1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance event support for the System z CPU-measurement Sampling Facility 4 * 5 * Copyright IBM Corp. 2013, 2018 6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> 7 */ 8 #define KMSG_COMPONENT "cpum_sf" 9 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/perf_event.h> 14 #include <linux/percpu.h> 15 #include <linux/pid.h> 16 #include <linux/notifier.h> 17 #include <linux/export.h> 18 #include <linux/slab.h> 19 #include <linux/mm.h> 20 #include <linux/moduleparam.h> 21 #include <asm/cpu_mf.h> 22 #include <asm/irq.h> 23 #include <asm/debug.h> 24 #include <asm/timex.h> 25 #include <linux/io.h> 26 27 /* Perf PMU definitions for the sampling facility */ 28 #define PERF_CPUM_SF_MAX_CTR 2 29 #define PERF_EVENT_CPUM_SF 0xB0000UL /* Event: Basic-sampling */ 30 #define PERF_EVENT_CPUM_SF_DIAG 0xBD000UL /* Event: Combined-sampling */ 31 #define PERF_CPUM_SF_BASIC_MODE 0x0001 /* Basic-sampling flag */ 32 #define PERF_CPUM_SF_DIAG_MODE 0x0002 /* Diagnostic-sampling flag */ 33 #define PERF_CPUM_SF_FREQ_MODE 0x0008 /* Sampling with frequency */ 34 35 #define OVERFLOW_REG(hwc) ((hwc)->extra_reg.config) 36 #define SFB_ALLOC_REG(hwc) ((hwc)->extra_reg.alloc) 37 #define TEAR_REG(hwc) ((hwc)->last_tag) 38 #define SAMPL_RATE(hwc) ((hwc)->event_base) 39 #define SAMPL_FLAGS(hwc) ((hwc)->config_base) 40 #define SAMPL_DIAG_MODE(hwc) (SAMPL_FLAGS(hwc) & PERF_CPUM_SF_DIAG_MODE) 41 #define SAMPL_FREQ_MODE(hwc) (SAMPL_FLAGS(hwc) & PERF_CPUM_SF_FREQ_MODE) 42 43 /* Minimum number of sample-data-block-tables: 44 * At least one table is required for the sampling buffer structure. 45 * A single table contains up to 511 pointers to sample-data-blocks. 46 */ 47 #define CPUM_SF_MIN_SDBT 1 48 49 /* Number of sample-data-blocks per sample-data-block-table (SDBT): 50 * A table contains SDB pointers (8 bytes) and one table-link entry 51 * that points to the origin of the next SDBT. 52 */ 53 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8) 54 55 /* Maximum page offset for an SDBT table-link entry: 56 * If this page offset is reached, a table-link entry to the next SDBT 57 * must be added. 58 */ 59 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8) 60 static inline int require_table_link(const void *sdbt) 61 { 62 return ((unsigned long)sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET; 63 } 64 65 /* Minimum and maximum sampling buffer sizes: 66 * 67 * This number represents the maximum size of the sampling buffer taking 68 * the number of sample-data-block-tables into account. Note that these 69 * numbers apply to the basic-sampling function only. 70 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if 71 * the diagnostic-sampling function is active. 72 * 73 * Sampling buffer size Buffer characteristics 74 * --------------------------------------------------- 75 * 64KB == 16 pages (4KB per page) 76 * 1 page for SDB-tables 77 * 15 pages for SDBs 78 * 79 * 32MB == 8192 pages (4KB per page) 80 * 16 pages for SDB-tables 81 * 8176 pages for SDBs 82 */ 83 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15; 84 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176; 85 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1; 86 87 struct sf_buffer { 88 unsigned long *sdbt; /* Sample-data-block-table origin */ 89 /* buffer characteristics (required for buffer increments) */ 90 unsigned long num_sdb; /* Number of sample-data-blocks */ 91 unsigned long num_sdbt; /* Number of sample-data-block-tables */ 92 unsigned long *tail; /* last sample-data-block-table */ 93 }; 94 95 struct aux_buffer { 96 struct sf_buffer sfb; 97 unsigned long head; /* index of SDB of buffer head */ 98 unsigned long alert_mark; /* index of SDB of alert request position */ 99 unsigned long empty_mark; /* mark of SDB not marked full */ 100 unsigned long *sdb_index; /* SDB address for fast lookup */ 101 unsigned long *sdbt_index; /* SDBT address for fast lookup */ 102 }; 103 104 struct cpu_hw_sf { 105 /* CPU-measurement sampling information block */ 106 struct hws_qsi_info_block qsi; 107 /* CPU-measurement sampling control block */ 108 struct hws_lsctl_request_block lsctl; 109 struct sf_buffer sfb; /* Sampling buffer */ 110 unsigned int flags; /* Status flags */ 111 struct perf_event *event; /* Scheduled perf event */ 112 struct perf_output_handle handle; /* AUX buffer output handle */ 113 }; 114 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf); 115 116 /* Debug feature */ 117 static debug_info_t *sfdbg; 118 119 /* Sampling control helper functions */ 120 static inline unsigned long freq_to_sample_rate(struct hws_qsi_info_block *qsi, 121 unsigned long freq) 122 { 123 return (USEC_PER_SEC / freq) * qsi->cpu_speed; 124 } 125 126 static inline unsigned long sample_rate_to_freq(struct hws_qsi_info_block *qsi, 127 unsigned long rate) 128 { 129 return USEC_PER_SEC * qsi->cpu_speed / rate; 130 } 131 132 /* Return pointer to trailer entry of an sample data block */ 133 static inline struct hws_trailer_entry *trailer_entry_ptr(unsigned long v) 134 { 135 void *ret; 136 137 ret = (void *)v; 138 ret += PAGE_SIZE; 139 ret -= sizeof(struct hws_trailer_entry); 140 141 return ret; 142 } 143 144 /* 145 * Return true if the entry in the sample data block table (sdbt) 146 * is a link to the next sdbt 147 */ 148 static inline int is_link_entry(unsigned long *s) 149 { 150 return *s & 0x1UL ? 1 : 0; 151 } 152 153 /* Return pointer to the linked sdbt */ 154 static inline unsigned long *get_next_sdbt(unsigned long *s) 155 { 156 return phys_to_virt(*s & ~0x1UL); 157 } 158 159 /* 160 * sf_disable() - Switch off sampling facility 161 */ 162 static void sf_disable(void) 163 { 164 struct hws_lsctl_request_block sreq; 165 166 memset(&sreq, 0, sizeof(sreq)); 167 lsctl(&sreq); 168 } 169 170 /* 171 * sf_buffer_available() - Check for an allocated sampling buffer 172 */ 173 static int sf_buffer_available(struct cpu_hw_sf *cpuhw) 174 { 175 return !!cpuhw->sfb.sdbt; 176 } 177 178 /* 179 * deallocate sampling facility buffer 180 */ 181 static void free_sampling_buffer(struct sf_buffer *sfb) 182 { 183 unsigned long *sdbt, *curr; 184 185 if (!sfb->sdbt) 186 return; 187 188 sdbt = sfb->sdbt; 189 curr = sdbt; 190 191 /* Free the SDBT after all SDBs are processed... */ 192 while (1) { 193 if (!*curr || !sdbt) 194 break; 195 196 /* Process table-link entries */ 197 if (is_link_entry(curr)) { 198 curr = get_next_sdbt(curr); 199 if (sdbt) 200 free_page((unsigned long)sdbt); 201 202 /* If the origin is reached, sampling buffer is freed */ 203 if (curr == sfb->sdbt) 204 break; 205 else 206 sdbt = curr; 207 } else { 208 /* Process SDB pointer */ 209 if (*curr) { 210 free_page((unsigned long)phys_to_virt(*curr)); 211 curr++; 212 } 213 } 214 } 215 216 memset(sfb, 0, sizeof(*sfb)); 217 } 218 219 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags) 220 { 221 struct hws_trailer_entry *te; 222 unsigned long sdb; 223 224 /* Allocate and initialize sample-data-block */ 225 sdb = get_zeroed_page(gfp_flags); 226 if (!sdb) 227 return -ENOMEM; 228 te = trailer_entry_ptr(sdb); 229 te->header.a = 1; 230 231 /* Link SDB into the sample-data-block-table */ 232 *sdbt = virt_to_phys((void *)sdb); 233 234 return 0; 235 } 236 237 /* 238 * realloc_sampling_buffer() - extend sampler memory 239 * 240 * Allocates new sample-data-blocks and adds them to the specified sampling 241 * buffer memory. 242 * 243 * Important: This modifies the sampling buffer and must be called when the 244 * sampling facility is disabled. 245 * 246 * Returns zero on success, non-zero otherwise. 247 */ 248 static int realloc_sampling_buffer(struct sf_buffer *sfb, 249 unsigned long num_sdb, gfp_t gfp_flags) 250 { 251 int i, rc; 252 unsigned long *new, *tail, *tail_prev = NULL; 253 254 if (!sfb->sdbt || !sfb->tail) 255 return -EINVAL; 256 257 if (!is_link_entry(sfb->tail)) 258 return -EINVAL; 259 260 /* Append to the existing sampling buffer, overwriting the table-link 261 * register. 262 * The tail variables always points to the "tail" (last and table-link) 263 * entry in an SDB-table. 264 */ 265 tail = sfb->tail; 266 267 /* Do a sanity check whether the table-link entry points to 268 * the sampling buffer origin. 