1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance event support for the System z CPU-measurement Sampling Facility 4 * 5 * Copyright IBM Corp. 2013, 2018 6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> 7 */ 8 #define KMSG_COMPONENT "cpum_sf" 9 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/perf_event.h> 14 #include <linux/percpu.h> 15 #include <linux/pid.h> 16 #include <linux/notifier.h> 17 #include <linux/export.h> 18 #include <linux/slab.h> 19 #include <linux/mm.h> 20 #include <linux/moduleparam.h> 21 #include <asm/cpu_mf.h> 22 #include <asm/irq.h> 23 #include <asm/debug.h> 24 #include <asm/timex.h> 25 #include <linux/io.h> 26 27 /* Perf PMU definitions for the sampling facility */ 28 #define PERF_CPUM_SF_MAX_CTR 2 29 #define PERF_EVENT_CPUM_SF 0xB0000UL /* Event: Basic-sampling */ 30 #define PERF_EVENT_CPUM_SF_DIAG 0xBD000UL /* Event: Combined-sampling */ 31 #define PERF_CPUM_SF_BASIC_MODE 0x0001 /* Basic-sampling flag */ 32 #define PERF_CPUM_SF_DIAG_MODE 0x0002 /* Diagnostic-sampling flag */ 33 #define PERF_CPUM_SF_FREQ_MODE 0x0008 /* Sampling with frequency */ 34 35 #define OVERFLOW_REG(hwc) ((hwc)->extra_reg.config) 36 #define SFB_ALLOC_REG(hwc) ((hwc)->extra_reg.alloc) 37 #define TEAR_REG(hwc) ((hwc)->last_tag) 38 #define SAMPL_RATE(hwc) ((hwc)->event_base) 39 #define SAMPL_FLAGS(hwc) ((hwc)->config_base) 40 #define SAMPL_DIAG_MODE(hwc) (SAMPL_FLAGS(hwc) & PERF_CPUM_SF_DIAG_MODE) 41 #define SAMPL_FREQ_MODE(hwc) (SAMPL_FLAGS(hwc) & PERF_CPUM_SF_FREQ_MODE) 42 43 /* Minimum number of sample-data-block-tables: 44 * At least one table is required for the sampling buffer structure. 45 * A single table contains up to 511 pointers to sample-data-blocks. 46 */ 47 #define CPUM_SF_MIN_SDBT 1 48 49 /* Number of sample-data-blocks per sample-data-block-table (SDBT): 50 * A table contains SDB pointers (8 bytes) and one table-link entry 51 * that points to the origin of the next SDBT. 52 */ 53 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8) 54 55 /* Maximum page offset for an SDBT table-link entry: 56 * If this page offset is reached, a table-link entry to the next SDBT 57 * must be added. 58 */ 59 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8) 60 static inline int require_table_link(const void *sdbt) 61 { 62 return ((unsigned long)sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET; 63 } 64 65 /* Minimum and maximum sampling buffer sizes: 66 * 67 * This number represents the maximum size of the sampling buffer taking 68 * the number of sample-data-block-tables into account. Note that these 69 * numbers apply to the basic-sampling function only. 70 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if 71 * the diagnostic-sampling function is active. 72 * 73 * Sampling buffer size Buffer characteristics 74 * --------------------------------------------------- 75 * 64KB == 16 pages (4KB per page) 76 * 1 page for SDB-tables 77 * 15 pages for SDBs 78 * 79 * 32MB == 8192 pages (4KB per page) 80 * 16 pages for SDB-tables 81 * 8176 pages for SDBs 82 */ 83 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15; 84 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176; 85 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1; 86 87 struct sf_buffer { 88 unsigned long *sdbt; /* Sample-data-block-table origin */ 89 /* buffer characteristics (required for buffer increments) */ 90 unsigned long num_sdb; /* Number of sample-data-blocks */ 91 unsigned long num_sdbt; /* Number of sample-data-block-tables */ 92 unsigned long *tail; /* last sample-data-block-table */ 93 }; 94 95 struct aux_buffer { 96 struct sf_buffer sfb; 97 unsigned long head; /* index of SDB of buffer head */ 98 unsigned long alert_mark; /* index of SDB of alert request position */ 99 unsigned long empty_mark; /* mark of SDB not marked full */ 100 unsigned long *sdb_index; /* SDB address for fast lookup */ 101 unsigned long *sdbt_index; /* SDBT address for fast lookup */ 102 }; 103 104 struct cpu_hw_sf { 105 /* CPU-measurement sampling information block */ 106 struct hws_qsi_info_block qsi; 107 /* CPU-measurement sampling control block */ 108 struct hws_lsctl_request_block lsctl; 109 struct sf_buffer sfb; /* Sampling buffer */ 110 unsigned int flags; /* Status flags */ 111 struct perf_event *event; /* Scheduled perf event */ 112 struct perf_output_handle handle; /* AUX buffer output handle */ 113 }; 114 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf); 115 116 /* Debug feature */ 117 static debug_info_t *sfdbg; 118 119 /* Sampling control helper functions */ 120 static inline unsigned long freq_to_sample_rate(struct hws_qsi_info_block *qsi, 121 unsigned long freq) 122 { 123 return (USEC_PER_SEC / freq) * qsi->cpu_speed; 124 } 125 126 static inline unsigned long sample_rate_to_freq(struct hws_qsi_info_block *qsi, 127 unsigned long rate) 128 { 129 return USEC_PER_SEC * qsi->cpu_speed / rate; 130 } 131 132 /* Return pointer to trailer entry of an sample data block */ 133 static inline struct hws_trailer_entry *trailer_entry_ptr(unsigned long v) 134 { 135 void *ret; 136 137 ret = (void *)v; 138 ret += PAGE_SIZE; 139 ret -= sizeof(struct hws_trailer_entry); 140 141 return ret; 142 } 143 144 /* 145 * Return true if the entry in the sample data block table (sdbt) 146 * is a link to the next sdbt 147 */ 148 static inline int is_link_entry(unsigned long *s) 149 { 150 return *s & 0x1UL ? 