1 /* 2 * Performance event support for the System z CPU-measurement Sampling Facility 3 * 4 * Copyright IBM Corp. 2013 5 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License (version 2 only) 9 * as published by the Free Software Foundation. 10 */ 11 #define KMSG_COMPONENT "cpum_sf" 12 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 13 14 #include <linux/kernel.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/perf_event.h> 17 #include <linux/percpu.h> 18 #include <linux/notifier.h> 19 #include <linux/export.h> 20 #include <linux/slab.h> 21 #include <linux/mm.h> 22 #include <linux/moduleparam.h> 23 #include <asm/cpu_mf.h> 24 #include <asm/irq.h> 25 #include <asm/debug.h> 26 #include <asm/timex.h> 27 28 /* Minimum number of sample-data-block-tables: 29 * At least one table is required for the sampling buffer structure. 30 * A single table contains up to 511 pointers to sample-data-blocks. 31 */ 32 #define CPUM_SF_MIN_SDBT 1 33 34 /* Number of sample-data-blocks per sample-data-block-table (SDBT): 35 * A table contains SDB pointers (8 bytes) and one table-link entry 36 * that points to the origin of the next SDBT. 37 */ 38 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8) 39 40 /* Maximum page offset for an SDBT table-link entry: 41 * If this page offset is reached, a table-link entry to the next SDBT 42 * must be added. 43 */ 44 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8) 45 static inline int require_table_link(const void *sdbt) 46 { 47 return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET; 48 } 49 50 /* Minimum and maximum sampling buffer sizes: 51 * 52 * This number represents the maximum size of the sampling buffer taking 53 * the number of sample-data-block-tables into account. Note that these 54 * numbers apply to the basic-sampling function only. 55 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if 56 * the diagnostic-sampling function is active. 57 * 58 * Sampling buffer size Buffer characteristics 59 * --------------------------------------------------- 60 * 64KB == 16 pages (4KB per page) 61 * 1 page for SDB-tables 62 * 15 pages for SDBs 63 * 64 * 32MB == 8192 pages (4KB per page) 65 * 16 pages for SDB-tables 66 * 8176 pages for SDBs 67 */ 68 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15; 69 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176; 70 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1; 71 72 struct sf_buffer { 73 unsigned long *sdbt; /* Sample-data-block-table origin */ 74 /* buffer characteristics (required for buffer increments) */ 75 unsigned long num_sdb; /* Number of sample-data-blocks */ 76 unsigned long num_sdbt; /* Number of sample-data-block-tables */ 77 unsigned long *tail; /* last sample-data-block-table */ 78 }; 79 80 struct cpu_hw_sf { 81 /* CPU-measurement sampling information block */ 82 struct hws_qsi_info_block qsi; 83 /* CPU-measurement sampling control block */ 84 struct hws_lsctl_request_block lsctl; 85 struct sf_buffer sfb; /* Sampling buffer */ 86 unsigned int flags; /* Status flags */ 87 struct perf_event *event; /* Scheduled perf event */ 88 }; 89 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf); 90 91 /* Debug feature */ 92 static debug_info_t *sfdbg; 93 94 /* 95 * sf_disable() - Switch off sampling facility 96 */ 97 static int sf_disable(void) 98 { 99 struct hws_lsctl_request_block sreq; 100 101 memset(&sreq, 0, sizeof(sreq)); 102 return lsctl(&sreq); 103 } 104 105 /* 106 * sf_buffer_available() - Check for an allocated sampling buffer 107 */ 108 static int sf_buffer_available(struct cpu_hw_sf *cpuhw) 109 { 110 return !!cpuhw->sfb.sdbt; 111 } 112 113 /* 114 * deallocate sampling facility buffer 115 */ 116 static void free_sampling_buffer(struct sf_buffer *sfb) 117 { 118 unsigned long *sdbt, *curr; 119 120 if (!sfb->sdbt) 121 return; 122 123 sdbt = sfb->sdbt; 124 curr = sdbt; 125 126 /* Free the SDBT after all SDBs are processed... */ 127 while (1) { 128 if (!*curr || !sdbt) 129 break; 130 131 /* Process table-link entries */ 132 if (is_link_entry(curr)) { 133 curr = get_next_sdbt(curr); 134 if (sdbt) 135 free_page((unsigned long) sdbt); 136 137 /* If the origin is reached, sampling buffer is freed */ 138 if (curr == sfb->sdbt) 139 break; 140 else 141 sdbt = curr; 142 } else { 143 /* Process SDB pointer */ 144 if (*curr) { 145 free_page(*curr); 146 curr++; 147 } 148 } 149 } 150 151 debug_sprintf_event(sfdbg, 5, 152 "free_sampling_buffer: freed sdbt=%p\n", sfb->sdbt); 153 memset(sfb, 0, sizeof(*sfb)); 154 } 155 156 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags) 157 { 158 unsigned long sdb, *trailer; 159 160 /* Allocate and initialize sample-data-block */ 161 sdb = get_zeroed_page(gfp_flags); 162 if (!sdb) 163 return -ENOMEM; 164 trailer = trailer_entry_ptr(sdb); 165 *trailer = SDB_TE_ALERT_REQ_MASK; 166 167 /* Link SDB into the sample-data-block-table */ 168 *sdbt = sdb; 169 170 return 0; 171 } 172 173 /* 174 * realloc_sampling_buffer() - extend sampler memory 175 * 176 * Allocates new sample-data-blocks and adds them to the specified sampling 177 * buffer memory. 178 * 179 * Important: This modifies the sampling buffer and must be called when the 180 * sampling facility is disabled. 181 * 182 * Returns zero on success, non-zero otherwise. 183 */ 184 static int realloc_sampling_buffer(struct sf_buffer *sfb, 185 unsigned long num_sdb, gfp_t gfp_flags) 186 { 187 int i, rc; 188 unsigned long *new, *tail; 189 190 if (!sfb->sdbt || !sfb->tail) 191 return -EINVAL; 192 193 if (!is_link_entry(sfb->tail)) 194 return -EINVAL; 195 196 /* Append to the existing sampling buffer, overwriting the table-link 197 * register. 198 * The tail variables always points to the "tail" (last and table-link) 199 * entry in an SDB-table. 200 */ 201 tail = sfb->tail; 202 203 /* Do a sanity check whether the table-link entry points to 204 * the sampling buffer origin. 205 */ 206 if (sfb->sdbt != get_next_sdbt(tail)) { 207 debug_sprintf_event(sfdbg, 3, "realloc_sampling_buffer: " 208 "sampling buffer is not linked: origin=%p" 209 "tail=%p\n", 210 (void *) sfb->sdbt, (void *) tail); 211 return -EINVAL; 212 } 213 214 /* Allocate remaining SDBs */ 215 rc = 0; 216 for (i = 0; i < num_sdb; i++) { 217 /* Allocate a new SDB-table if it is full. */ 218 if (require_table_link(tail)) { 219 new = (unsigned long *) get_zeroed_page(gfp_flags); 220 if (!new) { 221 rc = -ENOMEM; 222 break; 223 } 224 sfb->num_sdbt++; 225 /* Link current page to tail of chain */ 226 *tail = (unsigned long)(void *) new + 1; 227 tail = new; 228 } 229 230 /* Allocate a new sample-data-block. 