269 */ 270 if (sfb->sdbt != get_next_sdbt(tail)) { 271 debug_sprintf_event(sfdbg, 3, "%s buffer not linked origin %#lx tail %#lx\n", 272 __func__, (unsigned long)sfb->sdbt, 273 (unsigned long)tail); 274 return -EINVAL; 275 } 276 277 /* Allocate remaining SDBs */ 278 rc = 0; 279 for (i = 0; i < num_sdb; i++) { 280 /* Allocate a new SDB-table if it is full. */ 281 if (require_table_link(tail)) { 282 new = (unsigned long *)get_zeroed_page(gfp_flags); 283 if (!new) { 284 rc = -ENOMEM; 285 break; 286 } 287 sfb->num_sdbt++; 288 /* Link current page to tail of chain */ 289 *tail = virt_to_phys((void *)new) + 1; 290 tail_prev = tail; 291 tail = new; 292 } 293 294 /* Allocate a new sample-data-block. 295 * If there is not enough memory, stop the realloc process 296 * and simply use what was allocated. If this is a temporary 297 * issue, a new realloc call (if required) might succeed. 298 */ 299 rc = alloc_sample_data_block(tail, gfp_flags); 300 if (rc) { 301 /* Undo last SDBT. An SDBT with no SDB at its first 302 * entry but with an SDBT entry instead can not be 303 * handled by the interrupt handler code. 304 * Avoid this situation. 305 */ 306 if (tail_prev) { 307 sfb->num_sdbt--; 308 free_page((unsigned long)new); 309 tail = tail_prev; 310 } 311 break; 312 } 313 sfb->num_sdb++; 314 tail++; 315 tail_prev = new = NULL; /* Allocated at least one SBD */ 316 } 317 318 /* Link sampling buffer to its origin */ 319 *tail = virt_to_phys(sfb->sdbt) + 1; 320 sfb->tail = tail; 321 322 return rc; 323 } 324 325 /* 326 * allocate_sampling_buffer() - allocate sampler memory 327 * 328 * Allocates and initializes a sampling buffer structure using the 329 * specified number of sample-data-blocks (SDB). For each allocation, 330 * a 4K page is used. The number of sample-data-block-tables (SDBT) 331 * are calculated from SDBs. 332 * Also set the ALERT_REQ mask in each SDBs trailer. 333 * 334 * Returns zero on success, non-zero otherwise. 335 */ 336 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb) 337 { 338 int rc; 339 340 if (sfb->sdbt) 341 return -EINVAL; 342 343 /* Allocate the sample-data-block-table origin */ 344 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL); 345 if (!sfb->sdbt) 346 return -ENOMEM; 347 sfb->num_sdb = 0; 348 sfb->num_sdbt = 1; 349 350 /* Link the table origin to point to itself to prepare for 351 * realloc_sampling_buffer() invocation. 352 */ 353 sfb->tail = sfb->sdbt; 354 *sfb->tail = virt_to_phys((void *)sfb->sdbt) + 1; 355 356 /* Allocate requested number of sample-data-blocks */ 357 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL); 358 if (rc) 359 free_sampling_buffer(sfb); 360 return rc; 361 } 362 363 static void sfb_set_limits(unsigned long min, unsigned long max) 364 { 365 struct hws_qsi_info_block si; 366 367 CPUM_SF_MIN_SDB = min; 368 CPUM_SF_MAX_SDB = max; 369 370 memset(&si, 0, sizeof(si)); 371 qsi(&si); 372 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes); 373 } 374 375 static unsigned long sfb_max_limit(struct hw_perf_event *hwc) 376 { 377 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR 378 : CPUM_SF_MAX_SDB; 379 } 380 381 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb, 382 struct hw_perf_event *hwc) 383 { 384 if (!sfb->sdbt) 385 return SFB_ALLOC_REG(hwc); 386 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb) 387 return SFB_ALLOC_REG(hwc) - sfb->num_sdb; 388 return 0; 389 } 390 391 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc) 392 { 393 /* Limit the number of SDBs to not exceed the maximum */ 394 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc)); 395 if (num) 396 SFB_ALLOC_REG(hwc) += num; 397 } 398 399 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc) 400 { 401 SFB_ALLOC_REG(hwc) = 0; 402 sfb_account_allocs(num, hwc); 403 } 404 405 static void deallocate_buffers(struct cpu_hw_sf *cpuhw) 406 { 407 if (cpuhw->sfb.sdbt) 408 free_sampling_buffer(&cpuhw->sfb); 409 } 410 411 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc) 412 { 413 unsigned long n_sdb, freq; 414 415 /* Calculate sampling buffers using 4K pages 416 * 417 * 1. The sampling size is 32 bytes for basic sampling. This size 418 * is the same for all machine types. Diagnostic 419 * sampling uses auxlilary data buffer setup which provides the 420 * memory for SDBs using linux common code auxiliary trace 421 * setup. 422 * 423 * 2. Function alloc_sampling_buffer() sets the Alert Request 424 * Control indicator to trigger a measurement-alert to harvest 425 * sample-data-blocks (SDB). This is done per SDB. This 426 * measurement alert interrupt fires quick enough to handle 427 * one SDB, on very high frequency and work loads there might 428 * be 2 to 3 SBDs available for sample processing. 429 * Currently there is no need for setup alert request on every 430 * n-th page. This is counterproductive as one IRQ triggers 431 * a very high number of samples to be processed at one IRQ. 432 * 433 * 3. Use the sampling frequency as input. 434 * Compute the number of SDBs and ensure a minimum 435 * of CPUM_SF_MIN_SDB. Depending on frequency add some more 436 * SDBs to handle a higher sampling rate. 437 * Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples 438 * (one SDB) for every 10000 HZ frequency increment. 439 * 440 * 4. Compute the number of sample-data-block-tables (SDBT) and 441 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up 442 * to 511 SDBs). 443 */ 444 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)); 445 n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000); 446 447 /* If there is already a sampling buffer allocated, it is very likely 448 * that the sampling facility is enabled too. If the event to be 449 * initialized requires a greater sampling buffer, the allocation must 450 * be postponed. Changing the sampling buffer requires the sampling 451 * facility to be in the disabled state. So, account the number of 452 * required SDBs and let cpumsf_pmu_enable() resize the buffer just 453 * before the event is started. 454 */ 455 sfb_init_allocs(n_sdb, hwc); 456 if (sf_buffer_available(cpuhw)) 457 return 0; 458 459 return alloc_sampling_buffer(&cpuhw->sfb, 460 sfb_pending_allocs(&cpuhw->sfb, hwc)); 461 } 462 463 static unsigned long min_percent(unsigned int percent, unsigned long base, 464 unsigned long min) 465 { 466 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100)); 467 } 468 469 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base) 470 { 471 /* Use a percentage-based approach to extend the sampling facility 472 * buffer. Accept up to 5% sample data loss. 473 * Vary the extents between 1% to 5% of the current number of 474 * sample-data-blocks. 475 */ 476 if (ratio <= 5) 477 return 0; 478 if (ratio <= 25) 479 return min_percent(1, base, 1); 480 if (ratio <= 50) 481 return min_percent(1, base, 1); 482 if (ratio <= 75) 483 return min_percent(2, base, 2); 484 if (ratio <= 100) 485 return min_percent(3, base, 3); 486 if (ratio <= 250) 487 return min_percent(4, base, 4); 488 489 return min_percent(5, base, 8); 490 } 491 492 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw, 493 struct hw_perf_event *hwc) 494 { 495 unsigned long ratio, num; 496 497 if (!OVERFLOW_REG(hwc)) 498 return; 499 500 /* The sample_overflow contains the average number of sample data 501 * that has been lost because sample-data-blocks were full. 502 * 503 * Calculate the total number of sample data entries that has been 504 * discarded. Then calculate the ratio of lost samples to total samples 505 * per second in percent. 506 */ 507 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb, 508 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc))); 509 510 /* Compute number of sample-data-blocks */ 511 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb); 512 if (num) 513 sfb_account_allocs(num, hwc); 514 515 OVERFLOW_REG(hwc) = 0; 516 } 517 518 /* extend_sampling_buffer() - Extend sampling buffer 519 * @sfb: Sampling buffer structure (for local CPU) 520 * @hwc: Perf event hardware structure 521 * 522 * Use this function to extend the sampling buffer based on the overflow counter 523 * and postponed allocation extents stored in the specified Perf event hardware. 524 * 525 * Important: This function disables the sampling facility in order to safely 526 * change the sampling buffer structure. Do not call this function 527 * when the PMU is active. 