1 : 0; 151 } 152 153 /* Return pointer to the linked sdbt */ 154 static inline unsigned long *get_next_sdbt(unsigned long *s) 155 { 156 return phys_to_virt(*s & ~0x1UL); 157 } 158 159 /* 160 * sf_disable() - Switch off sampling facility 161 */ 162 static void sf_disable(void) 163 { 164 struct hws_lsctl_request_block sreq; 165 166 memset(&sreq, 0, sizeof(sreq)); 167 lsctl(&sreq); 168 } 169 170 /* 171 * sf_buffer_available() - Check for an allocated sampling buffer 172 */ 173 static int sf_buffer_available(struct cpu_hw_sf *cpuhw) 174 { 175 return !!cpuhw->sfb.sdbt; 176 } 177 178 /* 179 * deallocate sampling facility buffer 180 */ 181 static void free_sampling_buffer(struct sf_buffer *sfb) 182 { 183 unsigned long *sdbt, *curr, *head; 184 185 sdbt = sfb->sdbt; 186 if (!sdbt) 187 return; 188 sfb->sdbt = NULL; 189 /* Free the SDBT after all SDBs are processed... */ 190 head = sdbt; 191 curr = sdbt; 192 do { 193 if (is_link_entry(curr)) { 194 /* Process table-link entries */ 195 curr = get_next_sdbt(curr); 196 free_page((unsigned long)sdbt); 197 sdbt = curr; 198 } else { 199 /* Process SDB pointer */ 200 free_page((unsigned long)phys_to_virt(*curr)); 201 curr++; 202 } 203 } while (curr != head); 204 memset(sfb, 0, sizeof(*sfb)); 205 } 206 207 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags) 208 { 209 struct hws_trailer_entry *te; 210 unsigned long sdb; 211 212 /* Allocate and initialize sample-data-block */ 213 sdb = get_zeroed_page(gfp_flags); 214 if (!sdb) 215 return -ENOMEM; 216 te = trailer_entry_ptr(sdb); 217 te->header.a = 1; 218 219 /* Link SDB into the sample-data-block-table */ 220 *sdbt = virt_to_phys((void *)sdb); 221 222 return 0; 223 } 224 225 /* 226 * realloc_sampling_buffer() - extend sampler memory 227 * 228 * Allocates new sample-data-blocks and adds them to the specified sampling 229 * buffer memory. 230 * 231 * Important: This modifies the sampling buffer and must be called when the 232 * sampling facility is disabled. 233 * 234 * Returns zero on success, non-zero otherwise. 235 */ 236 static int realloc_sampling_buffer(struct sf_buffer *sfb, 237 unsigned long num_sdb, gfp_t gfp_flags) 238 { 239 int i, rc; 240 unsigned long *new, *tail, *tail_prev = NULL; 241 242 if (!sfb->sdbt || !sfb->tail) 243 return -EINVAL; 244 245 if (!is_link_entry(sfb->tail)) 246 return -EINVAL; 247 248 /* Append to the existing sampling buffer, overwriting the table-link 249 * register. 250 * The tail variables always points to the "tail" (last and table-link) 251 * entry in an SDB-table. 252 */ 253 tail = sfb->tail; 254 255 /* Do a sanity check whether the table-link entry points to 256 * the sampling buffer origin. 257 */ 258 if (sfb->sdbt != get_next_sdbt(tail)) { 259 debug_sprintf_event(sfdbg, 3, "%s buffer not linked origin %#lx tail %#lx\n", 260 __func__, (unsigned long)sfb->sdbt, 261 (unsigned long)tail); 262 return -EINVAL; 263 } 264 265 /* Allocate remaining SDBs */ 266 rc = 0; 267 for (i = 0; i < num_sdb; i++) { 268 /* Allocate a new SDB-table if it is full. */ 269 if (require_table_link(tail)) { 270 new = (unsigned long *)get_zeroed_page(gfp_flags); 271 if (!new) { 272 rc = -ENOMEM; 273 break; 274 } 275 sfb->num_sdbt++; 276 /* Link current page to tail of chain */ 277 *tail = virt_to_phys((void *)new) + 1; 278 tail_prev = tail; 279 tail = new; 280 } 281 282 /* Allocate a new sample-data-block. 283 * If there is not enough memory, stop the realloc process 284 * and simply use what was allocated. If this is a temporary 285 * issue, a new realloc call (if required) might succeed. 286 */ 287 rc = alloc_sample_data_block(tail, gfp_flags); 288 if (rc) { 289 /* Undo last SDBT. An SDBT with no SDB at its first 290 * entry but with an SDBT entry instead can not be 291 * handled by the interrupt handler code. 292 * Avoid this situation. 293 */ 294 if (tail_prev) { 295 sfb->num_sdbt--; 296 free_page((unsigned long)new); 297 tail = tail_prev; 298 } 299 break; 300 } 301 sfb->num_sdb++; 302 tail++; 303 tail_prev = new = NULL; /* Allocated at least one SBD */ 304 } 305 306 /* Link sampling buffer to its origin */ 307 *tail = virt_to_phys(sfb->sdbt) + 1; 308 sfb->tail = tail; 309 310 return rc; 311 } 312 313 /* 314 * allocate_sampling_buffer() - allocate sampler memory 315 * 316 * Allocates and initializes a sampling buffer structure using the 317 * specified number of sample-data-blocks (SDB). For each allocation, 318 * a 4K page is used. The number of sample-data-block-tables (SDBT) 319 * are calculated from SDBs. 320 * Also set the ALERT_REQ mask in each SDBs trailer. 321 * 322 * Returns zero on success, non-zero otherwise. 323 */ 324 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb) 325 { 326 int rc; 327 328 if (sfb->sdbt) 329 return -EINVAL; 330 331 /* Allocate the sample-data-block-table origin */ 332 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL); 333 if (!sfb->sdbt) 334 return -ENOMEM; 335 sfb->num_sdb = 0; 336 sfb->num_sdbt = 1; 337 338 /* Link the table origin to point to itself to prepare for 339 * realloc_sampling_buffer() invocation. 