xref: /linux/arch/s390/kernel/process.c (revision 5168ce2c647f02756803bef7b74906f485491a1c)
1 /*
2  * This file handles the architecture dependent parts of process handling.
3  *
4  *    Copyright IBM Corp. 1999,2009
5  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6  *		 Hartmut Penner <hp@de.ibm.com>,
7  *		 Denis Joseph Barrow,
8  */
9 
10 #include <linux/compiler.h>
11 #include <linux/cpu.h>
12 #include <linux/errno.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/fs.h>
17 #include <linux/smp.h>
18 #include <linux/stddef.h>
19 #include <linux/unistd.h>
20 #include <linux/ptrace.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/notifier.h>
30 #include <linux/utsname.h>
31 #include <linux/tick.h>
32 #include <linux/elfcore.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/syscalls.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/processor.h>
40 #include <asm/irq.h>
41 #include <asm/timer.h>
42 #include "entry.h"
43 
44 asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
45 
46 /*
47  * Return saved PC of a blocked thread. used in kernel/sched.
48  * resume in entry.S does not create a new stack frame, it
49  * just stores the registers %r6-%r15 to the frame given by
50  * schedule. We want to return the address of the caller of
51  * schedule, so we have to walk the backchain one time to
52  * find the frame schedule() store its return address.
53  */
54 unsigned long thread_saved_pc(struct task_struct *tsk)
55 {
56 	struct stack_frame *sf, *low, *high;
57 
58 	if (!tsk || !task_stack_page(tsk))
59 		return 0;
60 	low = task_stack_page(tsk);
61 	high = (struct stack_frame *) task_pt_regs(tsk);
62 	sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
63 	if (sf <= low || sf > high)
64 		return 0;
65 	sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
66 	if (sf <= low || sf > high)
67 		return 0;
68 	return sf->gprs[8];
69 }
70 
71 extern void s390_handle_mcck(void);
72 /*
73  * The idle loop on a S390...
74  */
75 static void default_idle(void)
76 {
77 	/* CPU is going idle. */
78 	local_irq_disable();
79 	if (need_resched()) {
80 		local_irq_enable();
81 		return;
82 	}
83 #ifdef CONFIG_HOTPLUG_CPU
84 	if (cpu_is_offline(smp_processor_id())) {
85 		preempt_enable_no_resched();
86 		cpu_die();
87 	}
88 #endif
89 	local_mcck_disable();
90 	if (test_thread_flag(TIF_MCCK_PENDING)) {
91 		local_mcck_enable();
92 		local_irq_enable();
93 		s390_handle_mcck();
94 		return;
95 	}
96 	trace_hardirqs_on();
97 	/* Don't trace preempt off for idle. */
98 	stop_critical_timings();
99 	/* Stop virtual timer and halt the cpu. */
100 	vtime_stop_cpu();
101 	/* Reenable preemption tracer. */
102 	start_critical_timings();
103 }
104 
105 void cpu_idle(void)
106 {
107 	for (;;) {
108 		tick_nohz_stop_sched_tick(1);
109 		while (!need_resched())
110 			default_idle();
111 		tick_nohz_restart_sched_tick();
112 		preempt_enable_no_resched();
113 		schedule();
114 		preempt_disable();
115 	}
116 }
117 
118 extern void kernel_thread_starter(void);
119 
120 asm(
121 	".align 4\n"
122 	"kernel_thread_starter:\n"
123 	"    la    2,0(10)\n"
124 	"    basr  14,9\n"
125 	"    la    2,0\n"
126 	"    br    11\n");
127 
128 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
129 {
130 	struct pt_regs regs;
131 
132 	memset(&regs, 0, sizeof(regs));
133 	regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT;
134 	regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
135 	regs.gprs[9] = (unsigned long) fn;
136 	regs.gprs[10] = (unsigned long) arg;
137 	regs.gprs[11] = (unsigned long) do_exit;
138 	regs.orig_gpr2 = -1;
139 
140 	/* Ok, create the new process.. */
141 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
142 		       0, &regs, 0, NULL, NULL);
143 }
144 
145 /*
146  * Free current thread data structures etc..
147  */
148 void exit_thread(void)
149 {
150 }
151 
152 void flush_thread(void)
153 {
154 	clear_used_math();
155 	clear_tsk_thread_flag(current, TIF_USEDFPU);
156 }
157 
158 void release_thread(struct task_struct *dead_task)
159 {
160 }
161 
162 int copy_thread(int nr, unsigned long clone_flags, unsigned long new_stackp,
163 		unsigned long unused,
164 		struct task_struct *p, struct pt_regs *regs)
165 {
166 	struct thread_info *ti;
167 	struct fake_frame
168 	{
169 		struct stack_frame sf;
170 		struct pt_regs childregs;
171 	} *frame;
172 
173 	frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
174 	p->thread.ksp = (unsigned long) frame;
175 	/* Store access registers to kernel stack of new process. */
176 	frame->childregs = *regs;
177 	frame->childregs.gprs[2] = 0;	/* child returns 0 on fork. */
178 	frame->childregs.gprs[15] = new_stackp;
179 	frame->sf.back_chain = 0;
180 
181 	/* new return point is ret_from_fork */
182 	frame->sf.gprs[8] = (unsigned long) ret_from_fork;
183 
184 	/* fake return stack for resume(), don't go back to schedule */
185 	frame->sf.gprs[9] = (unsigned long) frame;
186 
187 	/* Save access registers to new thread structure. */
188 	save_access_regs(&p->thread.acrs[0]);
189 
190 #ifndef CONFIG_64BIT
191 	/*
192 	 * save fprs to current->thread.fp_regs to merge them with
193 	 * the emulated registers and then copy the result to the child.