528 */ 529 static void extend_sampling_buffer(struct sf_buffer *sfb, 530 struct hw_perf_event *hwc) 531 { 532 unsigned long num; 533 534 num = sfb_pending_allocs(sfb, hwc); 535 if (!num) 536 return; 537 538 /* Disable the sampling facility to reset any states and also 539 * clear pending measurement alerts. 540 */ 541 sf_disable(); 542 543 /* Extend the sampling buffer. 544 * This memory allocation typically happens in an atomic context when 545 * called by perf. Because this is a reallocation, it is fine if the 546 * new SDB-request cannot be satisfied immediately. 547 */ 548 realloc_sampling_buffer(sfb, num, GFP_ATOMIC); 549 } 550 551 /* Number of perf events counting hardware events */ 552 static refcount_t num_events; 553 /* Used to avoid races in calling reserve/release_cpumf_hardware */ 554 static DEFINE_MUTEX(pmc_reserve_mutex); 555 556 #define PMC_INIT 0 557 #define PMC_RELEASE 1 558 static void setup_pmc_cpu(void *flags) 559 { 560 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 561 562 switch (*((int *)flags)) { 563 case PMC_INIT: 564 memset(cpuhw, 0, sizeof(*cpuhw)); 565 qsi(&cpuhw->qsi); 566 cpuhw->flags |= PMU_F_RESERVED; 567 sf_disable(); 568 break; 569 case PMC_RELEASE: 570 cpuhw->flags &= ~PMU_F_RESERVED; 571 sf_disable(); 572 deallocate_buffers(cpuhw); 573 break; 574 } 575 } 576 577 static void release_pmc_hardware(void) 578 { 579 int flags = PMC_RELEASE; 580 581 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT); 582 on_each_cpu(setup_pmc_cpu, &flags, 1); 583 } 584 585 static void reserve_pmc_hardware(void) 586 { 587 int flags = PMC_INIT; 588 589 on_each_cpu(setup_pmc_cpu, &flags, 1); 590 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT); 591 } 592 593 static void hw_perf_event_destroy(struct perf_event *event) 594 { 595 /* Release PMC if this is the last perf event */ 596 if (refcount_dec_and_mutex_lock(&num_events, &pmc_reserve_mutex)) { 597 release_pmc_hardware(); 598 mutex_unlock(&pmc_reserve_mutex); 599 } 600 } 601 602 static void hw_init_period(struct hw_perf_event *hwc, u64 period) 603 { 604 hwc->sample_period = period; 605 hwc->last_period = hwc->sample_period; 606 local64_set(&hwc->period_left, hwc->sample_period); 607 } 608 609 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si, 610 unsigned long rate) 611 { 612 return clamp_t(unsigned long, rate, 613 si->min_sampl_rate, si->max_sampl_rate); 614 } 615 616 static u32 cpumsf_pid_type(struct perf_event *event, 617 u32 pid, enum pid_type type) 618 { 619 struct task_struct *tsk; 620 621 /* Idle process */ 622 if (!pid) 623 goto out; 624 625 tsk = find_task_by_pid_ns(pid, &init_pid_ns); 626 pid = -1; 627 if (tsk) { 628 /* 629 * Only top level events contain the pid namespace in which 630 * they are created. 631 */ 632 if (event->parent) 633 event = event->parent; 634 pid = __task_pid_nr_ns(tsk, type, event->ns); 635 /* 636 * See also 1d953111b648 637 * "perf/core: Don't report zero PIDs for exiting tasks". 638 */ 639 if (!pid && !pid_alive(tsk)) 640 pid = -1; 641 } 642 out: 643 return pid; 644 } 645 646 static void cpumsf_output_event_pid(struct perf_event *event, 647 struct perf_sample_data *data, 648 struct pt_regs *regs) 649 { 650 u32 pid; 651 struct perf_event_header header; 652 struct perf_output_handle handle; 653 654 /* 655 * Obtain the PID from the basic-sampling data entry and 656 * correct the data->tid_entry.pid value. 657 */ 658 pid = data->tid_entry.pid; 659 660 /* Protect callchain buffers, tasks */ 661 rcu_read_lock(); 662 663 perf_prepare_sample(data, event, regs); 664 perf_prepare_header(&header, data, event, regs); 665 if (perf_output_begin(&handle, data, event, header.size)) 666 goto out; 667 668 /* Update the process ID (see also kernel/events/core.c) */ 669 data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID); 670 data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID); 671 672 perf_output_sample(&handle, &header, data, event); 673 perf_output_end(&handle); 674 out: 675 rcu_read_unlock(); 676 } 677 678 static unsigned long getrate(bool freq, unsigned long sample, 679 struct hws_qsi_info_block *si) 680 { 681 unsigned long rate; 682 683 if (freq) { 684 rate = freq_to_sample_rate(si, sample); 685 rate = hw_limit_rate(si, rate); 686 } else { 687 /* The min/max sampling rates specifies the valid range 688 * of sample periods. If the specified sample period is 689 * out of range, limit the period to the range boundary. 690 */ 691 rate = hw_limit_rate(si, sample); 692 693 /* The perf core maintains a maximum sample rate that is 694 * configurable through the sysctl interface. Ensure the 695 * sampling rate does not exceed this value. This also helps 696 * to avoid throttling when pushing samples with 697 * perf_event_overflow(). 698 */ 699 if (sample_rate_to_freq(si, rate) > 700 sysctl_perf_event_sample_rate) { 701 rate = 0; 702 } 703 } 704 return rate; 705 } 706 707 /* The sampling information (si) contains information about the 708 * min/max sampling intervals and the CPU speed. So calculate the 709 * correct sampling interval and avoid the whole period adjust 710 * feedback loop. 711 * 712 * Since the CPU Measurement sampling facility can not handle frequency 713 * calculate the sampling interval when frequency is specified using 714 * this formula: 715 * interval := cpu_speed * 1000000 / sample_freq 716 * 717 * Returns errno on bad input and zero on success with parameter interval 718 * set to the correct sampling rate. 719 * 720 * Note: This function turns off freq bit to avoid calling function 721 * perf_adjust_period(). This causes frequency adjustment in the common 722 * code part which causes tremendous variations in the counter values. 723 */ 724 static int __hw_perf_event_init_rate(struct perf_event *event, 725 struct hws_qsi_info_block *si) 726 { 727 struct perf_event_attr *attr = &event->attr; 728 struct hw_perf_event *hwc = &event->hw; 729 unsigned long rate; 730 731 if (attr->freq) { 732 if (!attr->sample_freq) 733 return -EINVAL; 734 rate = getrate(attr->freq, attr->sample_freq, si); 735 attr->freq = 0; /* Don't call perf_adjust_period() */ 736 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE; 737 } else { 738 rate = getrate(attr->freq, attr->sample_period, si); 739 if (!rate) 740 return -EINVAL; 741 } 742 attr->sample_period = rate; 743 SAMPL_RATE(hwc) = rate; 744 hw_init_period(hwc, SAMPL_RATE(hwc)); 745 return 0; 746 } 747 748 static int __hw_perf_event_init(struct perf_event *event) 749 { 750 struct cpu_hw_sf *cpuhw; 751 struct hws_qsi_info_block si; 752 struct perf_event_attr *attr = &event->attr; 753 struct hw_perf_event *hwc = &event->hw; 754 int cpu, err = 0; 755 756 /* Reserve CPU-measurement sampling facility */ 757 mutex_lock(&pmc_reserve_mutex); 758 if (!refcount_inc_not_zero(&num_events)) { 759 reserve_pmc_hardware(); 760 refcount_set(&num_events, 1); 761 } 762 mutex_unlock(&pmc_reserve_mutex); 763 event->destroy = hw_perf_event_destroy; 764 765 /* Access per-CPU sampling information (query sampling info) */ 766 /* 767 * The event->cpu value can be -1 to count on every CPU, for example, 768 * when attaching to a task. If this is specified, use the query 769 * sampling info from the current CPU, otherwise use event->cpu to 770 * retrieve the per-CPU information. 771 * Later, cpuhw indicates whether to allocate sampling buffers for a 772 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL). 773 */ 774 memset(&si, 0, sizeof(si)); 775 cpuhw = NULL; 776 if (event->cpu == -1) { 777 qsi(&si); 778 } else { 779 /* Event is pinned to a particular CPU, retrieve the per-CPU 780 * sampling structure for accessing the CPU-specific QSI. 781 */ 782 cpuhw = &per_cpu(cpu_hw_sf, event->cpu); 783 si = cpuhw->qsi; 784 } 785 786 /* Check sampling facility authorization and, if not authorized, 787 * fall back to other PMUs. It is safe to check any CPU because 788 * the authorization is identical for all configured CPUs. 789 */ 790 if (!si.as) { 791 err = -ENOENT; 792 goto out; 793 } 794 795 if (si.ribm & CPU_MF_SF_RIBM_NOTAV) { 796 pr_warn("CPU Measurement Facility sampling is temporarily not available\n"); 797 err = -EBUSY; 798 goto out; 799 } 800 801 /* Always enable basic sampling */ 802 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE; 803 804 /* Check if diagnostic sampling is requested. Deny if the required 805 * sampling authorization is missing. 