340 */ 341 sfb->tail = sfb->sdbt; 342 *sfb->tail = virt_to_phys((void *)sfb->sdbt) + 1; 343 344 /* Allocate requested number of sample-data-blocks */ 345 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL); 346 if (rc) 347 free_sampling_buffer(sfb); 348 return rc; 349 } 350 351 static void sfb_set_limits(unsigned long min, unsigned long max) 352 { 353 struct hws_qsi_info_block si; 354 355 CPUM_SF_MIN_SDB = min; 356 CPUM_SF_MAX_SDB = max; 357 358 memset(&si, 0, sizeof(si)); 359 qsi(&si); 360 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes); 361 } 362 363 static unsigned long sfb_max_limit(struct hw_perf_event *hwc) 364 { 365 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR 366 : CPUM_SF_MAX_SDB; 367 } 368 369 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb, 370 struct hw_perf_event *hwc) 371 { 372 if (!sfb->sdbt) 373 return SFB_ALLOC_REG(hwc); 374 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb) 375 return SFB_ALLOC_REG(hwc) - sfb->num_sdb; 376 return 0; 377 } 378 379 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc) 380 { 381 /* Limit the number of SDBs to not exceed the maximum */ 382 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc)); 383 if (num) 384 SFB_ALLOC_REG(hwc) += num; 385 } 386 387 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc) 388 { 389 SFB_ALLOC_REG(hwc) = 0; 390 sfb_account_allocs(num, hwc); 391 } 392 393 static void deallocate_buffers(struct cpu_hw_sf *cpuhw) 394 { 395 if (sf_buffer_available(cpuhw)) 396 free_sampling_buffer(&cpuhw->sfb); 397 } 398 399 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc) 400 { 401 unsigned long n_sdb, freq; 402 403 /* Calculate sampling buffers using 4K pages 404 * 405 * 1. The sampling size is 32 bytes for basic sampling. This size 406 * is the same for all machine types. Diagnostic 407 * sampling uses auxlilary data buffer setup which provides the 408 * memory for SDBs using linux common code auxiliary trace 409 * setup. 410 * 411 * 2. Function alloc_sampling_buffer() sets the Alert Request 412 * Control indicator to trigger a measurement-alert to harvest 413 * sample-data-blocks (SDB). This is done per SDB. This 414 * measurement alert interrupt fires quick enough to handle 415 * one SDB, on very high frequency and work loads there might 416 * be 2 to 3 SBDs available for sample processing. 417 * Currently there is no need for setup alert request on every 418 * n-th page. This is counterproductive as one IRQ triggers 419 * a very high number of samples to be processed at one IRQ. 420 * 421 * 3. Use the sampling frequency as input. 422 * Compute the number of SDBs and ensure a minimum 423 * of CPUM_SF_MIN_SDB. Depending on frequency add some more 424 * SDBs to handle a higher sampling rate. 425 * Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples 426 * (one SDB) for every 10000 HZ frequency increment. 427 * 428 * 4. Compute the number of sample-data-block-tables (SDBT) and 429 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up 430 * to 511 SDBs). 431 */ 432 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)); 433 n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000); 434 435 /* If there is already a sampling buffer allocated, it is very likely 436 * that the sampling facility is enabled too. If the event to be 437 * initialized requires a greater sampling buffer, the allocation must 438 * be postponed. Changing the sampling buffer requires the sampling 439 * facility to be in the disabled state. So, account the number of 440 * required SDBs and let cpumsf_pmu_enable() resize the buffer just 441 * before the event is started. 442 */ 443 sfb_init_allocs(n_sdb, hwc); 444 if (sf_buffer_available(cpuhw)) 445 return 0; 446 447 return alloc_sampling_buffer(&cpuhw->sfb, 448 sfb_pending_allocs(&cpuhw->sfb, hwc)); 449 } 450 451 static unsigned long min_percent(unsigned int percent, unsigned long base, 452 unsigned long min) 453 { 454 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100)); 455 } 456 457 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base) 458 { 459 /* Use a percentage-based approach to extend the sampling facility 460 * buffer. Accept up to 5% sample data loss. 461 * Vary the extents between 1% to 5% of the current number of 462 * sample-data-blocks. 463 */ 464 if (ratio <= 5) 465 return 0; 466 if (ratio <= 25) 467 return min_percent(1, base, 1); 468 if (ratio <= 50) 469 return min_percent(1, base, 1); 470 if (ratio <= 75) 471 return min_percent(2, base, 2); 472 if (ratio <= 100) 473 return min_percent(3, base, 3); 474 if (ratio <= 250) 475 return min_percent(4, base, 4); 476 477 return min_percent(5, base, 8); 478 } 479 480 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw, 481 struct hw_perf_event *hwc) 482 { 483 unsigned long ratio, num; 484 485 if (!OVERFLOW_REG(hwc)) 486 return; 487 488 /* The sample_overflow contains the average number of sample data 489 * that has been lost because sample-data-blocks were full. 490 * 491 * Calculate the total number of sample data entries that has been 492 * discarded. Then calculate the ratio of lost samples to total samples 493 * per second in percent. 494 */ 495 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb, 496 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc))); 497 498 /* Compute number of sample-data-blocks */ 499 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb); 500 if (num) 501 sfb_account_allocs(num, hwc); 502 503 OVERFLOW_REG(hwc) = 0; 504 } 505 506 /* extend_sampling_buffer() - Extend sampling buffer 507 * @sfb: Sampling buffer structure (for local CPU) 508 * @hwc: Perf event hardware structure 509 * 510 * Use this function to extend the sampling buffer based on the overflow counter 511 * and postponed allocation extents stored in the specified Perf event hardware. 