231 * If there is not enough memory, stop the realloc process 232 * and simply use what was allocated. If this is a temporary 233 * issue, a new realloc call (if required) might succeed. 234 */ 235 rc = alloc_sample_data_block(tail, gfp_flags); 236 if (rc) 237 break; 238 sfb->num_sdb++; 239 tail++; 240 } 241 242 /* Link sampling buffer to its origin */ 243 *tail = (unsigned long) sfb->sdbt + 1; 244 sfb->tail = tail; 245 246 debug_sprintf_event(sfdbg, 4, "realloc_sampling_buffer: new buffer" 247 " settings: sdbt=%lu sdb=%lu\n", 248 sfb->num_sdbt, sfb->num_sdb); 249 return rc; 250 } 251 252 /* 253 * allocate_sampling_buffer() - allocate sampler memory 254 * 255 * Allocates and initializes a sampling buffer structure using the 256 * specified number of sample-data-blocks (SDB). For each allocation, 257 * a 4K page is used. The number of sample-data-block-tables (SDBT) 258 * are calculated from SDBs. 259 * Also set the ALERT_REQ mask in each SDBs trailer. 260 * 261 * Returns zero on success, non-zero otherwise. 262 */ 263 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb) 264 { 265 int rc; 266 267 if (sfb->sdbt) 268 return -EINVAL; 269 270 /* Allocate the sample-data-block-table origin */ 271 sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL); 272 if (!sfb->sdbt) 273 return -ENOMEM; 274 sfb->num_sdb = 0; 275 sfb->num_sdbt = 1; 276 277 /* Link the table origin to point to itself to prepare for 278 * realloc_sampling_buffer() invocation. 279 */ 280 sfb->tail = sfb->sdbt; 281 *sfb->tail = (unsigned long)(void *) sfb->sdbt + 1; 282 283 /* Allocate requested number of sample-data-blocks */ 284 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL); 285 if (rc) { 286 free_sampling_buffer(sfb); 287 debug_sprintf_event(sfdbg, 4, "alloc_sampling_buffer: " 288 "realloc_sampling_buffer failed with rc=%i\n", rc); 289 } else 290 debug_sprintf_event(sfdbg, 4, 291 "alloc_sampling_buffer: tear=%p dear=%p\n", 292 sfb->sdbt, (void *) *sfb->sdbt); 293 return rc; 294 } 295 296 static void sfb_set_limits(unsigned long min, unsigned long max) 297 { 298 struct hws_qsi_info_block si; 299 300 CPUM_SF_MIN_SDB = min; 301 CPUM_SF_MAX_SDB = max; 302 303 memset(&si, 0, sizeof(si)); 304 if (!qsi(&si)) 305 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes); 306 } 307 308 static unsigned long sfb_max_limit(struct hw_perf_event *hwc) 309 { 310 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR 311 : CPUM_SF_MAX_SDB; 312 } 313 314 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb, 315 struct hw_perf_event *hwc) 316 { 317 if (!sfb->sdbt) 318 return SFB_ALLOC_REG(hwc); 319 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb) 320 return SFB_ALLOC_REG(hwc) - sfb->num_sdb; 321 return 0; 322 } 323 324 static int sfb_has_pending_allocs(struct sf_buffer *sfb, 325 struct hw_perf_event *hwc) 326 { 327 return sfb_pending_allocs(sfb, hwc) > 0; 328 } 329 330 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc) 331 { 332 /* Limit the number of SDBs to not exceed the maximum */ 333 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc)); 334 if (num) 335 SFB_ALLOC_REG(hwc) += num; 336 } 337 338 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc) 339 { 340 SFB_ALLOC_REG(hwc) = 0; 341 sfb_account_allocs(num, hwc); 342 } 343 344 static size_t event_sample_size(struct hw_perf_event *hwc) 345 { 346 struct sf_raw_sample *sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(hwc); 347 size_t sample_size; 348 349 /* The sample size depends on the sampling function: The basic-sampling 350 * function must be always enabled, diagnostic-sampling function is 351 * optional. 352 */ 353 sample_size = sfr->bsdes; 354 if (SAMPL_DIAG_MODE(hwc)) 355 sample_size += sfr->dsdes; 356 357 return sample_size; 358 } 359 360 static void deallocate_buffers(struct cpu_hw_sf *cpuhw) 361 { 362 if (cpuhw->sfb.sdbt) 363 free_sampling_buffer(&cpuhw->sfb); 364 } 365 366 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc) 367 { 368 unsigned long n_sdb, freq, factor; 369 size_t sfr_size, sample_size; 370 struct sf_raw_sample *sfr; 371 372 /* Allocate raw sample buffer 373 * 374 * The raw sample buffer is used to temporarily store sampling data 375 * entries for perf raw sample processing. The buffer size mainly 376 * depends on the size of diagnostic-sampling data entries which is 377 * machine-specific. The exact size calculation includes: 378 * 1. The first 4 bytes of diagnostic-sampling data entries are 379 * already reflected in the sf_raw_sample structure. Subtract 380 * these bytes. 381 * 2. The perf raw sample data must be 8-byte aligned (u64) and 382 * perf's internal data size must be considered too. So add 383 * an additional u32 for correct alignment and subtract before 384 * allocating the buffer. 385 * 3. Store the raw sample buffer pointer in the perf event 386 * hardware structure. 387 */ 388 sfr_size = ALIGN((sizeof(*sfr) - sizeof(sfr->diag) + cpuhw->qsi.dsdes) + 389 sizeof(u32), sizeof(u64)); 390 sfr_size -= sizeof(u32); 391 sfr = kzalloc(sfr_size, GFP_KERNEL); 392 if (!sfr) 393 return -ENOMEM; 394 sfr->size = sfr_size; 395 sfr->bsdes = cpuhw->qsi.bsdes; 396 sfr->dsdes = cpuhw->qsi.dsdes; 397 RAWSAMPLE_REG(hwc) = (unsigned long) sfr; 398 399 /* Calculate sampling buffers using 4K pages 400 * 401 * 1. Determine the sample data size which depends on the used 402 * sampling functions, for example, basic-sampling or 403 * basic-sampling with diagnostic-sampling. 404 * 405 * 2. Use the sampling frequency as input. The sampling buffer is 406 * designed for almost one second. This can be adjusted through 407 * the "factor" variable. 408 * In any case, alloc_sampling_buffer() sets the Alert Request 409 * Control indicator to trigger a measurement-alert to harvest 410 * sample-data-blocks (sdb). 411 * 412 * 3. Compute the number of sample-data-blocks and ensure a minimum 413 * of CPUM_SF_MIN_SDB. Also ensure the upper limit does not 414 * exceed a "calculated" maximum. The symbolic maximum is 415 * designed for basic-sampling only and needs to be increased if 416 * diagnostic-sampling is active. 417 * See also the remarks for these symbolic constants. 