806 */ 807 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) { 808 if (!si.ad) { 809 err = -EPERM; 810 goto out; 811 } 812 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE; 813 } 814 815 err = __hw_perf_event_init_rate(event, &si); 816 if (err) 817 goto out; 818 819 /* Use AUX buffer. No need to allocate it by ourself */ 820 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) 821 return 0; 822 823 /* Allocate the per-CPU sampling buffer using the CPU information 824 * from the event. If the event is not pinned to a particular 825 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling 826 * buffers for each online CPU. 827 */ 828 if (cpuhw) 829 /* Event is pinned to a particular CPU */ 830 err = allocate_buffers(cpuhw, hwc); 831 else { 832 /* Event is not pinned, allocate sampling buffer on 833 * each online CPU 834 */ 835 for_each_online_cpu(cpu) { 836 cpuhw = &per_cpu(cpu_hw_sf, cpu); 837 err = allocate_buffers(cpuhw, hwc); 838 if (err) 839 break; 840 } 841 } 842 843 /* If PID/TID sampling is active, replace the default overflow 844 * handler to extract and resolve the PIDs from the basic-sampling 845 * data entries. 846 */ 847 if (event->attr.sample_type & PERF_SAMPLE_TID) 848 if (is_default_overflow_handler(event)) 849 event->overflow_handler = cpumsf_output_event_pid; 850 out: 851 return err; 852 } 853 854 static bool is_callchain_event(struct perf_event *event) 855 { 856 u64 sample_type = event->attr.sample_type; 857 858 return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER | 859 PERF_SAMPLE_STACK_USER); 860 } 861 862 static int cpumsf_pmu_event_init(struct perf_event *event) 863 { 864 int err; 865 866 /* No support for taken branch sampling */ 867 /* No support for callchain, stacks and registers */ 868 if (has_branch_stack(event) || is_callchain_event(event)) 869 return -EOPNOTSUPP; 870 871 switch (event->attr.type) { 872 case PERF_TYPE_RAW: 873 if ((event->attr.config != PERF_EVENT_CPUM_SF) && 874 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG)) 875 return -ENOENT; 876 break; 877 case PERF_TYPE_HARDWARE: 878 /* Support sampling of CPU cycles in addition to the 879 * counter facility. However, the counter facility 880 * is more precise and, hence, restrict this PMU to 881 * sampling events only. 882 */ 883 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES) 884 return -ENOENT; 885 if (!is_sampling_event(event)) 886 return -ENOENT; 887 break; 888 default: 889 return -ENOENT; 890 } 891 892 /* Force reset of idle/hv excludes regardless of what the 893 * user requested. 894 */ 895 if (event->attr.exclude_hv) 896 event->attr.exclude_hv = 0; 897 if (event->attr.exclude_idle) 898 event->attr.exclude_idle = 0; 899 900 err = __hw_perf_event_init(event); 901 if (unlikely(err)) 902 if (event->destroy) 903 event->destroy(event); 904 return err; 905 } 906 907 static void cpumsf_pmu_enable(struct pmu *pmu) 908 { 909 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 910 struct hw_perf_event *hwc; 911 int err; 912 913 if (cpuhw->flags & PMU_F_ENABLED) 914 return; 915 916 if (cpuhw->flags & PMU_F_ERR_MASK) 917 return; 918 919 /* Check whether to extent the sampling buffer. 920 * 921 * Two conditions trigger an increase of the sampling buffer for a 922 * perf event: 923 * 1. Postponed buffer allocations from the event initialization. 924 * 2. Sampling overflows that contribute to pending allocations. 925 * 926 * Note that the extend_sampling_buffer() function disables the sampling 927 * facility, but it can be fully re-enabled using sampling controls that 928 * have been saved in cpumsf_pmu_disable(). 929 */ 930 if (cpuhw->event) { 931 hwc = &cpuhw->event->hw; 932 if (!(SAMPL_DIAG_MODE(hwc))) { 933 /* 934 * Account number of overflow-designated 935 * buffer extents 936 */ 937 sfb_account_overflows(cpuhw, hwc); 938 extend_sampling_buffer(&cpuhw->sfb, hwc); 939 } 940 /* Rate may be adjusted with ioctl() */ 941 cpuhw->lsctl.interval = SAMPL_RATE(hwc); 942 } 943 944 /* (Re)enable the PMU and sampling facility */ 945 cpuhw->flags |= PMU_F_ENABLED; 946 barrier(); 947 948 err = lsctl(&cpuhw->lsctl); 949 if (err) { 950 cpuhw->flags &= ~PMU_F_ENABLED; 951 pr_err("Loading sampling controls failed: op 1 err %i\n", err); 952 return; 953 } 954 955 /* Load current program parameter */ 956 lpp(&get_lowcore()->lpp); 957 } 958 959 static void cpumsf_pmu_disable(struct pmu *pmu) 960 { 961 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 962 struct hws_lsctl_request_block inactive; 963 struct hws_qsi_info_block si; 964 int err; 965 966 if (!(cpuhw->flags & PMU_F_ENABLED)) 967 return; 968 969 if (cpuhw->flags & PMU_F_ERR_MASK) 970 return; 971 972 /* Switch off sampling activation control */ 973 inactive = cpuhw->lsctl; 974 inactive.cs = 0; 975 inactive.cd = 0; 976 977 err = lsctl(&inactive); 978 if (err) { 979 pr_err("Loading sampling controls failed: op 2 err %i\n", err); 980 return; 981 } 982 983 /* 984 * Save state of TEAR and DEAR register contents. 985 * TEAR/DEAR values are valid only if the sampling facility is 986 * enabled. Note that cpumsf_pmu_disable() might be called even 987 * for a disabled sampling facility because cpumsf_pmu_enable() 988 * controls the enable/disable state. 989 */ 990 qsi(&si); 991 if (si.es) { 992 cpuhw->lsctl.tear = si.tear; 993 cpuhw->lsctl.dear = si.dear; 994 } 995 996 cpuhw->flags &= ~PMU_F_ENABLED; 997 } 998 999 /* perf_exclude_event() - Filter event 1000 * @event: The perf event 1001 * @regs: pt_regs structure 1002 * @sde_regs: Sample-data-entry (sde) regs structure 1003 * 1004 * Filter perf events according to their exclude specification. 1005 * 1006 * Return non-zero if the event shall be excluded. 1007 */ 1008 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs, 1009 struct perf_sf_sde_regs *sde_regs) 1010 { 1011 if (event->attr.exclude_user && user_mode(regs)) 1012 return 1; 1013 if (event->attr.exclude_kernel && !user_mode(regs)) 1014 return 1; 1015 if (event->attr.exclude_guest && sde_regs->in_guest) 1016 return 1; 1017 if (event->attr.exclude_host && !sde_regs->in_guest) 1018 return 1; 1019 return 0; 1020 } 1021 1022 /* perf_push_sample() - Push samples to perf 1023 * @event: The perf event 1024 * @sample: Hardware sample data 1025 * 1026 * Use the hardware sample data to create perf event sample. The sample 1027 * is the pushed to the event subsystem and the function checks for 1028 * possible event overflows. If an event overflow occurs, the PMU is 1029 * stopped. 1030 * 1031 * Return non-zero if an event overflow occurred. 1032 */ 1033 static int perf_push_sample(struct perf_event *event, 1034 struct hws_basic_entry *basic) 1035 { 1036 int overflow; 1037 struct pt_regs regs; 1038 struct perf_sf_sde_regs *sde_regs; 1039 struct perf_sample_data data; 1040 1041 /* Setup perf sample */ 1042 perf_sample_data_init(&data, 0, event->hw.last_period); 1043 1044 /* Setup pt_regs to look like an CPU-measurement external interrupt 1045 * using the Program Request Alert code. The regs.int_parm_long 1046 * field which is unused contains additional sample-data-entry related 1047 * indicators. 1048 */ 1049 memset(®s, 0, sizeof(regs)); 1050 regs.int_code = 0x1407; 1051 regs.int_parm = CPU_MF_INT_SF_PRA; 1052 sde_regs = (struct perf_sf_sde_regs *) ®s.int_parm_long; 1053 1054 psw_bits(regs.psw).ia = basic->ia; 1055 psw_bits(regs.psw).dat = basic->T; 1056 psw_bits(regs.psw).wait = basic->W; 1057 psw_bits(regs.psw).pstate = basic->P; 1058 psw_bits(regs.psw).as = basic->AS; 1059 1060 /* 1061 * Use the hardware provided configuration level to decide if the 1062 * sample belongs to a guest or host. If that is not available, 1063 * fall back to the following heuristics: 1064 * A non-zero guest program parameter always indicates a guest 1065 * sample. Some early samples or samples from guests without 1066 * lpp usage would be misaccounted to the host. We use the asn 1067 * value as an addon heuristic to detect most of these guest samples. 1068 * If the value differs from 0xffff (the host value), we assume to 1069 * be a KVM guest. 