512 * 513 * Important: This function disables the sampling facility in order to safely 514 * change the sampling buffer structure. Do not call this function 515 * when the PMU is active. 516 */ 517 static void extend_sampling_buffer(struct sf_buffer *sfb, 518 struct hw_perf_event *hwc) 519 { 520 unsigned long num; 521 522 num = sfb_pending_allocs(sfb, hwc); 523 if (!num) 524 return; 525 526 /* Disable the sampling facility to reset any states and also 527 * clear pending measurement alerts. 528 */ 529 sf_disable(); 530 531 /* Extend the sampling buffer. 532 * This memory allocation typically happens in an atomic context when 533 * called by perf. Because this is a reallocation, it is fine if the 534 * new SDB-request cannot be satisfied immediately. 535 */ 536 realloc_sampling_buffer(sfb, num, GFP_ATOMIC); 537 } 538 539 /* Number of perf events counting hardware events */ 540 static refcount_t num_events; 541 /* Used to avoid races in calling reserve/release_cpumf_hardware */ 542 static DEFINE_MUTEX(pmc_reserve_mutex); 543 544 #define PMC_INIT 0 545 #define PMC_RELEASE 1 546 static void setup_pmc_cpu(void *flags) 547 { 548 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 549 550 sf_disable(); 551 switch (*((int *)flags)) { 552 case PMC_INIT: 553 memset(cpuhw, 0, sizeof(*cpuhw)); 554 qsi(&cpuhw->qsi); 555 cpuhw->flags |= PMU_F_RESERVED; 556 break; 557 case PMC_RELEASE: 558 cpuhw->flags &= ~PMU_F_RESERVED; 559 deallocate_buffers(cpuhw); 560 break; 561 } 562 } 563 564 static void release_pmc_hardware(void) 565 { 566 int flags = PMC_RELEASE; 567 568 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT); 569 on_each_cpu(setup_pmc_cpu, &flags, 1); 570 } 571 572 static void reserve_pmc_hardware(void) 573 { 574 int flags = PMC_INIT; 575 576 on_each_cpu(setup_pmc_cpu, &flags, 1); 577 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT); 578 } 579 580 static void hw_perf_event_destroy(struct perf_event *event) 581 { 582 /* Release PMC if this is the last perf event */ 583 if (refcount_dec_and_mutex_lock(&num_events, &pmc_reserve_mutex)) { 584 release_pmc_hardware(); 585 mutex_unlock(&pmc_reserve_mutex); 586 } 587 } 588 589 static void hw_init_period(struct hw_perf_event *hwc, u64 period) 590 { 591 hwc->sample_period = period; 592 hwc->last_period = hwc->sample_period; 593 local64_set(&hwc->period_left, hwc->sample_period); 594 } 595 596 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si, 597 unsigned long rate) 598 { 599 return clamp_t(unsigned long, rate, 600 si->min_sampl_rate, si->max_sampl_rate); 601 } 602 603 static u32 cpumsf_pid_type(struct perf_event *event, 604 u32 pid, enum pid_type type) 605 { 606 struct task_struct *tsk; 607 608 /* Idle process */ 609 if (!pid) 610 goto out; 611 612 tsk = find_task_by_pid_ns(pid, &init_pid_ns); 613 pid = -1; 614 if (tsk) { 615 /* 616 * Only top level events contain the pid namespace in which 617 * they are created. 618 */ 619 if (event->parent) 620 event = event->parent; 621 pid = __task_pid_nr_ns(tsk, type, event->ns); 622 /* 623 * See also 1d953111b648 624 * "perf/core: Don't report zero PIDs for exiting tasks". 625 */ 626 if (!pid && !pid_alive(tsk)) 627 pid = -1; 628 } 629 out: 630 return pid; 631 } 632 633 static void cpumsf_output_event_pid(struct perf_event *event, 634 struct perf_sample_data *data, 635 struct pt_regs *regs) 636 { 637 u32 pid; 638 struct perf_event_header header; 639 struct perf_output_handle handle; 640 641 /* 642 * Obtain the PID from the basic-sampling data entry and 643 * correct the data->tid_entry.pid value. 644 */ 645 pid = data->tid_entry.pid; 646 647 /* Protect callchain buffers, tasks */ 648 rcu_read_lock(); 649 650 perf_prepare_sample(data, event, regs); 651 perf_prepare_header(&header, data, event, regs); 652 if (perf_output_begin(&handle, data, event, header.size)) 653 goto out; 654 655 /* Update the process ID (see also kernel/events/core.c) */ 656 data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID); 657 data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID); 658 659 perf_output_sample(&handle, &header, data, event); 660 perf_output_end(&handle); 661 out: 662 rcu_read_unlock(); 663 } 664 665 static unsigned long getrate(bool freq, unsigned long sample, 666 struct hws_qsi_info_block *si) 667 { 668 unsigned long rate; 669 670 if (freq) { 671 rate = freq_to_sample_rate(si, sample); 672 rate = hw_limit_rate(si, rate); 673 } else { 674 /* The min/max sampling rates specifies the valid range 675 * of sample periods. If the specified sample period is 676 * out of range, limit the period to the range boundary. 677 */ 678 rate = hw_limit_rate(si, sample); 679 680 /* The perf core maintains a maximum sample rate that is 681 * configurable through the sysctl interface. Ensure the 682 * sampling rate does not exceed this value. This also helps 683 * to avoid throttling when pushing samples with 684 * perf_event_overflow(). 