; 359 int rc; 360 361 filename = getname((char __user *) regs->orig_gpr2); 362 if (IS_ERR(filename)) { 363 result = PTR_ERR(filename); 364 goto out; 365 } 366 rc = do_execve(filename, (char __user * __user *) regs->gprs[3], 367 (char __user * __user *) regs->gprs[4], regs); 368 if (rc) { 369 result = rc; 370 goto out_putname; 371 } 372 execve_tail(); 373 result = regs->gprs[2]; 374 out_putname: 375 putname(filename); 376 out: 377 return result; 378 } 379 380 /* 381 * fill in the FPU structure for a core dump. 382 */ 383 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs) 384 { 385 #ifndef CONFIG_64BIT 386 /* 387 * save fprs to current->thread.fp_regs to merge them with 388 * the emulated registers and then copy the result to the dump. 389 */ 390 save_fp_regs(¤t->thread.fp_regs); 391 memcpy(fpregs, ¤t->thread.fp_regs, sizeof(s390_fp_regs)); 392 #else /* CONFIG_64BIT */ 393 save_fp_regs(fpregs); 394 #endif /* CONFIG_64BIT */ 395 return 1; 396 } 397 398 unsigned long get_wchan(struct task_struct *p) 399 { 400 struct stack_frame *sf, *low, *high; 401 unsigned long return_address; 402 int count; 403 404 if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p)) 405 return 0; 406 low = task_stack_page(p); 407 high = (struct stack_frame *) task_pt_regs(p); 408 sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN); 409 if (sf <= low || sf > high) 410 return 0; 411 for (count = 0; count < 16; count++) { 412 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN); 413 if (sf <= low || sf > high) 414 return 0; 415 return_address = sf->gprs[8] & PSW_ADDR_INSN; 416 if (!in_sched_functions(return_address)) 417 return return_address; 418 } 419 return 0; 420 } 421 422