1070 */ 1071 switch (basic->CL) { 1072 case 1: /* logical partition */ 1073 sde_regs->in_guest = 0; 1074 break; 1075 case 2: /* virtual machine */ 1076 sde_regs->in_guest = 1; 1077 break; 1078 default: /* old machine, use heuristics */ 1079 if (basic->gpp || basic->prim_asn != 0xffff) 1080 sde_regs->in_guest = 1; 1081 break; 1082 } 1083 1084 /* 1085 * Store the PID value from the sample-data-entry to be 1086 * processed and resolved by cpumsf_output_event_pid(). 1087 */ 1088 data.tid_entry.pid = basic->hpp & LPP_PID_MASK; 1089 1090 overflow = 0; 1091 if (perf_exclude_event(event, ®s, sde_regs)) 1092 goto out; 1093 if (perf_event_overflow(event, &data, ®s)) { 1094 overflow = 1; 1095 event->pmu->stop(event, 0); 1096 } 1097 perf_event_update_userpage(event); 1098 out: 1099 return overflow; 1100 } 1101 1102 static void perf_event_count_update(struct perf_event *event, u64 count) 1103 { 1104 local64_add(count, &event->count); 1105 } 1106 1107 /* hw_collect_samples() - Walk through a sample-data-block and collect samples 1108 * @event: The perf event 1109 * @sdbt: Sample-data-block table 1110 * @overflow: Event overflow counter 1111 * 1112 * Walks through a sample-data-block and collects sampling data entries that are 1113 * then pushed to the perf event subsystem. Depending on the sampling function, 1114 * there can be either basic-sampling or combined-sampling data entries. A 1115 * combined-sampling data entry consists of a basic- and a diagnostic-sampling 1116 * data entry. The sampling function is determined by the flags in the perf 1117 * event hardware structure. The function always works with a combined-sampling 1118 * data entry but ignores the the diagnostic portion if it is not available. 1119 * 1120 * Note that the implementation focuses on basic-sampling data entries and, if 1121 * such an entry is not valid, the entire combined-sampling data entry is 1122 * ignored. 1123 * 1124 * The overflow variables counts the number of samples that has been discarded 1125 * due to a perf event overflow. 1126 */ 1127 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt, 1128 unsigned long long *overflow) 1129 { 1130 struct hws_trailer_entry *te; 1131 struct hws_basic_entry *sample; 1132 1133 te = trailer_entry_ptr((unsigned long)sdbt); 1134 sample = (struct hws_basic_entry *)sdbt; 1135 while ((unsigned long *)sample < (unsigned long *)te) { 1136 /* Check for an empty sample */ 1137 if (!sample->def || sample->LS) 1138 break; 1139 1140 /* Update perf event period */ 1141 perf_event_count_update(event, SAMPL_RATE(&event->hw)); 1142 1143 /* Check whether sample is valid */ 1144 if (sample->def == 0x0001) { 1145 /* If an event overflow occurred, the PMU is stopped to 1146 * throttle event delivery. Remaining sample data is 1147 * discarded. 1148 */ 1149 if (!*overflow) { 1150 /* Check whether sample is consistent */ 1151 if (sample->I == 0 && sample->W == 0) { 1152 /* Deliver sample data to perf */ 1153 *overflow = perf_push_sample(event, 1154 sample); 1155 } 1156 } else 1157 /* Count discarded samples */ 1158 *overflow += 1; 1159 } else { 1160 /* Sample slot is not yet written or other record. 1161 * 1162 * This condition can occur if the buffer was reused 1163 * from a combined basic- and diagnostic-sampling. 1164 * If only basic-sampling is then active, entries are 1165 * written into the larger diagnostic entries. 1166 * This is typically the case for sample-data-blocks 1167 * that are not full. Stop processing if the first 1168 * invalid format was detected. 1169 */ 1170 if (!te->header.f) 1171 break; 1172 } 1173 1174 /* Reset sample slot and advance to next sample */ 1175 sample->def = 0; 1176 sample++; 1177 } 1178 } 1179 1180 /* hw_perf_event_update() - Process sampling buffer 1181 * @event: The perf event 1182 * @flush_all: Flag to also flush partially filled sample-data-blocks 1183 * 1184 * Processes the sampling buffer and create perf event samples. 1185 * The sampling buffer position are retrieved and saved in the TEAR_REG 1186 * register of the specified perf event. 1187 * 1188 * Only full sample-data-blocks are processed. Specify the flush_all flag 1189 * to also walk through partially filled sample-data-blocks. 1190 */ 1191 static void hw_perf_event_update(struct perf_event *event, int flush_all) 1192 { 1193 unsigned long long event_overflow, sampl_overflow, num_sdb; 1194 union hws_trailer_header old, prev, new; 1195 struct hw_perf_event *hwc = &event->hw; 1196 struct hws_trailer_entry *te; 1197 unsigned long *sdbt, sdb; 1198 int done; 1199 1200 /* 1201 * AUX buffer is used when in diagnostic sampling mode. 1202 * No perf events/samples are created. 1203 */ 1204 if (SAMPL_DIAG_MODE(hwc)) 1205 return; 1206 1207 sdbt = (unsigned long *)TEAR_REG(hwc); 1208 done = event_overflow = sampl_overflow = num_sdb = 0; 1209 while (!done) { 1210 /* Get the trailer entry of the sample-data-block */ 1211 sdb = (unsigned long)phys_to_virt(*sdbt); 1212 te = trailer_entry_ptr(sdb); 1213 1214 /* Leave loop if no more work to do (block full indicator) */ 1215 if (!te->header.f) { 1216 done = 1; 1217 if (!flush_all) 1218 break; 1219 } 1220 1221 /* Check the sample overflow count */ 1222 if (te->header.overflow) 1223 /* Account sample overflows and, if a particular limit 1224 * is reached, extend the sampling buffer. 1225 * For details, see sfb_account_overflows(). 1226 */ 1227 sampl_overflow += te->header.overflow; 1228 1229 /* Collect all samples from a single sample-data-block and 1230 * flag if an (perf) event overflow happened. If so, the PMU 1231 * is stopped and remaining samples will be discarded. 1232 */ 1233 hw_collect_samples(event, (unsigned long *)sdb, &event_overflow); 1234 num_sdb++; 1235 1236 /* Reset trailer (using compare-double-and-swap) */ 1237 prev.val = READ_ONCE_ALIGNED_128(te->header.val); 1238 do { 1239 old.val = prev.val; 1240 new.val = prev.val; 1241 new.f = 0; 1242 new.a = 1; 1243 new.overflow = 0; 1244 prev.val = cmpxchg128(&te->header.val, old.val, new.val); 1245 } while (prev.val != old.val); 1246 1247 /* Advance to next sample-data-block */ 1248 sdbt++; 1249 if (is_link_entry(sdbt)) 1250 sdbt = get_next_sdbt(sdbt); 1251 1252 /* Update event hardware registers */ 1253 TEAR_REG(hwc) = (unsigned long)sdbt; 1254 1255 /* Stop processing sample-data if all samples of the current 1256 * sample-data-block were flushed even if it was not full. 1257 */ 1258 if (flush_all && done) 1259 break; 1260 } 1261 1262 /* Account sample overflows in the event hardware structure */ 1263 if (sampl_overflow) 1264 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) + 1265 sampl_overflow, 1 + num_sdb); 1266 1267 /* Perf_event_overflow() and perf_event_account_interrupt() limit 1268 * the interrupt rate to an upper limit. Roughly 1000 samples per 1269 * task tick. 1270 * Hitting this limit results in a large number 1271 * of throttled REF_REPORT_THROTTLE entries and the samples 1272 * are dropped. 1273 * Slightly increase the interval to avoid hitting this limit. 1274 */ 1275 if (event_overflow) 1276 SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10); 1277 } 1278 1279 static inline unsigned long aux_sdb_index(struct aux_buffer *aux, 1280 unsigned long i) 1281 { 1282 return i % aux->sfb.num_sdb; 1283 } 1284 1285 static inline unsigned long aux_sdb_num(unsigned long start, unsigned long end) 1286 { 1287 return end >= start ? end - start + 1 : 0; 1288 } 1289 1290 static inline unsigned long aux_sdb_num_alert(struct aux_buffer *aux) 1291 { 1292 return aux_sdb_num(aux->head, aux->alert_mark); 1293 } 1294 1295 static inline unsigned long aux_sdb_num_empty(struct aux_buffer *aux) 1296 { 1297 return aux_sdb_num(aux->head, aux->empty_mark); 1298 } 1299 1300 /* 1301 * Get trailer entry by index of SDB. 1302 */ 1303 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux, 1304 unsigned long index) 1305 { 1306 unsigned long sdb; 1307 1308 index = aux_sdb_index(aux, index); 1309 sdb = aux->sdb_index[index]; 1310 return trailer_entry_ptr(sdb); 1311 } 1312 1313 /* 1314 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu 1315 * disabled. Collect the full SDBs in AUX buffer which have not reached 1316 * the point of alert indicator. And ignore the SDBs which are not 1317 * full. 1318 * 1319 * 1. Scan SDBs to see how much data is there and consume them. 1320 * 2. Remove alert indicator in the buffer. 