685 */ 686 if (sample_rate_to_freq(si, rate) > 687 sysctl_perf_event_sample_rate) { 688 rate = 0; 689 } 690 } 691 return rate; 692 } 693 694 /* The sampling information (si) contains information about the 695 * min/max sampling intervals and the CPU speed. So calculate the 696 * correct sampling interval and avoid the whole period adjust 697 * feedback loop. 698 * 699 * Since the CPU Measurement sampling facility can not handle frequency 700 * calculate the sampling interval when frequency is specified using 701 * this formula: 702 * interval := cpu_speed * 1000000 / sample_freq 703 * 704 * Returns errno on bad input and zero on success with parameter interval 705 * set to the correct sampling rate. 706 * 707 * Note: This function turns off freq bit to avoid calling function 708 * perf_adjust_period(). This causes frequency adjustment in the common 709 * code part which causes tremendous variations in the counter values. 710 */ 711 static int __hw_perf_event_init_rate(struct perf_event *event, 712 struct hws_qsi_info_block *si) 713 { 714 struct perf_event_attr *attr = &event->attr; 715 struct hw_perf_event *hwc = &event->hw; 716 unsigned long rate; 717 718 if (attr->freq) { 719 if (!attr->sample_freq) 720 return -EINVAL; 721 rate = getrate(attr->freq, attr->sample_freq, si); 722 attr->freq = 0; /* Don't call perf_adjust_period() */ 723 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE; 724 } else { 725 rate = getrate(attr->freq, attr->sample_period, si); 726 if (!rate) 727 return -EINVAL; 728 } 729 attr->sample_period = rate; 730 SAMPL_RATE(hwc) = rate; 731 hw_init_period(hwc, SAMPL_RATE(hwc)); 732 return 0; 733 } 734 735 static int __hw_perf_event_init(struct perf_event *event) 736 { 737 struct cpu_hw_sf *cpuhw; 738 struct hws_qsi_info_block si; 739 struct perf_event_attr *attr = &event->attr; 740 struct hw_perf_event *hwc = &event->hw; 741 int cpu, err = 0; 742 743 /* Reserve CPU-measurement sampling facility */ 744 mutex_lock(&pmc_reserve_mutex); 745 if (!refcount_inc_not_zero(&num_events)) { 746 reserve_pmc_hardware(); 747 refcount_set(&num_events, 1); 748 } 749 event->destroy = hw_perf_event_destroy; 750 751 /* Access per-CPU sampling information (query sampling info) */ 752 /* 753 * The event->cpu value can be -1 to count on every CPU, for example, 754 * when attaching to a task. If this is specified, use the query 755 * sampling info from the current CPU, otherwise use event->cpu to 756 * retrieve the per-CPU information. 757 * Later, cpuhw indicates whether to allocate sampling buffers for a 758 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL). 759 */ 760 memset(&si, 0, sizeof(si)); 761 cpuhw = NULL; 762 if (event->cpu == -1) { 763 qsi(&si); 764 } else { 765 /* Event is pinned to a particular CPU, retrieve the per-CPU 766 * sampling structure for accessing the CPU-specific QSI. 767 */ 768 cpuhw = &per_cpu(cpu_hw_sf, event->cpu); 769 si = cpuhw->qsi; 770 } 771 772 /* Check sampling facility authorization and, if not authorized, 773 * fall back to other PMUs. It is safe to check any CPU because 774 * the authorization is identical for all configured CPUs. 775 */ 776 if (!si.as) { 777 err = -ENOENT; 778 goto out; 779 } 780 781 if (si.ribm & CPU_MF_SF_RIBM_NOTAV) { 782 pr_warn("CPU Measurement Facility sampling is temporarily not available\n"); 783 err = -EBUSY; 784 goto out; 785 } 786 787 /* Always enable basic sampling */ 788 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE; 789 790 /* Check if diagnostic sampling is requested. Deny if the required 791 * sampling authorization is missing. 792 */ 793 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) { 794 if (!si.ad) { 795 err = -EPERM; 796 goto out; 797 } 798 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE; 799 } 800 801 err = __hw_perf_event_init_rate(event, &si); 802 if (err) 803 goto out; 804 805 /* Use AUX buffer. No need to allocate it by ourself */ 806 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) 807 goto out; 808 809 /* Allocate the per-CPU sampling buffer using the CPU information 810 * from the event. If the event is not pinned to a particular 811 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling 812 * buffers for each online CPU. 813 */ 814 if (cpuhw) 815 /* Event is pinned to a particular CPU */ 816 err = allocate_buffers(cpuhw, hwc); 817 else { 818 /* Event is not pinned, allocate sampling buffer on 819 * each online CPU 820 */ 821 for_each_online_cpu(cpu) { 822 cpuhw = &per_cpu(cpu_hw_sf, cpu); 823 err = allocate_buffers(cpuhw, hwc); 824 if (err) 825 break; 826 } 827 } 828 829 /* If PID/TID sampling is active, replace the default overflow 830 * handler to extract and resolve the PIDs from the basic-sampling 831 * data entries. 832 */ 833 if (event->attr.sample_type & PERF_SAMPLE_TID) 834 if (is_default_overflow_handler(event)) 835 event->overflow_handler = cpumsf_output_event_pid; 836 out: 837 mutex_unlock(&pmc_reserve_mutex); 838 return err; 839 } 840 841 static bool is_callchain_event(struct perf_event *event) 842 { 843 u64 sample_type = event->attr.sample_type; 844 845 return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER | 846 PERF_SAMPLE_STACK_USER); 847 } 848 849 static int cpumsf_pmu_event_init(struct perf_event *event) 850 { 851 int err; 852 853 /* No support for taken branch sampling */ 854 /* No support for callchain, stacks and registers */ 855 if (has_branch_stack(event) || is_callchain_event(event)) 856 return -EOPNOTSUPP; 857 858 switch (event->attr.type) { 859 case PERF_TYPE_RAW: 860 if ((event->attr.config != PERF_EVENT_CPUM_SF) && 861 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG)) 862 return -ENOENT; 863 break; 864 case PERF_TYPE_HARDWARE: 865 /* Support sampling of CPU cycles in addition to the 866 * counter facility. However, the counter facility 867 * is more precise and, hence, restrict this PMU to 868 * sampling events only. 869 */ 870 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES) 871 return -ENOENT; 872 if (!is_sampling_event(event)) 873 return -ENOENT; 874 break; 875 default: 876 return -ENOENT; 877 } 878 879 /* Force reset of idle/hv excludes regardless of what the 880 * user requested. 