418 * 419 * 4. Compute the number of sample-data-block-tables (SDBT) and 420 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up 421 * to 511 SDBs). 422 */ 423 sample_size = event_sample_size(hwc); 424 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)); 425 factor = 1; 426 n_sdb = DIV_ROUND_UP(freq, factor * ((PAGE_SIZE-64) / sample_size)); 427 if (n_sdb < CPUM_SF_MIN_SDB) 428 n_sdb = CPUM_SF_MIN_SDB; 429 430 /* If there is already a sampling buffer allocated, it is very likely 431 * that the sampling facility is enabled too. If the event to be 432 * initialized requires a greater sampling buffer, the allocation must 433 * be postponed. Changing the sampling buffer requires the sampling 434 * facility to be in the disabled state. So, account the number of 435 * required SDBs and let cpumsf_pmu_enable() resize the buffer just 436 * before the event is started. 437 */ 438 sfb_init_allocs(n_sdb, hwc); 439 if (sf_buffer_available(cpuhw)) 440 return 0; 441 442 debug_sprintf_event(sfdbg, 3, 443 "allocate_buffers: rate=%lu f=%lu sdb=%lu/%lu" 444 " sample_size=%lu cpuhw=%p\n", 445 SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc), 446 sample_size, cpuhw); 447 448 return alloc_sampling_buffer(&cpuhw->sfb, 449 sfb_pending_allocs(&cpuhw->sfb, hwc)); 450 } 451 452 static unsigned long min_percent(unsigned int percent, unsigned long base, 453 unsigned long min) 454 { 455 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100)); 456 } 457 458 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base) 459 { 460 /* Use a percentage-based approach to extend the sampling facility 461 * buffer. Accept up to 5% sample data loss. 462 * Vary the extents between 1% to 5% of the current number of 463 * sample-data-blocks. 464 */ 465 if (ratio <= 5) 466 return 0; 467 if (ratio <= 25) 468 return min_percent(1, base, 1); 469 if (ratio <= 50) 470 return min_percent(1, base, 1); 471 if (ratio <= 75) 472 return min_percent(2, base, 2); 473 if (ratio <= 100) 474 return min_percent(3, base, 3); 475 if (ratio <= 250) 476 return min_percent(4, base, 4); 477 478 return min_percent(5, base, 8); 479 } 480 481 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw, 482 struct hw_perf_event *hwc) 483 { 484 unsigned long ratio, num; 485 486 if (!OVERFLOW_REG(hwc)) 487 return; 488 489 /* The sample_overflow contains the average number of sample data 490 * that has been lost because sample-data-blocks were full. 491 * 492 * Calculate the total number of sample data entries that has been 493 * discarded. Then calculate the ratio of lost samples to total samples 494 * per second in percent. 495 */ 496 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb, 497 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc))); 498 499 /* Compute number of sample-data-blocks */ 500 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb); 501 if (num) 502 sfb_account_allocs(num, hwc); 503 504 debug_sprintf_event(sfdbg, 5, "sfb: overflow: overflow=%llu ratio=%lu" 505 " num=%lu\n", OVERFLOW_REG(hwc), ratio, num); 506 OVERFLOW_REG(hwc) = 0; 507 } 508 509 /* extend_sampling_buffer() - Extend sampling buffer 510 * @sfb: Sampling buffer structure (for local CPU) 511 * @hwc: Perf event hardware structure 512 * 513 * Use this function to extend the sampling buffer based on the overflow counter 514 * and postponed allocation extents stored in the specified Perf event hardware. 515 * 516 * Important: This function disables the sampling facility in order to safely 517 * change the sampling buffer structure. Do not call this function 518 * when the PMU is active. 519 */ 520 static void extend_sampling_buffer(struct sf_buffer *sfb, 521 struct hw_perf_event *hwc) 522 { 523 unsigned long num, num_old; 524 int rc; 525 526 num = sfb_pending_allocs(sfb, hwc); 527 if (!num) 528 return; 529 num_old = sfb->num_sdb; 530 531 /* Disable the sampling facility to reset any states and also 532 * clear pending measurement alerts. 533 */ 534 sf_disable(); 535 536 /* Extend the sampling buffer. 537 * This memory allocation typically happens in an atomic context when 538 * called by perf. Because this is a reallocation, it is fine if the 539 * new SDB-request cannot be satisfied immediately. 540 */ 541 rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC); 542 if (rc) 543 debug_sprintf_event(sfdbg, 5, "sfb: extend: realloc " 544 "failed with rc=%i\n", rc); 545 546 if (sfb_has_pending_allocs(sfb, hwc)) 547 debug_sprintf_event(sfdbg, 5, "sfb: extend: " 548 "req=%lu alloc=%lu remaining=%lu\n", 549 num, sfb->num_sdb - num_old, 550 sfb_pending_allocs(sfb, hwc)); 551 } 552 553 554 /* Number of perf events counting hardware events */ 555 static atomic_t num_events; 556 /* Used to avoid races in calling reserve/release_cpumf_hardware */ 557 static DEFINE_MUTEX(pmc_reserve_mutex); 558 559 #define PMC_INIT 0 560 #define PMC_RELEASE 1 561 #define PMC_FAILURE 2 562 static void setup_pmc_cpu(void *flags) 563 { 564 int err; 565 struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf); 566 567 err = 0; 568 switch (*((int *) flags)) { 569 case PMC_INIT: 570 memset(cpusf, 0, sizeof(*cpusf)); 571 err = qsi(&cpusf->qsi); 572 if (err) 573 break; 574 cpusf->flags |= PMU_F_RESERVED; 575 err = sf_disable(); 576 if (err) 577 pr_err("Switching off the sampling facility failed " 578 "with rc=%i\n", err); 579 debug_sprintf_event(sfdbg, 5, 580 "setup_pmc_cpu: initialized: cpuhw=%p\n", cpusf); 581 break; 582 case PMC_RELEASE: 583 cpusf->flags &= ~PMU_F_RESERVED; 584 err = sf_disable(); 585 if (err) { 586 pr_err("Switching off the sampling facility failed " 587 "with rc=%i\n", err); 588 } else 589 deallocate_buffers(cpusf); 590 debug_sprintf_event(sfdbg, 5, 591 "setup_pmc_cpu: released: cpuhw=%p\n", cpusf); 592 break; 593 } 594 if (err) 595 *((int *) flags) |= PMC_FAILURE; 596 } 597 598 static void release_pmc_hardware(void) 599 { 600 int flags = PMC_RELEASE; 601 602 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT); 603 on_each_cpu(setup_pmc_cpu, &flags, 1); 604 perf_release_sampling(); 605 } 606 607 static int reserve_pmc_hardware(void) 608 { 609 int flags = PMC_INIT; 610 int err; 611 612 err = perf_reserve_sampling(); 613 if (err) 614 return err; 615 on_each_cpu(setup_pmc_cpu, &flags, 1); 616 if (flags & PMC_FAILURE) { 617 release_pmc_hardware(); 618 return -ENODEV; 619 } 620 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT); 621 622 return 0; 623 } 624 625 static