1321 */ 1322 static void aux_output_end(struct perf_output_handle *handle) 1323 { 1324 unsigned long i, range_scan, idx; 1325 struct aux_buffer *aux; 1326 struct hws_trailer_entry *te; 1327 1328 aux = perf_get_aux(handle); 1329 if (!aux) 1330 return; 1331 1332 range_scan = aux_sdb_num_alert(aux); 1333 for (i = 0, idx = aux->head; i < range_scan; i++, idx++) { 1334 te = aux_sdb_trailer(aux, idx); 1335 if (!te->header.f) 1336 break; 1337 } 1338 /* i is num of SDBs which are full */ 1339 perf_aux_output_end(handle, i << PAGE_SHIFT); 1340 1341 /* Remove alert indicators in the buffer */ 1342 te = aux_sdb_trailer(aux, aux->alert_mark); 1343 te->header.a = 0; 1344 } 1345 1346 /* 1347 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event 1348 * is first added to the CPU or rescheduled again to the CPU. It is called 1349 * with pmu disabled. 1350 * 1351 * 1. Reset the trailer of SDBs to get ready for new data. 1352 * 2. Tell the hardware where to put the data by reset the SDBs buffer 1353 * head(tear/dear). 1354 */ 1355 static int aux_output_begin(struct perf_output_handle *handle, 1356 struct aux_buffer *aux, 1357 struct cpu_hw_sf *cpuhw) 1358 { 1359 unsigned long range, i, range_scan, idx, head, base, offset; 1360 struct hws_trailer_entry *te; 1361 1362 if (handle->head & ~PAGE_MASK) 1363 return -EINVAL; 1364 1365 aux->head = handle->head >> PAGE_SHIFT; 1366 range = (handle->size + 1) >> PAGE_SHIFT; 1367 if (range <= 1) 1368 return -ENOMEM; 1369 1370 /* 1371 * SDBs between aux->head and aux->empty_mark are already ready 1372 * for new data. range_scan is num of SDBs not within them. 1373 */ 1374 if (range > aux_sdb_num_empty(aux)) { 1375 range_scan = range - aux_sdb_num_empty(aux); 1376 idx = aux->empty_mark + 1; 1377 for (i = 0; i < range_scan; i++, idx++) { 1378 te = aux_sdb_trailer(aux, idx); 1379 te->header.f = 0; 1380 te->header.a = 0; 1381 te->header.overflow = 0; 1382 } 1383 /* Save the position of empty SDBs */ 1384 aux->empty_mark = aux->head + range - 1; 1385 } 1386 1387 /* Set alert indicator */ 1388 aux->alert_mark = aux->head + range/2 - 1; 1389 te = aux_sdb_trailer(aux, aux->alert_mark); 1390 te->header.a = 1; 1391 1392 /* Reset hardware buffer head */ 1393 head = aux_sdb_index(aux, aux->head); 1394 base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE]; 1395 offset = head % CPUM_SF_SDB_PER_TABLE; 1396 cpuhw->lsctl.tear = virt_to_phys((void *)base) + offset * sizeof(unsigned long); 1397 cpuhw->lsctl.dear = virt_to_phys((void *)aux->sdb_index[head]); 1398 1399 return 0; 1400 } 1401 1402 /* 1403 * Set alert indicator on SDB at index @alert_index while sampler is running. 1404 * 1405 * Return true if successfully. 1406 * Return false if full indicator is already set by hardware sampler. 1407 */ 1408 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index, 1409 unsigned long long *overflow) 1410 { 1411 union hws_trailer_header old, prev, new; 1412 struct hws_trailer_entry *te; 1413 1414 te = aux_sdb_trailer(aux, alert_index); 1415 prev.val = READ_ONCE_ALIGNED_128(te->header.val); 1416 do { 1417 old.val = prev.val; 1418 new.val = prev.val; 1419 *overflow = old.overflow; 1420 if (old.f) { 1421 /* 1422 * SDB is already set by hardware. 1423 * Abort and try to set somewhere 1424 * behind. 1425 */ 1426 return false; 1427 } 1428 new.a = 1; 1429 new.overflow = 0; 1430 prev.val = cmpxchg128(&te->header.val, old.val, new.val); 1431 } while (prev.val != old.val); 1432 return true; 1433 } 1434 1435 /* 1436 * aux_reset_buffer() - Scan and setup SDBs for new samples 1437 * @aux: The AUX buffer to set 1438 * @range: The range of SDBs to scan started from aux->head 1439 * @overflow: Set to overflow count 1440 * 1441 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is 1442 * marked as empty, check if it is already set full by the hardware sampler. 1443 * If yes, that means new data is already there before we can set an alert 1444 * indicator. Caller should try to set alert indicator to some position behind. 1445 * 1446 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used 1447 * previously and have already been consumed by user space. Reset these SDBs 1448 * (clear full indicator and alert indicator) for new data. 1449 * If aux->alert_mark fall in this area, just set it. Overflow count is 1450 * recorded while scanning. 1451 * 1452 * SDBs between aux->head and aux->empty_mark are already reset at last time. 1453 * and ready for new samples. So scanning on this area could be skipped. 1454 * 1455 * Return true if alert indicator is set successfully and false if not. 1456 */ 1457 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range, 1458 unsigned long long *overflow) 1459 { 1460 union hws_trailer_header old, prev, new; 1461 unsigned long i, range_scan, idx; 1462 unsigned long long orig_overflow; 1463 struct hws_trailer_entry *te; 1464 1465 if (range <= aux_sdb_num_empty(aux)) 1466 /* 1467 * No need to scan. All SDBs in range are marked as empty. 1468 * Just set alert indicator. Should check race with hardware 1469 * sampler. 1470 */ 1471 return aux_set_alert(aux, aux->alert_mark, overflow); 1472 1473 if (aux->alert_mark <= aux->empty_mark) 1474 /* 1475 * Set alert indicator on empty SDB. Should check race 1476 * with hardware sampler. 1477 */ 1478 if (!aux_set_alert(aux, aux->alert_mark, overflow)) 1479 return false; 1480 1481 /* 1482 * Scan the SDBs to clear full and alert indicator used previously. 1483 * Start scanning from one SDB behind empty_mark. If the new alert 1484 * indicator fall into this range, set it. 1485 */ 1486 range_scan = range - aux_sdb_num_empty(aux); 1487 idx = aux->empty_mark + 1; 1488 for (i = 0; i < range_scan; i++, idx++) { 1489 te = aux_sdb_trailer(aux, idx); 1490 prev.val = READ_ONCE_ALIGNED_128(te->header.val); 1491 do { 1492 old.val = prev.val; 1493 new.val = prev.val; 1494 orig_overflow = old.overflow; 1495 new.f = 0; 1496 new.overflow = 0; 1497 if (idx == aux->alert_mark) 1498 new.a = 1; 1499 else 1500 new.a = 0; 1501 prev.val = cmpxchg128(&te->header.val, old.val, new.val); 1502 } while (prev.val != old.val); 1503 *overflow += orig_overflow; 1504 } 1505 1506 /* Update empty_mark to new position */ 1507 aux->empty_mark = aux->head + range - 1; 1508 1509 return true; 1510 } 1511 1512 /* 1513 * Measurement alert handler for diagnostic mode sampling. 1514 */ 1515 static void hw_collect_aux(struct cpu_hw_sf *cpuhw) 1516 { 1517 struct aux_buffer *aux; 1518 int done = 0; 1519 unsigned long range = 0, size; 1520 unsigned long long overflow = 0; 1521 struct perf_output_handle *handle = &cpuhw->handle; 1522 unsigned long num_sdb; 1523 1524 aux = perf_get_aux(handle); 1525 if (!aux) 1526 return; 1527 1528 /* Inform user space new data arrived */ 1529 size = aux_sdb_num_alert(aux) << PAGE_SHIFT; 1530 debug_sprintf_event(sfdbg, 6, "%s #alert %ld\n", __func__, 1531 size >> PAGE_SHIFT); 1532 perf_aux_output_end(handle, size); 1533 1534 num_sdb = aux->sfb.num_sdb; 1535 while (!done) { 1536 /* Get an output handle */ 1537 aux = perf_aux_output_begin(handle, cpuhw->event); 1538 if (handle->size == 0) { 1539 pr_err("The AUX buffer with %lu pages for the " 1540 "diagnostic-sampling mode is full\n", 1541 num_sdb); 1542 break; 1543 } 1544 if (!aux) 1545 return; 1546 1547 /* Update head and alert_mark to new position */ 1548 aux->head = handle->head >> PAGE_SHIFT; 1549 range = (handle->size + 1) >> PAGE_SHIFT; 1550 if (range == 1) 1551 aux->alert_mark = aux->head; 1552 else 1553 aux->alert_mark = aux->head + range/2 - 1; 1554 1555 if (aux_reset_buffer(aux, range, &overflow)) { 1556 if (!overflow) { 1557 done = 1; 1558 break; 1559 } 1560 size = range << PAGE_SHIFT; 1561 perf_aux_output_end(&cpuhw->handle, size); 1562 pr_err("Sample data caused the AUX buffer with %lu " 1563 "pages to overflow\n", aux->sfb.num_sdb); 1564 } else { 1565 size = aux_sdb_num_alert(aux) << PAGE_SHIFT; 1566 perf_aux_output_end(&cpuhw->handle, size); 1567 } 1568 } 1569 } 1570 1571 /* 1572 * Callback when freeing AUX buffers. 