881 */ 882 if (event->attr.exclude_hv) 883 event->attr.exclude_hv = 0; 884 if (event->attr.exclude_idle) 885 event->attr.exclude_idle = 0; 886 887 err = __hw_perf_event_init(event); 888 if (unlikely(err)) 889 if (event->destroy) 890 event->destroy(event); 891 return err; 892 } 893 894 static void cpumsf_pmu_enable(struct pmu *pmu) 895 { 896 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 897 struct hw_perf_event *hwc; 898 int err; 899 900 /* 901 * Event must be 902 * - added/started on this CPU (PMU_F_IN_USE set) 903 * - and CPU must be available (PMU_F_RESERVED set) 904 * - and not already enabled (PMU_F_ENABLED not set) 905 * - and not in error condition (PMU_F_ERR_MASK not set) 906 */ 907 if (cpuhw->flags != (PMU_F_IN_USE | PMU_F_RESERVED)) 908 return; 909 910 /* Check whether to extent the sampling buffer. 911 * 912 * Two conditions trigger an increase of the sampling buffer for a 913 * perf event: 914 * 1. Postponed buffer allocations from the event initialization. 915 * 2. Sampling overflows that contribute to pending allocations. 916 * 917 * Note that the extend_sampling_buffer() function disables the sampling 918 * facility, but it can be fully re-enabled using sampling controls that 919 * have been saved in cpumsf_pmu_disable(). 920 */ 921 hwc = &cpuhw->event->hw; 922 if (!(SAMPL_DIAG_MODE(hwc))) { 923 /* 924 * Account number of overflow-designated buffer extents 925 */ 926 sfb_account_overflows(cpuhw, hwc); 927 extend_sampling_buffer(&cpuhw->sfb, hwc); 928 } 929 /* Rate may be adjusted with ioctl() */ 930 cpuhw->lsctl.interval = SAMPL_RATE(hwc); 931 932 /* (Re)enable the PMU and sampling facility */ 933 err = lsctl(&cpuhw->lsctl); 934 if (err) { 935 pr_err("Loading sampling controls failed: op 1 err %i\n", err); 936 return; 937 } 938 939 /* Load current program parameter */ 940 lpp(&get_lowcore()->lpp); 941 cpuhw->flags |= PMU_F_ENABLED; 942 } 943 944 static void cpumsf_pmu_disable(struct pmu *pmu) 945 { 946 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 947 struct hws_lsctl_request_block inactive; 948 struct hws_qsi_info_block si; 949 int err; 950 951 if (!(cpuhw->flags & PMU_F_ENABLED)) 952 return; 953 954 if (cpuhw->flags & PMU_F_ERR_MASK) 955 return; 956 957 /* Switch off sampling activation control */ 958 inactive = cpuhw->lsctl; 959 inactive.cs = 0; 960 inactive.cd = 0; 961 962 err = lsctl(&inactive); 963 if (err) { 964 pr_err("Loading sampling controls failed: op 2 err %i\n", err); 965 return; 966 } 967 968 /* 969 * Save state of TEAR and DEAR register contents. 970 * TEAR/DEAR values are valid only if the sampling facility is 971 * enabled. Note that cpumsf_pmu_disable() might be called even 972 * for a disabled sampling facility because cpumsf_pmu_enable() 973 * controls the enable/disable state. 974 */ 975 qsi(&si); 976 if (si.es) { 977 cpuhw->lsctl.tear = si.tear; 978 cpuhw->lsctl.dear = si.dear; 979 } 980 981 cpuhw->flags &= ~PMU_F_ENABLED; 982 } 983 984 /* perf_exclude_event() - Filter event 985 * @event: The perf event 986 * @regs: pt_regs structure 987 * @sde_regs: Sample-data-entry (sde) regs structure 988 * 989 * Filter perf events according to their exclude specification. 990 * 991 * Return non-zero if the event shall be excluded. 992 */ 993 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs, 994 struct perf_sf_sde_regs *sde_regs) 995 { 996 if (event->attr.exclude_user && user_mode(regs)) 997 return 1; 998 if (event->attr.exclude_kernel && !user_mode(regs)) 999 return 1; 1000 if (event->attr.exclude_guest && sde_regs->in_guest) 1001 return 1; 1002 if (event->attr.exclude_host && !sde_regs->in_guest) 1003 return 1; 1004 return 0; 1005 } 1006 1007 /* perf_push_sample() - Push samples to perf 1008 * @event: The perf event 1009 * @sample: Hardware sample data 1010 * 1011 * Use the hardware sample data to create perf event sample. The sample 1012 * is the pushed to the event subsystem and the function checks for 1013 * possible event overflows. If an event overflow occurs, the PMU is 1014 * stopped. 1015 * 1016 * Return non-zero if an event overflow occurred. 1017 */ 1018 static int perf_push_sample(struct perf_event *event, 1019 struct hws_basic_entry *basic) 1020 { 1021 int overflow; 1022 struct pt_regs regs; 1023 struct perf_sf_sde_regs *sde_regs; 1024 struct perf_sample_data data; 1025 1026 /* Setup perf sample */ 1027 perf_sample_data_init(&data, 0, event->hw.last_period); 1028 1029 /* Setup pt_regs to look like an CPU-measurement external interrupt 1030 * using the Program Request Alert code. The regs.int_parm_long 1031 * field which is unused contains additional sample-data-entry related 1032 * indicators. 1033 */ 1034 memset(®s, 0, sizeof(regs)); 1035 regs.int_code = 0x1407; 1036 regs.int_parm = CPU_MF_INT_SF_PRA; 1037 sde_regs = (struct perf_sf_sde_regs *) ®s.int_parm_long; 1038 1039 psw_bits(regs.psw).ia = basic->ia; 1040 psw_bits(regs.psw).dat = basic->T; 1041 psw_bits(regs.psw).wait = basic->W; 1042 psw_bits(regs.psw).pstate = basic->P; 1043 psw_bits(regs.psw).as = basic->AS; 1044 1045 /* 1046 * Use the hardware provided configuration level to decide if the 1047 * sample belongs to a guest or host. If that is not available, 1048 * fall back to the following heuristics: 1049 * A non-zero guest program parameter always indicates a guest 1050 * sample. Some early samples or samples from guests without 1051 * lpp usage would be misaccounted to the host. We use the asn 1052 * value as an addon heuristic to detect most of these guest samples. 