void hw_perf_event_destroy(struct perf_event *event) 626 { 627 /* Free raw sample buffer */ 628 if (RAWSAMPLE_REG(&event->hw)) 629 kfree((void *) RAWSAMPLE_REG(&event->hw)); 630 631 /* Release PMC if this is the last perf event */ 632 if (!atomic_add_unless(&num_events, -1, 1)) { 633 mutex_lock(&pmc_reserve_mutex); 634 if (atomic_dec_return(&num_events) == 0) 635 release_pmc_hardware(); 636 mutex_unlock(&pmc_reserve_mutex); 637 } 638 } 639 640 static void hw_init_period(struct hw_perf_event *hwc, u64 period) 641 { 642 hwc->sample_period = period; 643 hwc->last_period = hwc->sample_period; 644 local64_set(&hwc->period_left, hwc->sample_period); 645 } 646 647 static void hw_reset_registers(struct hw_perf_event *hwc, 648 unsigned long *sdbt_origin) 649 { 650 struct sf_raw_sample *sfr; 651 652 /* (Re)set to first sample-data-block-table */ 653 TEAR_REG(hwc) = (unsigned long) sdbt_origin; 654 655 /* (Re)set raw sampling buffer register */ 656 sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(hwc); 657 memset(&sfr->basic, 0, sizeof(sfr->basic)); 658 memset(&sfr->diag, 0, sfr->dsdes); 659 } 660 661 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si, 662 unsigned long rate) 663 { 664 return clamp_t(unsigned long, rate, 665 si->min_sampl_rate, si->max_sampl_rate); 666 } 667 668 static int __hw_perf_event_init(struct perf_event *event) 669 { 670 struct cpu_hw_sf *cpuhw; 671 struct hws_qsi_info_block si; 672 struct perf_event_attr *attr = &event->attr; 673 struct hw_perf_event *hwc = &event->hw; 674 unsigned long rate; 675 int cpu, err; 676 677 /* Reserve CPU-measurement sampling facility */ 678 err = 0; 679 if (!atomic_inc_not_zero(&num_events)) { 680 mutex_lock(&pmc_reserve_mutex); 681 if (atomic_read(&num_events) == 0 && reserve_pmc_hardware()) 682 err = -EBUSY; 683 else 684 atomic_inc(&num_events); 685 mutex_unlock(&pmc_reserve_mutex); 686 } 687 event->destroy = hw_perf_event_destroy; 688 689 if (err) 690 goto out; 691 692 /* Access per-CPU sampling information (query sampling info) */ 693 /* 694 * The event->cpu value can be -1 to count on every CPU, for example, 695 * when attaching to a task. If this is specified, use the query 696 * sampling info from the current CPU, otherwise use event->cpu to 697 * retrieve the per-CPU information. 698 * Later, cpuhw indicates whether to allocate sampling buffers for a 699 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL). 700 */ 701 memset(&si, 0, sizeof(si)); 702 cpuhw = NULL; 703 if (event->cpu == -1) 704 qsi(&si); 705 else { 706 /* Event is pinned to a particular CPU, retrieve the per-CPU 707 * sampling structure for accessing the CPU-specific QSI. 708 */ 709 cpuhw = &per_cpu(cpu_hw_sf, event->cpu); 710 si = cpuhw->qsi; 711 } 712 713 /* Check sampling facility authorization and, if not authorized, 714 * fall back to other PMUs. It is safe to check any CPU because 715 * the authorization is identical for all configured CPUs. 716 */ 717 if (!si.as) { 718 err = -ENOENT; 719 goto out; 720 } 721 722 /* Always enable basic sampling */ 723 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE; 724 725 /* Check if diagnostic sampling is requested. Deny if the required 726 * sampling authorization is missing. 727 */ 728 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) { 729 if (!si.ad) { 730 err = -EPERM; 731 goto out; 732 } 733 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE; 734 } 735 736 /* Check and set other sampling flags */ 737 if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS) 738 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS; 739 740 /* The sampling information (si) contains information about the 741 * min/max sampling intervals and the CPU speed. So calculate the 742 * correct sampling interval and avoid the whole period adjust 743 * feedback loop. 744 */ 745 rate = 0; 746 if (attr->freq) { 747 rate = freq_to_sample_rate(&si, attr->sample_freq); 748 rate = hw_limit_rate(&si, rate); 749 attr->freq = 0; 750 attr->sample_period = rate; 751 } else { 752 /* The min/max sampling rates specifies the valid range 753 * of sample periods. If the specified sample period is 754 * out of range, limit the period to the range boundary. 755 */ 756 rate = hw_limit_rate(&si, hwc->sample_period); 757 758 /* The perf core maintains a maximum sample rate that is 759 * configurable through the sysctl interface. Ensure the 760 * sampling rate does not exceed this value. This also helps 761 * to avoid throttling when pushing samples with 762 * perf_event_overflow(). 763 */ 764 if (sample_rate_to_freq(&si, rate) > 765 sysctl_perf_event_sample_rate) { 766 err = -EINVAL; 767 debug_sprintf_event(sfdbg, 1, "Sampling rate exceeds maximum perf sample rate\n"); 768 goto out; 769 } 770 } 771 SAMPL_RATE(hwc) = rate; 772 hw_init_period(hwc, SAMPL_RATE(hwc)); 773 774 /* Initialize sample data overflow accounting */ 775 hwc->extra_reg.reg = REG_OVERFLOW; 776 OVERFLOW_REG(hwc) = 0; 777 778 /* Allocate the per-CPU sampling buffer using the CPU information 779 * from the event. If the event is not pinned to a particular 780 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling 781 * buffers for each online CPU. 782 */ 783 if (cpuhw) 784 /* Event is pinned to a particular CPU */ 785 err = allocate_buffers(cpuhw, hwc); 786 else { 787 /* Event is not pinned, allocate sampling buffer on 788 * each online CPU 789 */ 790 for_each_online_cpu(cpu) { 791 cpuhw = &per_cpu(cpu_hw_sf, cpu); 792 err = allocate_buffers(cpuhw, hwc); 793 if (err) 794 break; 795 } 796 } 797 out: 798 return err; 799 } 800 801 static int cpumsf_pmu_event_init(struct perf_event *event) 802 { 803 int err; 804 805 /* No support for taken branch sampling */ 806 if (has_branch_stack(event)) 807 return -EOPNOTSUPP; 808 809 switch (event->attr.type) { 810 case PERF_TYPE_RAW: 811 if ((event->attr.config != PERF_EVENT_CPUM_SF) && 812 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG)) 813 return -ENOENT; 814 break; 815 case PERF_TYPE_HARDWARE: 816 /* Support sampling of CPU cycles in addition to the 817 * counter facility. However, the counter facility 818 * is more precise and, hence, restrict this PMU to 819 * sampling events only. 820 */ 821 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES) 822 return -ENOENT; 823 if (!is_sampling_event(event)) 824 return -ENOENT; 825 break; 826 default: 827 return -ENOENT; 828 } 829 830 /* Check online status of the CPU to which the event is pinned */ 831 if (event->cpu >= nr_cpumask_bits || 832 (event->cpu >= 0 && !cpu_online(event->cpu))) 833 return -ENODEV; 834 835 /* Force reset of idle/hv excludes regardless of what the 836 * user requested. 