1573 */ 1574 static void aux_buffer_free(void *data) 1575 { 1576 struct aux_buffer *aux = data; 1577 unsigned long i, num_sdbt; 1578 1579 if (!aux) 1580 return; 1581 1582 /* Free SDBT. SDB is freed by the caller */ 1583 num_sdbt = aux->sfb.num_sdbt; 1584 for (i = 0; i < num_sdbt; i++) 1585 free_page(aux->sdbt_index[i]); 1586 1587 kfree(aux->sdbt_index); 1588 kfree(aux->sdb_index); 1589 kfree(aux); 1590 } 1591 1592 static void aux_sdb_init(unsigned long sdb) 1593 { 1594 struct hws_trailer_entry *te; 1595 1596 te = trailer_entry_ptr(sdb); 1597 1598 /* Save clock base */ 1599 te->clock_base = 1; 1600 te->progusage2 = tod_clock_base.tod; 1601 } 1602 1603 /* 1604 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling 1605 * @event: Event the buffer is setup for, event->cpu == -1 means current 1606 * @pages: Array of pointers to buffer pages passed from perf core 1607 * @nr_pages: Total pages 1608 * @snapshot: Flag for snapshot mode 1609 * 1610 * This is the callback when setup an event using AUX buffer. Perf tool can 1611 * trigger this by an additional mmap() call on the event. Unlike the buffer 1612 * for basic samples, AUX buffer belongs to the event. It is scheduled with 1613 * the task among online cpus when it is a per-thread event. 1614 * 1615 * Return the private AUX buffer structure if success or NULL if fails. 1616 */ 1617 static void *aux_buffer_setup(struct perf_event *event, void **pages, 1618 int nr_pages, bool snapshot) 1619 { 1620 struct sf_buffer *sfb; 1621 struct aux_buffer *aux; 1622 unsigned long *new, *tail; 1623 int i, n_sdbt; 1624 1625 if (!nr_pages || !pages) 1626 return NULL; 1627 1628 if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) { 1629 pr_err("AUX buffer size (%i pages) is larger than the " 1630 "maximum sampling buffer limit\n", 1631 nr_pages); 1632 return NULL; 1633 } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) { 1634 pr_err("AUX buffer size (%i pages) is less than the " 1635 "minimum sampling buffer limit\n", 1636 nr_pages); 1637 return NULL; 1638 } 1639 1640 /* Allocate aux_buffer struct for the event */ 1641 aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL); 1642 if (!aux) 1643 goto no_aux; 1644 sfb = &aux->sfb; 1645 1646 /* Allocate sdbt_index for fast reference */ 1647 n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE); 1648 aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL); 1649 if (!aux->sdbt_index) 1650 goto no_sdbt_index; 1651 1652 /* Allocate sdb_index for fast reference */ 1653 aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL); 1654 if (!aux->sdb_index) 1655 goto no_sdb_index; 1656 1657 /* Allocate the first SDBT */ 1658 sfb->num_sdbt = 0; 1659 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL); 1660 if (!sfb->sdbt) 1661 goto no_sdbt; 1662 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt; 1663 tail = sfb->tail = sfb->sdbt; 1664 1665 /* 1666 * Link the provided pages of AUX buffer to SDBT. 1667 * Allocate SDBT if needed. 1668 */ 1669 for (i = 0; i < nr_pages; i++, tail++) { 1670 if (require_table_link(tail)) { 1671 new = (unsigned long *)get_zeroed_page(GFP_KERNEL); 1672 if (!new) 1673 goto no_sdbt; 1674 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new; 1675 /* Link current page to tail of chain */ 1676 *tail = virt_to_phys(new) + 1; 1677 tail = new; 1678 } 1679 /* Tail is the entry in a SDBT */ 1680 *tail = virt_to_phys(pages[i]); 1681 aux->sdb_index[i] = (unsigned long)pages[i]; 1682 aux_sdb_init((unsigned long)pages[i]); 1683 } 1684 sfb->num_sdb = nr_pages; 1685 1686 /* Link the last entry in the SDBT to the first SDBT */ 1687 *tail = virt_to_phys(sfb->sdbt) + 1; 1688 sfb->tail = tail; 1689 1690 /* 1691 * Initial all SDBs are zeroed. Mark it as empty. 1692 * So there is no need to clear the full indicator 1693 * when this event is first added. 1694 */ 1695 aux->empty_mark = sfb->num_sdb - 1; 1696 1697 return aux; 1698 1699 no_sdbt: 1700 /* SDBs (AUX buffer pages) are freed by caller */ 1701 for (i = 0; i < sfb->num_sdbt; i++) 1702 free_page(aux->sdbt_index[i]); 1703 kfree(aux->sdb_index); 1704 no_sdb_index: 1705 kfree(aux->sdbt_index); 1706 no_sdbt_index: 1707 kfree(aux); 1708 no_aux: 1709 return NULL; 1710 } 1711 1712 static void cpumsf_pmu_read(struct perf_event *event) 1713 { 1714 /* Nothing to do ... updates are interrupt-driven */ 1715 } 1716 1717 /* Check if the new sampling period/frequency is appropriate. 1718 * 1719 * Return non-zero on error and zero on passed checks. 1720 */ 1721 static int cpumsf_pmu_check_period(struct perf_event *event, u64 value) 1722 { 1723 struct hws_qsi_info_block si; 1724 unsigned long rate; 1725 bool do_freq; 1726 1727 memset(&si, 0, sizeof(si)); 1728 if (event->cpu == -1) { 1729 qsi(&si); 1730 } else { 1731 /* Event is pinned to a particular CPU, retrieve the per-CPU 1732 * sampling structure for accessing the CPU-specific QSI. 1733 */ 1734 struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu); 1735 1736 si = cpuhw->qsi; 1737 } 1738 1739 do_freq = !!SAMPL_FREQ_MODE(&event->hw); 1740 rate = getrate(do_freq, value, &si); 1741 if (!rate) 1742 return -EINVAL; 1743 1744 event->attr.sample_period = rate; 1745 SAMPL_RATE(&event->hw) = rate; 1746 hw_init_period(&event->hw, SAMPL_RATE(&event->hw)); 1747 return 0; 1748 } 1749 1750 /* Activate sampling control. 1751 * Next call of pmu_enable() starts sampling. 1752 */ 1753 static void cpumsf_pmu_start(struct perf_event *event, int flags) 1754 { 1755 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1756 1757 if (!(event->hw.state & PERF_HES_STOPPED)) 1758 return; 1759 perf_pmu_disable(event->pmu); 1760 event->hw.state = 0; 1761 cpuhw->lsctl.cs = 1; 1762 if (SAMPL_DIAG_MODE(&event->hw)) 1763 cpuhw->lsctl.cd = 1; 1764 perf_pmu_enable(event->pmu); 1765 } 1766 1767 /* Deactivate sampling control. 1768 * Next call of pmu_enable() stops sampling. 1769 */ 1770 static void cpumsf_pmu_stop(struct perf_event *event, int flags) 1771 { 1772 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1773 1774 if (event->hw.state & PERF_HES_STOPPED) 1775 return; 1776 1777 perf_pmu_disable(event->pmu); 1778 cpuhw->lsctl.cs = 0; 1779 cpuhw->lsctl.cd = 0; 1780 event->hw.state |= PERF_HES_STOPPED; 1781 1782 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) { 1783 hw_perf_event_update(event, 1); 1784 event->hw.state |= PERF_HES_UPTODATE; 1785 } 1786 perf_pmu_enable(event->pmu); 1787 } 1788 1789 static int cpumsf_pmu_add(struct perf_event *event, int flags) 1790 { 1791 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1792 struct aux_buffer *aux; 1793 int err = 0; 1794 1795 if (cpuhw->flags & PMU_F_IN_USE) 1796 return -EAGAIN; 1797 1798 if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt) 1799 return -EINVAL; 1800 1801 perf_pmu_disable(event->pmu); 1802 1803 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1804 1805 /* Set up sampling controls. Always program the sampling register 1806 * using the SDB-table start. Reset TEAR_REG event hardware register 1807 * that is used by hw_perf_event_update() to store the sampling buffer 1808 * position after samples have been flushed. 1809 */ 1810 cpuhw->lsctl.s = 0; 1811 cpuhw->lsctl.h = 1; 1812 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw); 1813 if (!SAMPL_DIAG_MODE(&event->hw)) { 1814 cpuhw->lsctl.tear = virt_to_phys(cpuhw->sfb.sdbt); 1815 cpuhw->lsctl.dear = *(unsigned long *)cpuhw->sfb.sdbt; 1816 TEAR_REG(&event->hw) = (unsigned long)cpuhw->sfb.sdbt; 1817 } 1818 1819 /* Ensure sampling functions are in the disabled state. If disabled, 1820 * switch on sampling enable control. */ 1821 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) { 1822 err = -EAGAIN; 1823 goto out; 1824 } 1825 if (SAMPL_DIAG_MODE(&event->hw)) { 1826 aux = perf_aux_output_begin(&cpuhw->handle, event); 1827 if (!aux) { 1828 err = -EINVAL; 1829 goto out; 1830 } 1831 err = aux_output_begin(&cpuhw->handle, aux, cpuhw); 1832 if (err) 1833 goto out; 1834 cpuhw->lsctl.ed = 1; 1835 } 1836 cpuhw->lsctl.es = 1; 1837 1838 /* Set in_use flag and store event */ 1839 cpuhw->event = event; 1840 cpuhw->flags |= PMU_F_IN_USE; 1841 1842 if (flags & PERF_EF_START) 1843 cpumsf_pmu_start(event, PERF_EF_RELOAD); 1844 out: 1845 perf_event_update_userpage(event); 1846 perf_pmu_enable(event->pmu); 1847 return err; 1848 } 1849 1850 static void cpumsf_pmu_del(struct perf_event *event, int flags) 1851 { 1852 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1853 1854 perf_pmu_disable(event->pmu); 1855 cpumsf_pmu_stop(event, PERF_EF_UPDATE); 1856 1857 cpuhw->lsctl.es = 0; 1858 cpuhw->lsctl.ed = 0; 1859 cpuhw->flags &= ~PMU_F_IN_USE; 1860 cpuhw->event = NULL; 1861 1862 if (SAMPL_DIAG_MODE(&event->hw)) 1863 aux_output_end(&cpuhw->handle); 1864 perf_event_update_userpage(event); 1865 perf_pmu_enable(event->pmu); 1866 } 1867 1868 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF); 1869 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG); 1870 1871 /* Attribute list for CPU_SF. 1872 * 1873 * The availablitiy depends on the CPU_MF sampling facility authorization 1874 * for basic + diagnositic samples. This is determined at initialization 1875 * time by the sampling facility device driver. 