1053 * If the value differs from 0xffff (the host value), we assume to 1054 * be a KVM guest. 1055 */ 1056 switch (basic->CL) { 1057 case 1: /* logical partition */ 1058 sde_regs->in_guest = 0; 1059 break; 1060 case 2: /* virtual machine */ 1061 sde_regs->in_guest = 1; 1062 break; 1063 default: /* old machine, use heuristics */ 1064 if (basic->gpp || basic->prim_asn != 0xffff) 1065 sde_regs->in_guest = 1; 1066 break; 1067 } 1068 1069 /* 1070 * Store the PID value from the sample-data-entry to be 1071 * processed and resolved by cpumsf_output_event_pid(). 1072 */ 1073 data.tid_entry.pid = basic->hpp & LPP_PID_MASK; 1074 1075 overflow = 0; 1076 if (perf_exclude_event(event, ®s, sde_regs)) 1077 goto out; 1078 if (perf_event_overflow(event, &data, ®s)) { 1079 overflow = 1; 1080 event->pmu->stop(event, 0); 1081 } 1082 perf_event_update_userpage(event); 1083 out: 1084 return overflow; 1085 } 1086 1087 static void perf_event_count_update(struct perf_event *event, u64 count) 1088 { 1089 local64_add(count, &event->count); 1090 } 1091 1092 /* hw_collect_samples() - Walk through a sample-data-block and collect samples 1093 * @event: The perf event 1094 * @sdbt: Sample-data-block table 1095 * @overflow: Event overflow counter 1096 * 1097 * Walks through a sample-data-block and collects sampling data entries that are 1098 * then pushed to the perf event subsystem. Depending on the sampling function, 1099 * there can be either basic-sampling or combined-sampling data entries. A 1100 * combined-sampling data entry consists of a basic- and a diagnostic-sampling 1101 * data entry. The sampling function is determined by the flags in the perf 1102 * event hardware structure. The function always works with a combined-sampling 1103 * data entry but ignores the the diagnostic portion if it is not available. 1104 * 1105 * Note that the implementation focuses on basic-sampling data entries and, if 1106 * such an entry is not valid, the entire combined-sampling data entry is 1107 * ignored. 1108 * 1109 * The overflow variables counts the number of samples that has been discarded 1110 * due to a perf event overflow. 1111 */ 1112 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt, 1113 unsigned long long *overflow) 1114 { 1115 struct hws_trailer_entry *te; 1116 struct hws_basic_entry *sample; 1117 1118 te = trailer_entry_ptr((unsigned long)sdbt); 1119 sample = (struct hws_basic_entry *)sdbt; 1120 while ((unsigned long *)sample < (unsigned long *)te) { 1121 /* Check for an empty sample */ 1122 if (!sample->def || sample->LS) 1123 break; 1124 1125 /* Update perf event period */ 1126 perf_event_count_update(event, SAMPL_RATE(&event->hw)); 1127 1128 /* Check whether sample is valid */ 1129 if (sample->def == 0x0001) { 1130 /* If an event overflow occurred, the PMU is stopped to 1131 * throttle event delivery. Remaining sample data is 1132 * discarded. 1133 */ 1134 if (!*overflow) { 1135 /* Check whether sample is consistent */ 1136 if (sample->I == 0 && sample->W == 0) { 1137 /* Deliver sample data to perf */ 1138 *overflow = perf_push_sample(event, 1139 sample); 1140 } 1141 } else 1142 /* Count discarded samples */ 1143 *overflow += 1; 1144 } else { 1145 /* Sample slot is not yet written or other record. 1146 * 1147 * This condition can occur if the buffer was reused 1148 * from a combined basic- and diagnostic-sampling. 1149 * If only basic-sampling is then active, entries are 1150 * written into the larger diagnostic entries. 1151 * This is typically the case for sample-data-blocks 1152 * that are not full. Stop processing if the first 1153 * invalid format was detected. 1154 */ 1155 if (!te->header.f) 1156 break; 1157 } 1158 1159 /* Reset sample slot and advance to next sample */ 1160 sample->def = 0; 1161 sample++; 1162 } 1163 } 1164 1165 /* hw_perf_event_update() - Process sampling buffer 1166 * @event: The perf event 1167 * @flush_all: Flag to also flush partially filled sample-data-blocks 1168 * 1169 * Processes the sampling buffer and create perf event samples. 1170 * The sampling buffer position are retrieved and saved in the TEAR_REG 1171 * register of the specified perf event. 1172 * 1173 * Only full sample-data-blocks are processed. Specify the flush_all flag 1174 * to also walk through partially filled sample-data-blocks. 1175 */ 1176 static void hw_perf_event_update(struct perf_event *event, int flush_all) 1177 { 1178 unsigned long long event_overflow, sampl_overflow, num_sdb; 1179 struct hw_perf_event *hwc = &event->hw; 1180 union hws_trailer_header prev, new; 1181 struct hws_trailer_entry *te; 1182 unsigned long *sdbt, sdb; 1183 int done; 1184 1185 /* 1186 * AUX buffer is used when in diagnostic sampling mode. 1187 * No perf events/samples are created. 