837 */ 838 if (event->attr.exclude_hv) 839 event->attr.exclude_hv = 0; 840 if (event->attr.exclude_idle) 841 event->attr.exclude_idle = 0; 842 843 err = __hw_perf_event_init(event); 844 if (unlikely(err)) 845 if (event->destroy) 846 event->destroy(event); 847 return err; 848 } 849 850 static void cpumsf_pmu_enable(struct pmu *pmu) 851 { 852 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 853 struct hw_perf_event *hwc; 854 int err; 855 856 if (cpuhw->flags & PMU_F_ENABLED) 857 return; 858 859 if (cpuhw->flags & PMU_F_ERR_MASK) 860 return; 861 862 /* Check whether to extent the sampling buffer. 863 * 864 * Two conditions trigger an increase of the sampling buffer for a 865 * perf event: 866 * 1. Postponed buffer allocations from the event initialization. 867 * 2. Sampling overflows that contribute to pending allocations. 868 * 869 * Note that the extend_sampling_buffer() function disables the sampling 870 * facility, but it can be fully re-enabled using sampling controls that 871 * have been saved in cpumsf_pmu_disable(). 872 */ 873 if (cpuhw->event) { 874 hwc = &cpuhw->event->hw; 875 /* Account number of overflow-designated buffer extents */ 876 sfb_account_overflows(cpuhw, hwc); 877 if (sfb_has_pending_allocs(&cpuhw->sfb, hwc)) 878 extend_sampling_buffer(&cpuhw->sfb, hwc); 879 } 880 881 /* (Re)enable the PMU and sampling facility */ 882 cpuhw->flags |= PMU_F_ENABLED; 883 barrier(); 884 885 err = lsctl(&cpuhw->lsctl); 886 if (err) { 887 cpuhw->flags &= ~PMU_F_ENABLED; 888 pr_err("Loading sampling controls failed: op=%i err=%i\n", 889 1, err); 890 return; 891 } 892 893 debug_sprintf_event(sfdbg, 6, "pmu_enable: es=%i cs=%i ed=%i cd=%i " 894 "tear=%p dear=%p\n", cpuhw->lsctl.es, cpuhw->lsctl.cs, 895 cpuhw->lsctl.ed, cpuhw->lsctl.cd, 896 (void *) cpuhw->lsctl.tear, (void *) cpuhw->lsctl.dear); 897 } 898 899 static void cpumsf_pmu_disable(struct pmu *pmu) 900 { 901 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 902 struct hws_lsctl_request_block inactive; 903 struct hws_qsi_info_block si; 904 int err; 905 906 if (!(cpuhw->flags & PMU_F_ENABLED)) 907 return; 908 909 if (cpuhw->flags & PMU_F_ERR_MASK) 910 return; 911 912 /* Switch off sampling activation control */ 913 inactive = cpuhw->lsctl; 914 inactive.cs = 0; 915 inactive.cd = 0; 916 917 err = lsctl(&inactive); 918 if (err) { 919 pr_err("Loading sampling controls failed: op=%i err=%i\n", 920 2, err); 921 return; 922 } 923 924 /* Save state of TEAR and DEAR register contents */ 925 if (!qsi(&si)) { 926 /* TEAR/DEAR values are valid only if the sampling facility is 927 * enabled. Note that cpumsf_pmu_disable() might be called even 928 * for a disabled sampling facility because cpumsf_pmu_enable() 929 * controls the enable/disable state. 930 */ 931 if (si.es) { 932 cpuhw->lsctl.tear = si.tear; 933 cpuhw->lsctl.dear = si.dear; 934 } 935 } else 936 debug_sprintf_event(sfdbg, 3, "cpumsf_pmu_disable: " 937 "qsi() failed with err=%i\n", err); 938 939 cpuhw->flags &= ~PMU_F_ENABLED; 940 } 941 942 /* perf_exclude_event() - Filter event 943 * @event: The perf event 944 * @regs: pt_regs structure 945 * @sde_regs: Sample-data-entry (sde) regs structure 946 * 947 * Filter perf events according to their exclude specification. 948 * 949 * Return non-zero if the event shall be excluded. 950 */ 951 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs, 952 struct perf_sf_sde_regs *sde_regs) 953 { 954 if (event->attr.exclude_user && user_mode(regs)) 955 return 1; 956 if (event->attr.exclude_kernel && !user_mode(regs)) 957 return 1; 958 if (event->attr.exclude_guest && sde_regs->in_guest) 959 return 1; 960 if (event->attr.exclude_host && !sde_regs->in_guest) 961 return 1; 962 return 0; 963 } 964 965 /* perf_push_sample() - Push samples to perf 966 * @event: The perf event 967 * @sample: Hardware sample data 968 * 969 * Use the hardware sample data to create perf event sample. The sample 970 * is the pushed to the event subsystem and the function checks for 971 * possible event overflows. If an event overflow occurs, the PMU is 972 * stopped. 973 * 974 * Return non-zero if an event overflow occurred. 975 */ 976 static int perf_push_sample(struct perf_event *event, struct sf_raw_sample *sfr) 977 { 978 int overflow; 979 struct pt_regs regs; 980 struct perf_sf_sde_regs *sde_regs; 981 struct perf_sample_data data; 982 struct perf_raw_record raw; 983 984 /* Setup perf sample */ 985 perf_sample_data_init(&data, 0, event->hw.last_period); 986 raw.size = sfr->size; 987 raw.data = sfr; 988 data.raw = &raw; 989 990 /* Setup pt_regs to look like an CPU-measurement external interrupt 991 * using the Program Request Alert code. The regs.int_parm_long 992 * field which is unused contains additional sample-data-entry related 993 * indicators. 994 */ 995 memset(®s, 0, sizeof(regs)); 996 regs.int_code = 0x1407; 997 regs.int_parm = CPU_MF_INT_SF_PRA; 998 sde_regs = (struct perf_sf_sde_regs *) ®s.int_parm_long; 999 1000 regs.psw.addr = sfr->basic.ia; 1001 if (sfr->basic.T) 1002 regs.psw.mask |= PSW_MASK_DAT; 1003 if (sfr->basic.W) 1004 regs.psw.mask |= PSW_MASK_WAIT; 1005 if (sfr->basic.P) 1006 regs.psw.mask |= PSW_MASK_PSTATE; 1007 switch (sfr->basic.AS) { 1008 case 0x0: 1009 regs.psw.mask |= PSW_ASC_PRIMARY; 1010 break; 1011 case 0x1: 1012 regs.psw.mask |= PSW_ASC_ACCREG; 1013 break; 1014 case 0x2: 1015 regs.psw.mask |= PSW_ASC_SECONDARY; 1016 break; 1017 case 0x3: 1018 regs.psw.mask |= PSW_ASC_HOME; 1019 break; 1020 } 1021 1022 /* The host-program-parameter (hpp) contains the sie control 1023 * block that is set by sie64a() in entry64.S. Check if hpp 1024 * refers to a valid control block and set sde_regs flags 1025 * accordingly. This would allow to use hpp values for other 1026 * purposes too. 1027 * For now, simply use a non-zero value as guest indicator. 