194 	 */
195 	save_fp_regs(&current->thread.fp_regs);
196 	memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
197 	       sizeof(s390_fp_regs));
198 	/* Set a new TLS ?  */
199 	if (clone_flags & CLONE_SETTLS)
200 		p->thread.acrs[0] = regs->gprs[6];
201 #else /* CONFIG_64BIT */
202 	/* Save the fpu registers to new thread structure. */
203 	save_fp_regs(&p->thread.fp_regs);
204 	/* Set a new TLS ?  */
205 	if (clone_flags & CLONE_SETTLS) {
206 		if (test_thread_flag(TIF_31BIT)) {
207 			p->thread.acrs[0] = (unsigned int) regs->gprs[6];
208 		} else {
209 			p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
210 			p->thread.acrs[1] = (unsigned int) regs->gprs[6];
211 		}
212 	}
213 #endif /* CONFIG_64BIT */
214 	/* start new process with ar4 pointing to the correct address space */
215 	p->thread.mm_segment = get_fs();
216 	/* Don't copy debug registers */
217 	memset(&p->thread.per_info, 0, sizeof(p->thread.per_info));
218 	/* Initialize per thread user and system timer values */
219 	ti = task_thread_info(p);
220 	ti->user_timer = 0;
221 	ti->system_timer = 0;
222 	return 0;
223 }
224 
225 SYSCALL_DEFINE0(fork)
226 {
227 	struct pt_regs *regs = task_pt_regs(current);
228 	return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
229 }
230 
231 SYSCALL_DEFINE0(clone)
232 {
233 	struct pt_regs *regs = task_pt_regs(current);
234 	unsigned long clone_flags;
235 	unsigned long newsp;
236 	int __user *parent_tidptr, *child_tidptr;
237 
238 	clone_flags = regs->gprs[3];
239 	newsp = regs->orig_gpr2;
240 	parent_tidptr = (int __user *) regs->gprs[4];
241 	child_tidptr = (int __user *) regs->gprs[5];
242 	if (!newsp)
243 		newsp = regs->gprs[15];
244 	return do_fork(clone_flags, newsp, regs, 0,
245 		       parent_tidptr, child_tidptr);
246 }
247 
248 /*
249  * This is trivial, and on the face of it looks like it
250  * could equally well be done in user mode.
251  *
252  * Not so, for quite unobvious reasons - register pressure.
253  * In user mode vfork() cannot have a stack frame, and if
254  * done by calling the "clone()" system call directly, you
255  * do not have enough call-clobbered registers to hold all
256  * the information you need.
257  */
258 SYSCALL_DEFINE0(vfork)
259 {
260 	struct pt_regs *regs = task_pt_regs(current);
261 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
262 		       regs->gprs[15], regs, 0, NULL, NULL);
263 }
264 
265 asmlinkage void execve_tail(void)
266 {
267 	task_lock(current);
268 	current->ptrace &= ~PT_DTRACE;
269 	task_unlock(current);
270 	current->thread.fp_regs.fpc = 0;
271 	if (MACHINE_HAS_IEEE)
272 		asm volatile("sfpc %0,%0" : : "d" (0));
273 }
274 
275 /*
276  * sys_execve() executes a new program.
277  */
278 SYSCALL_DEFINE0(execve)
279 {
280 	struct pt_regs *regs = task_pt_regs(current);
281 	char *filename;
282 	unsigned long result;
283 	int rc;
284 
285 	filename = getname((char __user *) regs->orig_gpr2);
286 	if (IS_ERR(filename)) {
287 		result = PTR_ERR(filename);
288 		goto out;
289 	}
290 	rc = do_execve(filename, (char __user * __user *) regs->gprs[3],
291 		       (char __user * __user *) regs->gprs[4], regs);
292 	if (rc) {
293 		result = rc;
294 		goto out_putname;
295 	}
296 	execve_tail();
297 	result = regs->gprs[2];
298 out_putname:
299 	putname(filename);
300 out:
301 	return result;
302 }
303 
304 /*
305  * fill in the FPU structure for a core dump.
306  */
307 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
308 {
309 #ifndef CONFIG_64BIT
310 	/*
311 	 * save fprs to current->thread.fp_regs to merge them with
312 	 * the emulated registers and then copy the result to the dump.
313 	 */
314 	save_fp_regs(&current->thread.fp_regs);
315 	memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
316 #else /* CONFIG_64BIT */
317 	save_fp_regs(fpregs);
318 #endif /* CONFIG_64BIT */
319 	return 1;
320 }
321 
322 unsigned long get_wchan(struct task_struct *p)
323 {
324 	struct stack_frame *sf, *low, *high;
325 	unsigned long return_address;
326 	int count;
327 
328 	if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
329 		return 0;
330 	low = task_stack_page(p);
331 	high = (struct stack_frame *) task_pt_regs(p);
332 	sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
333 	if (sf <= low || sf > high)
334 		return 0;
335 	for (count = 0; count < 16; count++) {
336 		sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
337 		if (sf <= low || sf > high)
338 			return 0;
339 		return_address = sf->gprs[8] & PSW_ADDR_INSN;
340 		if (!in_sched_functions(return_address))
341 			return return_address;
342 	}
343 	return 0;
344 }
345