1876 * If the authorization for basic samples is turned off, it should be 1877 * also turned off for diagnostic sampling. 1878 * 1879 * During initialization of the device driver, check the authorization 1880 * level for diagnostic sampling and installs the attribute 1881 * file for diagnostic sampling if necessary. 1882 * 1883 * For now install a placeholder to reference all possible attributes: 1884 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG. 1885 * Add another entry for the final NULL pointer. 1886 */ 1887 enum { 1888 SF_CYCLES_BASIC_ATTR_IDX = 0, 1889 SF_CYCLES_BASIC_DIAG_ATTR_IDX, 1890 SF_CYCLES_ATTR_MAX 1891 }; 1892 1893 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = { 1894 [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC) 1895 }; 1896 1897 PMU_FORMAT_ATTR(event, "config:0-63"); 1898 1899 static struct attribute *cpumsf_pmu_format_attr[] = { 1900 &format_attr_event.attr, 1901 NULL, 1902 }; 1903 1904 static struct attribute_group cpumsf_pmu_events_group = { 1905 .name = "events", 1906 .attrs = cpumsf_pmu_events_attr, 1907 }; 1908 1909 static struct attribute_group cpumsf_pmu_format_group = { 1910 .name = "format", 1911 .attrs = cpumsf_pmu_format_attr, 1912 }; 1913 1914 static const struct attribute_group *cpumsf_pmu_attr_groups[] = { 1915 &cpumsf_pmu_events_group, 1916 &cpumsf_pmu_format_group, 1917 NULL, 1918 }; 1919 1920 static struct pmu cpumf_sampling = { 1921 .pmu_enable = cpumsf_pmu_enable, 1922 .pmu_disable = cpumsf_pmu_disable, 1923 1924 .event_init = cpumsf_pmu_event_init, 1925 .add = cpumsf_pmu_add, 1926 .del = cpumsf_pmu_del, 1927 1928 .start = cpumsf_pmu_start, 1929 .stop = cpumsf_pmu_stop, 1930 .read = cpumsf_pmu_read, 1931 1932 .attr_groups = cpumsf_pmu_attr_groups, 1933 1934 .setup_aux = aux_buffer_setup, 1935 .free_aux = aux_buffer_free, 1936 1937 .check_period = cpumsf_pmu_check_period, 1938 }; 1939 1940 static void cpumf_measurement_alert(struct ext_code ext_code, 1941 unsigned int alert, unsigned long unused) 1942 { 1943 struct cpu_hw_sf *cpuhw; 1944 1945 if (!(alert & CPU_MF_INT_SF_MASK)) 1946 return; 1947 inc_irq_stat(IRQEXT_CMS); 1948 cpuhw = this_cpu_ptr(&cpu_hw_sf); 1949 1950 /* Measurement alerts are shared and might happen when the PMU 1951 * is not reserved. Ignore these alerts in this case. */ 1952 if (!(cpuhw->flags & PMU_F_RESERVED)) 1953 return; 1954 1955 /* The processing below must take care of multiple alert events that 1956 * might be indicated concurrently. */ 1957 1958 /* Program alert request */ 1959 if (alert & CPU_MF_INT_SF_PRA) { 1960 if (cpuhw->flags & PMU_F_IN_USE) 1961 if (SAMPL_DIAG_MODE(&cpuhw->event->hw)) 1962 hw_collect_aux(cpuhw); 1963 else 1964 hw_perf_event_update(cpuhw->event, 0); 1965 else 1966 WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE)); 1967 } 1968 1969 /* Report measurement alerts only for non-PRA codes */ 1970 if (alert != CPU_MF_INT_SF_PRA) 1971 debug_sprintf_event(sfdbg, 6, "%s alert %#x\n", __func__, 1972 alert); 1973 1974 /* Sampling authorization change request */ 1975 if (alert & CPU_MF_INT_SF_SACA) 1976 qsi(&cpuhw->qsi); 1977 1978 /* Loss of sample data due to high-priority machine activities */ 1979 if (alert & CPU_MF_INT_SF_LSDA) { 1980 pr_err("Sample data was lost\n"); 1981 cpuhw->flags |= PMU_F_ERR_LSDA; 1982 sf_disable(); 1983 } 1984 1985 /* Invalid sampling buffer entry */ 1986 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) { 1987 pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n", 1988 alert); 1989 cpuhw->flags |= PMU_F_ERR_IBE; 1990 sf_disable(); 1991 } 1992 } 1993 1994 static int cpusf_pmu_setup(unsigned int cpu, int flags) 1995 { 1996 /* Ignore the notification if no events are scheduled on the PMU. 1997 * This might be racy... 1998 */ 1999 if (!refcount_read(&num_events)) 2000 return 0; 2001 2002 local_irq_disable(); 2003 setup_pmc_cpu(&flags); 2004 local_irq_enable(); 2005 return 0; 2006 } 2007 2008 static int s390_pmu_sf_online_cpu(unsigned int cpu) 2009 { 2010 return cpusf_pmu_setup(cpu, PMC_INIT); 2011 } 2012 2013 static int s390_pmu_sf_offline_cpu(unsigned int cpu) 2014 { 2015 return cpusf_pmu_setup(cpu, PMC_RELEASE); 2016 } 2017 2018 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp) 2019 { 2020 if (!cpum_sf_avail()) 2021 return -ENODEV; 2022 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); 2023 } 2024 2025 static int param_set_sfb_size(const char *val, const struct kernel_param *kp) 2026 { 2027 int rc; 2028 unsigned long min, max; 2029 2030 if (!cpum_sf_avail()) 2031 return -ENODEV; 2032 if (!val || !strlen(val)) 2033 return -EINVAL; 2034 2035 /* Valid parameter values: "min,max" or "max" */ 2036 min = CPUM_SF_MIN_SDB; 2037 max = CPUM_SF_MAX_SDB; 2038 if (strchr(val, ',')) 2039 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL; 2040 else 2041 rc = kstrtoul(val, 10, &max); 2042 2043 if (min < 2 || min >= max || max > get_num_physpages()) 2044 rc = -EINVAL; 2045 if (rc) 2046 return rc; 2047 2048 sfb_set_limits(min, max); 2049 pr_info("The sampling buffer limits have changed to: " 2050 "min %lu max %lu (diag %lu)\n", 2051 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR); 2052 return 0; 2053 } 2054 2055 #define param_check_sfb_size(name, p) __param_check(name, p, void) 2056 static const struct kernel_param_ops param_ops_sfb_size = { 2057 .set = param_set_sfb_size, 2058 .get = param_get_sfb_size, 2059 }; 2060 2061 enum { 2062 RS_INIT_FAILURE_BSDES = 2, /* Bad basic sampling size */ 2063 RS_INIT_FAILURE_ALRT = 3, /* IRQ registration failure */ 2064 RS_INIT_FAILURE_PERF = 4 /* PMU registration failure */ 2065 }; 2066 2067 static void __init pr_cpumsf_err(unsigned int reason) 2068 { 2069 pr_err("Sampling facility support for perf is not available: " 2070 "reason %#x\n", reason); 2071 } 2072 2073 static int __init init_cpum_sampling_pmu(void) 2074 { 2075 struct hws_qsi_info_block si; 2076 int err; 2077 2078 if (!cpum_sf_avail()) 2079 return -ENODEV; 2080 2081 memset(&si, 0, sizeof(si)); 2082 qsi(&si); 2083 if (!si.as && !si.ad) 2084 return -ENODEV; 2085 2086 if (si.bsdes != sizeof(struct hws_basic_entry)) { 2087 pr_cpumsf_err(RS_INIT_FAILURE_BSDES); 2088 return -EINVAL; 2089 } 2090 2091 if (si.ad) { 2092 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); 2093 /* Sampling of diagnostic data authorized, 2094 * install event into attribute list of PMU device. 2095 */ 2096 cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] = 2097 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG); 2098 } 2099 2100 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80); 2101 if (!sfdbg) { 2102 pr_err("Registering for s390dbf failed\n"); 2103 return -ENOMEM; 2104 } 2105 debug_register_view(sfdbg, &debug_sprintf_view); 2106 2107 err = register_external_irq(EXT_IRQ_MEASURE_ALERT, 2108 cpumf_measurement_alert); 2109 if (err) { 2110 pr_cpumsf_err(RS_INIT_FAILURE_ALRT); 2111 debug_unregister(sfdbg); 2112 goto out; 2113 } 2114 2115 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW); 2116 if (err) { 2117 pr_cpumsf_err(RS_INIT_FAILURE_PERF); 2118 unregister_external_irq(EXT_IRQ_MEASURE_ALERT, 2119 cpumf_measurement_alert); 2120 debug_unregister(sfdbg); 2121 goto out; 2122 } 2123 2124 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online", 2125 s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu); 2126 out: 2127 return err; 2128 } 2129 2130 arch_initcall(init_cpum_sampling_pmu); 2131 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644); 2132