1028 */ 1029 if (sfr->basic.hpp) 1030 sde_regs->in_guest = 1; 1031 1032 overflow = 0; 1033 if (perf_exclude_event(event, ®s, sde_regs)) 1034 goto out; 1035 if (perf_event_overflow(event, &data, ®s)) { 1036 overflow = 1; 1037 event->pmu->stop(event, 0); 1038 } 1039 perf_event_update_userpage(event); 1040 out: 1041 return overflow; 1042 } 1043 1044 static void perf_event_count_update(struct perf_event *event, u64 count) 1045 { 1046 local64_add(count, &event->count); 1047 } 1048 1049 static int sample_format_is_valid(struct hws_combined_entry *sample, 1050 unsigned int flags) 1051 { 1052 if (likely(flags & PERF_CPUM_SF_BASIC_MODE)) 1053 /* Only basic-sampling data entries with data-entry-format 1054 * version of 0x0001 can be processed. 1055 */ 1056 if (sample->basic.def != 0x0001) 1057 return 0; 1058 if (flags & PERF_CPUM_SF_DIAG_MODE) 1059 /* The data-entry-format number of diagnostic-sampling data 1060 * entries can vary. Because diagnostic data is just passed 1061 * through, do only a sanity check on the DEF. 1062 */ 1063 if (sample->diag.def < 0x8001) 1064 return 0; 1065 return 1; 1066 } 1067 1068 static int sample_is_consistent(struct hws_combined_entry *sample, 1069 unsigned long flags) 1070 { 1071 /* This check applies only to basic-sampling data entries of potentially 1072 * combined-sampling data entries. Invalid entries cannot be processed 1073 * by the PMU and, thus, do not deliver an associated 1074 * diagnostic-sampling data entry. 1075 */ 1076 if (unlikely(!(flags & PERF_CPUM_SF_BASIC_MODE))) 1077 return 0; 1078 /* 1079 * Samples are skipped, if they are invalid or for which the 1080 * instruction address is not predictable, i.e., the wait-state bit is 1081 * set. 1082 */ 1083 if (sample->basic.I || sample->basic.W) 1084 return 0; 1085 return 1; 1086 } 1087 1088 static void reset_sample_slot(struct hws_combined_entry *sample, 1089 unsigned long flags) 1090 { 1091 if (likely(flags & PERF_CPUM_SF_BASIC_MODE)) 1092 sample->basic.def = 0; 1093 if (flags & PERF_CPUM_SF_DIAG_MODE) 1094 sample->diag.def = 0; 1095 } 1096 1097 static void sfr_store_sample(struct sf_raw_sample *sfr, 1098 struct hws_combined_entry *sample) 1099 { 1100 if (likely(sfr->format & PERF_CPUM_SF_BASIC_MODE)) 1101 sfr->basic = sample->basic; 1102 if (sfr->format & PERF_CPUM_SF_DIAG_MODE) 1103 memcpy(&sfr->diag, &sample->diag, sfr->dsdes); 1104 } 1105 1106 static void debug_sample_entry(struct hws_combined_entry *sample, 1107 struct hws_trailer_entry *te, 1108 unsigned long flags) 1109 { 1110 debug_sprintf_event(sfdbg, 4, "hw_collect_samples: Found unknown " 1111 "sampling data entry: te->f=%i basic.def=%04x (%p)" 1112 " diag.def=%04x (%p)\n", te->f, 1113 sample->basic.def, &sample->basic, 1114 (flags & PERF_CPUM_SF_DIAG_MODE) 1115 ? sample->diag.def : 0xFFFF, 1116 (flags & PERF_CPUM_SF_DIAG_MODE) 1117 ? &sample->diag : NULL); 1118 } 1119 1120 /* hw_collect_samples() - Walk through a sample-data-block and collect samples 1121 * @event: The perf event 1122 * @sdbt: Sample-data-block table 1123 * @overflow: Event overflow counter 1124 * 1125 * Walks through a sample-data-block and collects sampling data entries that are 1126 * then pushed to the perf event subsystem. Depending on the sampling function, 1127 * there can be either basic-sampling or combined-sampling data entries. A 1128 * combined-sampling data entry consists of a basic- and a diagnostic-sampling 1129 * data entry. The sampling function is determined by the flags in the perf 1130 * event hardware structure. The function always works with a combined-sampling 1131 * data entry but ignores the the diagnostic portion if it is not available. 1132 * 1133 * Note that the implementation focuses on basic-sampling data entries and, if 1134 * such an entry is not valid, the entire combined-sampling data entry is 1135 * ignored. 1136 * 1137 * The overflow variables counts the number of samples that has been discarded 1138 * due to a perf event overflow. 1139 */ 1140 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt, 1141 unsigned long long *overflow) 1142 { 1143 unsigned long flags = SAMPL_FLAGS(&event->hw); 1144 struct hws_combined_entry *sample; 1145 struct hws_trailer_entry *te; 1146 struct sf_raw_sample *sfr; 1147 size_t sample_size; 1148 1149 /* Prepare and initialize raw sample data */ 1150 sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(&event->hw); 1151 sfr->format = flags & PERF_CPUM_SF_MODE_MASK; 1152 1153 sample_size = event_sample_size(&event->hw); 1154 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt); 1155 sample = (struct hws_combined_entry *) *sdbt; 1156 while ((unsigned long *) sample < (unsigned long *) te) { 1157 /* Check for an empty sample */ 1158 if (!sample->basic.def) 1159 break; 1160 1161 /* Update perf event period */ 1162 perf_event_count_update(event, SAMPL_RATE(&event->hw)); 1163 1164 /* Check sampling data entry */ 1165 if (sample_format_is_valid(sample, flags)) { 1166 /* If an event overflow occurred, the PMU is stopped to 1167 * throttle event delivery. Remaining sample data is 1168 * discarded. 1169 */ 1170 if (!*overflow) { 1171 if (sample_is_consistent(sample, flags)) { 1172 /* Deliver sample data to perf */ 1173 sfr_store_sample(sfr, sample); 1174 *overflow = perf_push_sample(event, sfr); 1175 } 1176 } else 1177 /* Count discarded samples */ 1178 *overflow += 1; 1179 } else { 1180 debug_sample_entry(sample, te, flags); 1181 /* Sample slot is not yet written or other record. 1182 * 1183 * This condition can occur if the buffer was reused 1184 * from a combined basic- and diagnostic-sampling. 1185 * If only basic-sampling is then active, entries are 1186 * written into the larger diagnostic entries. 1187 * This is typically the case for sample-data-blocks 1188 * that are not full. Stop processing if the first 1189 * invalid format was detected. 1190 */ 1191 if (!te->f) 1192 break; 1193 } 1194 1195 /* Reset sample slot and advance to next sample */ 1196 reset_sample_slot(sample, flags); 1197 sample += sample_size; 1198 } 1199 } 1200 1201 /* hw_perf_event_update() - Process sampling buffer 1202 * @event: The perf event 1203 * @flush_all: Flag to also flush partially filled sample-data-blocks 1204 * 1205 * Processes the sampling buffer and create perf event samples. 1206 * The sampling buffer position are retrieved and saved in the TEAR_REG 1207 * register of the specified perf event. 1208 * 1209 * Only full sample-data-blocks are processed. Specify the flash_all flag 1210 * to also walk through partially filled sample-data-blocks. It is ignored 1211 * if PERF_CPUM_SF_FULL_BLOCKS is set. The PERF_CPUM_SF_FULL_BLOCKS flag 1212 * enforces the processing of full sample-data-blocks only (trailer entries 1213 * with the block-full-indicator bit set). 1214 */ 1215 static void hw_perf_event_update(struct perf_event *event, int flush_all) 1216 { 1217 struct hw_perf_event *hwc = &event->hw; 1218 struct hws_trailer_entry *te; 1219 unsigned long *sdbt; 1220 unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags; 1221 int done; 1222 1223 if (flush_all && SDB_FULL_BLOCKS(hwc)) 1224 flush_all = 0; 1225 1226 sdbt = (unsigned long *) TEAR_REG(hwc); 1227 done = event_overflow = sampl_overflow = num_sdb = 0; 1228 while (!done) { 1229 /* Get the trailer entry of the sample-data-block */ 1230 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt); 1231 1232 /* Leave loop if no more work to do (block full indicator) */ 1233 if (!te->f) { 1234 done = 1; 1235 if (!flush_all) 1236 break; 1237 } 1238 1239 /* Check the sample overflow count */ 1240 if (te->overflow) 1241 /* Account sample overflows and, if a particular limit 1242 * is reached, extend the sampling buffer. 1243 * For details, see sfb_account_overflows(). 1244 */ 1245 sampl_overflow += te->overflow; 1246 1247 /* Timestamps are valid for full sample-data-blocks only */ 1248 debug_sprintf_event(sfdbg, 6, "hw_perf_event_update: sdbt=%p " 1249 "overflow=%llu timestamp=0x%llx\n", 1250 sdbt, te->overflow, 1251 (te->f) ? trailer_timestamp(te) : 0ULL); 1252 1253 /* Collect all samples from a single sample-data-block and 1254 * flag if an (perf) event overflow happened. If so, the PMU 1255 * is stopped and remaining samples will be discarded. 1256 */ 1257 hw_collect_samples(event, sdbt, &event_overflow); 1258 num_sdb++; 1259 1260 /* Reset trailer (using compare-double-and-swap) */ 1261 do { 1262 te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK; 1263 te_flags |= SDB_TE_ALERT_REQ_MASK; 1264 } while (!cmpxchg_double(&te->flags, &te->overflow, 1265 te->flags, te->overflow, 1266 te_flags, 0ULL)); 1267 1268 /* Advance to next sample-data-block */ 1269 sdbt++; 1270 if (is_link_entry(sdbt)) 1271 sdbt = get_next_sdbt(sdbt); 1272 1273 /* Update event hardware registers */ 1274 TEAR_REG(hwc) = (unsigned long) sdbt; 1275 1276 /* Stop processing sample-data if all samples of the current 1277 * sample-data-block were flushed even if it was not full. 1278 */ 1279 if (flush_all && done) 1280 break; 1281 1282 /* If an event overflow happened, discard samples by 1283 * processing any remaining sample-data-blocks. 1284 */ 1285 if (event_overflow) 1286 flush_all = 1; 1287 } 1288 1289 /* Account sample overflows in the event hardware structure */ 1290 if (sampl_overflow) 1291 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) + 1292 sampl_overflow, 1 + num_sdb); 1293 if (sampl_overflow || event_overflow) 1294 debug_sprintf_event(sfdbg, 4, "hw_perf_event_update: " 1295 "overflow stats: sample=%llu event=%llu\n", 1296 sampl_overflow, event_overflow); 1297 } 1298 1299 static void cpumsf_pmu_read(struct perf_event *event) 1300 { 1301 /* Nothing to do ... updates are interrupt-driven */ 1302 } 1303 1304 /* Activate sampling control. 1305 * Next call of pmu_enable() starts sampling. 1306 */ 1307 static void cpumsf_pmu_start(struct perf_event *event, int flags) 1308 { 1309 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1310 1311 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) 1312 return; 1313 1314 if (flags & PERF_EF_RELOAD) 1315 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1316 1317 perf_pmu_disable(event->pmu); 1318 event->hw.state = 0; 1319 cpuhw->lsctl.cs = 1; 1320 if (SAMPL_DIAG_MODE(&event->hw)) 1321 cpuhw->lsctl.cd = 1; 1322 perf_pmu_enable(event->pmu); 1323 } 1324 1325 /* Deactivate sampling control. 1326 * Next call of pmu_enable() stops sampling. 1327 */ 1328 static void cpumsf_pmu_stop(struct perf_event *event, int flags) 1329 { 1330 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1331 1332 if (event->hw.state & PERF_HES_STOPPED) 1333 return; 1334 1335 perf_pmu_disable(event->pmu); 1336 cpuhw->lsctl.cs = 0; 1337 cpuhw->lsctl.cd = 0; 1338 event->hw.state |= PERF_HES_STOPPED; 1339 1340 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) { 1341 hw_perf_event_update(event, 1); 1342 event->hw.state |= PERF_HES_UPTODATE; 1343 } 1344 perf_pmu_enable(event->pmu); 1345 } 1346 1347 static int cpumsf_pmu_add(struct perf_event *event, int flags) 1348 { 1349 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1350 int err; 1351 1352 if (cpuhw->flags & PMU_F_IN_USE) 1353 return -EAGAIN; 1354 1355 if (!cpuhw->sfb.sdbt) 1356 return -EINVAL; 1357 1358 err = 0; 1359 perf_pmu_disable(event->pmu); 1360 1361 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1362 1363 /* Set up sampling controls. Always program the sampling register 1364 * using the SDB-table start. Reset TEAR_REG event hardware register 1365 * that is used by hw_perf_event_update() to store the sampling buffer 1366 * position after samples have been flushed. 1367 */ 1368 cpuhw->lsctl.s = 0; 1369 cpuhw->lsctl.h = 1; 1370 cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt; 1371 cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt; 1372 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw); 1373 hw_reset_registers(&event->hw, cpuhw->sfb.sdbt); 1374 1375 /* Ensure sampling functions are in the disabled state. If disabled, 1376 * switch on sampling enable control. */ 1377 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) { 1378 err = -EAGAIN; 1379 goto out; 1380 } 1381 cpuhw->lsctl.es = 1; 1382 if (SAMPL_DIAG_MODE(&event->hw)) 1383 cpuhw->lsctl.ed = 1; 1384 1385 /* Set in_use flag and store event */ 1386 cpuhw->event = event; 1387 cpuhw->flags |= PMU_F_IN_USE; 1388 1389 if (flags & PERF_EF_START) 1390 cpumsf_pmu_start(event, PERF_EF_RELOAD); 1391 out: 1392 perf_event_update_userpage(event); 1393 perf_pmu_enable(event->pmu); 1394 return err; 1395 } 1396 1397 static void cpumsf_pmu_del(struct perf_event *event, int flags) 1398 { 1399 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1400 1401 perf_pmu_disable(event->pmu); 1402 cpumsf_pmu_stop(event, PERF_EF_UPDATE); 1403 1404 cpuhw->lsctl.es = 0; 1405 cpuhw->lsctl.ed = 0; 1406 cpuhw->flags &= ~PMU_F_IN_USE; 1407 cpuhw->event = NULL; 1408 1409 perf_event_update_userpage(event); 1410 perf_pmu_enable(event->pmu); 1411 } 1412 1413 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF); 1414 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG); 1415 1416 static struct attribute *cpumsf_pmu_events_attr[] = { 1417 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC), 1418 NULL, 1419 NULL, 1420 }; 1421 1422 PMU_FORMAT_ATTR(event, "config:0-63"); 1423 1424 static struct attribute *cpumsf_pmu_format_attr[] = { 1425 &format_attr_event.attr, 1426 NULL, 1427 }; 1428 1429 static struct attribute_group cpumsf_pmu_events_group = { 1430 .name = "events", 1431 .attrs = cpumsf_pmu_events_attr, 1432 }; 1433 static struct attribute_group cpumsf_pmu_format_group = { 1434 .name = "format", 1435 .attrs = cpumsf_pmu_format_attr, 1436 }; 1437 static const struct attribute_group *cpumsf_pmu_attr_groups[] = { 1438 &cpumsf_pmu_events_group, 1439 &cpumsf_pmu_format_group, 1440 NULL, 1441 }; 1442 1443 static struct pmu cpumf_sampling = { 1444 .pmu_enable = cpumsf_pmu_enable, 1445 .pmu_disable = cpumsf_pmu_disable, 1446 1447 .event_init = cpumsf_pmu_event_init, 1448 .add = cpumsf_pmu_add, 1449 .del = cpumsf_pmu_del, 1450 1451 .start = cpumsf_pmu_start, 1452 .stop = cpumsf_pmu_stop, 1453 .read = cpumsf_pmu_read, 1454 1455 .attr_groups = cpumsf_pmu_attr_groups, 1456 }; 1457 1458 static void cpumf_measurement_alert(struct ext_code ext_code, 1459 unsigned int alert, unsigned long unused) 1460 { 1461 struct cpu_hw_sf *cpuhw; 1462 1463 if (!(alert & CPU_MF_INT_SF_MASK)) 1464 return; 1465 inc_irq_stat(IRQEXT_CMS); 1466 cpuhw = this_cpu_ptr(&cpu_hw_sf); 1467 1468 /* Measurement alerts are shared and might happen when the PMU 1469 * is not reserved. Ignore these alerts in this case. */ 1470 if (!(cpuhw->flags & PMU_F_RESERVED)) 1471 return; 1472 1473 /* The processing below must take care of multiple alert events that 1474 * might be indicated concurrently. */ 1475 1476 /* Program alert request */ 1477 if (alert & CPU_MF_INT_SF_PRA) { 1478 if (cpuhw->flags & PMU_F_IN_USE) 1479 hw_perf_event_update(cpuhw->event, 0); 1480 else 1481 WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE)); 1482 } 1483 1484 /* Report measurement alerts only for non-PRA codes */ 1485 if (alert != CPU_MF_INT_SF_PRA) 1486 debug_sprintf_event(sfdbg, 6, "measurement alert: 0x%x\n", alert); 1487 1488 /* Sampling authorization change request */ 1489 if (alert & CPU_MF_INT_SF_SACA) 1490 qsi(&cpuhw->qsi); 1491 1492 /* Loss of sample data due to high-priority machine activities */ 1493 if (alert & CPU_MF_INT_SF_LSDA) { 1494 pr_err("Sample data was lost\n"); 1495 cpuhw->flags |= PMU_F_ERR_LSDA; 1496 sf_disable(); 1497 } 1498 1499 /* Invalid sampling buffer entry */ 1500 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) { 1501 pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n", 1502 alert); 1503 cpuhw->flags |= PMU_F_ERR_IBE; 1504 sf_disable(); 1505 } 1506 } 1507 1508 static int cpumf_pmu_notifier(struct notifier_block *self, 1509 unsigned long action, void *hcpu) 1510 { 1511 unsigned int cpu = (long) hcpu; 1512 int flags; 1513 1514 /* Ignore the notification if no events are scheduled on the PMU. 1515 * This might be racy... 1516 */ 1517 if (!atomic_read(&num_events)) 1518 return NOTIFY_OK; 1519 1520 switch (action & ~CPU_TASKS_FROZEN) { 1521 case CPU_ONLINE: 1522 case CPU_ONLINE_FROZEN: 1523 flags = PMC_INIT; 1524 smp_call_function_single(cpu, setup_pmc_cpu, &flags, 1); 1525 break; 1526 case CPU_DOWN_PREPARE: 1527 flags = PMC_RELEASE; 1528 smp_call_function_single(cpu, setup_pmc_cpu, &flags, 1); 1529 break; 1530 default: 1531 break; 1532 } 1533 1534 return NOTIFY_OK; 1535 } 1536 1537 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp) 1538 { 1539 if (!cpum_sf_avail()) 1540 return -ENODEV; 1541 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); 1542 } 1543 1544 static int param_set_sfb_size(const char *val, const struct kernel_param *kp) 1545 { 1546 int rc; 1547 unsigned long min, max; 1548 1549 if (!cpum_sf_avail()) 1550 return -ENODEV; 1551 if (!val || !strlen(val)) 1552 return -EINVAL; 1553 1554 /* Valid parameter values: "min,max" or "max" */ 1555 min = CPUM_SF_MIN_SDB; 1556 max = CPUM_SF_MAX_SDB; 1557 if (strchr(val, ',')) 1558 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL; 1559 else 1560 rc = kstrtoul(val, 10, &max); 1561 1562 if (min < 2 || min >= max || max > get_num_physpages()) 1563 rc = -EINVAL; 1564 if (rc) 1565 return rc; 1566 1567 sfb_set_limits(min, max); 1568 pr_info("The sampling buffer limits have changed to: " 1569 "min=%lu max=%lu (diag=x%lu)\n", 1570 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR); 1571 return 0; 1572 } 1573 1574 #define param_check_sfb_size(name, p) __param_check(name, p, void) 1575 static const struct kernel_param_ops param_ops_sfb_size = { 1576 .set = param_set_sfb_size, 1577 .get = param_get_sfb_size, 1578 }; 1579 1580 #define RS_INIT_FAILURE_QSI 0x0001 1581 #define RS_INIT_FAILURE_BSDES 0x0002 1582 #define RS_INIT_FAILURE_ALRT 0x0003 1583 #define RS_INIT_FAILURE_PERF 0x0004 1584 static void __init pr_cpumsf_err(unsigned int reason) 1585 { 1586 pr_err("Sampling facility support for perf is not available: " 1587 "reason=%04x\n", reason); 1588 } 1589 1590 static int __init init_cpum_sampling_pmu(void) 1591 { 1592 struct hws_qsi_info_block si; 1593 int err; 1594 1595 if (!cpum_sf_avail()) 1596 return -ENODEV; 1597 1598 memset(&si, 0, sizeof(si)); 1599 if (qsi(&si)) { 1600 pr_cpumsf_err(RS_INIT_FAILURE_QSI); 1601 return -ENODEV; 1602 } 1603 1604 if (si.bsdes != sizeof(struct hws_basic_entry)) { 1605 pr_cpumsf_err(RS_INIT_FAILURE_BSDES); 1606 return -EINVAL; 1607 } 1608 1609 if (si.ad) { 1610 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); 1611 cpumsf_pmu_events_attr[1] = 1612 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG); 1613 } 1614 1615 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80); 1616 if (!sfdbg) 1617 pr_err("Registering for s390dbf failed\n"); 1618 debug_register_view(sfdbg, &debug_sprintf_view); 1619 1620 err = register_external_irq(EXT_IRQ_MEASURE_ALERT, 1621 cpumf_measurement_alert); 1622 if (err) { 1623 pr_cpumsf_err(RS_INIT_FAILURE_ALRT); 1624 goto out; 1625 } 1626 1627 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW); 1628 if (err) { 1629 pr_cpumsf_err(RS_INIT_FAILURE_PERF); 1630 unregister_external_irq(EXT_IRQ_MEASURE_ALERT, 1631 cpumf_measurement_alert); 1632 goto out; 1633 } 1634 perf_cpu_notifier(cpumf_pmu_notifier); 1635 out: 1636 return err; 1637 } 1638 arch_initcall(init_cpum_sampling_pmu); 1639 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0640); 1640