1188 */ 1189 if (SAMPL_DIAG_MODE(hwc)) 1190 return; 1191 1192 sdbt = (unsigned long *)TEAR_REG(hwc); 1193 done = event_overflow = sampl_overflow = num_sdb = 0; 1194 while (!done) { 1195 /* Get the trailer entry of the sample-data-block */ 1196 sdb = (unsigned long)phys_to_virt(*sdbt); 1197 te = trailer_entry_ptr(sdb); 1198 1199 /* Leave loop if no more work to do (block full indicator) */ 1200 if (!te->header.f) { 1201 done = 1; 1202 if (!flush_all) 1203 break; 1204 } 1205 1206 /* Check the sample overflow count */ 1207 if (te->header.overflow) 1208 /* Account sample overflows and, if a particular limit 1209 * is reached, extend the sampling buffer. 1210 * For details, see sfb_account_overflows(). 1211 */ 1212 sampl_overflow += te->header.overflow; 1213 1214 /* Collect all samples from a single sample-data-block and 1215 * flag if an (perf) event overflow happened. If so, the PMU 1216 * is stopped and remaining samples will be discarded. 1217 */ 1218 hw_collect_samples(event, (unsigned long *)sdb, &event_overflow); 1219 num_sdb++; 1220 1221 /* Reset trailer (using compare-double-and-swap) */ 1222 prev.val = READ_ONCE_ALIGNED_128(te->header.val); 1223 do { 1224 new.val = prev.val; 1225 new.f = 0; 1226 new.a = 1; 1227 new.overflow = 0; 1228 } while (!try_cmpxchg128(&te->header.val, &prev.val, new.val)); 1229 1230 /* Advance to next sample-data-block */ 1231 sdbt++; 1232 if (is_link_entry(sdbt)) 1233 sdbt = get_next_sdbt(sdbt); 1234 1235 /* Update event hardware registers */ 1236 TEAR_REG(hwc) = (unsigned long)sdbt; 1237 1238 /* Stop processing sample-data if all samples of the current 1239 * sample-data-block were flushed even if it was not full. 1240 */ 1241 if (flush_all && done) 1242 break; 1243 } 1244 1245 /* Account sample overflows in the event hardware structure */ 1246 if (sampl_overflow) 1247 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) + 1248 sampl_overflow, 1 + num_sdb); 1249 1250 /* Perf_event_overflow() and perf_event_account_interrupt() limit 1251 * the interrupt rate to an upper limit. Roughly 1000 samples per 1252 * task tick. 1253 * Hitting this limit results in a large number 1254 * of throttled REF_REPORT_THROTTLE entries and the samples 1255 * are dropped. 1256 * Slightly increase the interval to avoid hitting this limit. 1257 */ 1258 if (event_overflow) 1259 SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10); 1260 } 1261 1262 static inline unsigned long aux_sdb_index(struct aux_buffer *aux, 1263 unsigned long i) 1264 { 1265 return i % aux->sfb.num_sdb; 1266 } 1267 1268 static inline unsigned long aux_sdb_num(unsigned long start, unsigned long end) 1269 { 1270 return end >= start ? end - start + 1 : 0; 1271 } 1272 1273 static inline unsigned long aux_sdb_num_alert(struct aux_buffer *aux) 1274 { 1275 return aux_sdb_num(aux->head, aux->alert_mark); 1276 } 1277 1278 static inline unsigned long aux_sdb_num_empty(struct aux_buffer *aux) 1279 { 1280 return aux_sdb_num(aux->head, aux->empty_mark); 1281 } 1282 1283 /* 1284 * Get trailer entry by index of SDB. 1285 */ 1286 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux, 1287 unsigned long index) 1288 { 1289 unsigned long sdb; 1290 1291 index = aux_sdb_index(aux, index); 1292 sdb = aux->sdb_index[index]; 1293 return trailer_entry_ptr(sdb); 1294 } 1295 1296 /* 1297 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu 1298 * disabled. Collect the full SDBs in AUX buffer which have not reached 1299 * the point of alert indicator. And ignore the SDBs which are not 1300 * full. 1301 * 1302 * 1. Scan SDBs to see how much data is there and consume them. 1303 * 2. Remove alert indicator in the buffer. 1304 */ 1305 static void aux_output_end(struct perf_output_handle *handle) 1306 { 1307 unsigned long i, range_scan, idx; 1308 struct aux_buffer *aux; 1309 struct hws_trailer_entry *te; 1310 1311 aux = perf_get_aux(handle); 1312 if (!aux) 1313 return; 1314 1315 range_scan = aux_sdb_num_alert(aux); 1316 for (i = 0, idx = aux->head; i < range_scan; i++, idx++) { 1317 te = aux_sdb_trailer(aux, idx); 1318 if (!te->header.f) 1319 break; 1320 } 1321 /* i is num of SDBs which are full */ 1322 perf_aux_output_end(handle, i << PAGE_SHIFT); 1323 1324 /* Remove alert indicators in the buffer */ 1325 te = aux_sdb_trailer(aux, aux->alert_mark); 1326 te->header.a = 0; 1327 } 1328 1329 /* 1330 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event 1331 * is first added to the CPU or rescheduled again to the CPU. It is called 1332 * with pmu disabled. 1333 * 1334 * 1. Reset the trailer of SDBs to get ready for new data. 1335 * 2. Tell the hardware where to put the data by reset the SDBs buffer 1336 * head(tear/dear). 1337 */ 1338 static int aux_output_begin(struct perf_output_handle *handle, 1339 struct aux_buffer *aux, 1340 struct cpu_hw_sf *cpuhw) 1341 { 1342 unsigned long range, i, range_scan, idx, head, base, offset; 1343 struct hws_trailer_entry *te; 1344 1345 if (handle->head & ~PAGE_MASK) 1346 return -EINVAL; 1347 1348 aux->head = handle->head >> PAGE_SHIFT; 1349 range = (handle->size + 1) >> PAGE_SHIFT; 1350 if (range <= 1) 1351 return -ENOMEM; 1352 1353 /* 1354 * SDBs between aux->head and aux->empty_mark are already ready 1355 * for new data. range_scan is num of SDBs not within them. 1356 */ 1357 if (range > aux_sdb_num_empty(aux)) { 1358 range_scan = range - aux_sdb_num_empty(aux); 1359 idx = aux->empty_mark + 1; 1360 for (i = 0; i < range_scan; i++, idx++) { 1361 te = aux_sdb_trailer(aux, idx); 1362 te->header.f = 0; 1363 te->header.a = 0; 1364 te->header.overflow = 0; 1365 } 1366 /* Save the position of empty SDBs */ 1367 aux->empty_mark = aux->head + range - 1; 1368 } 1369 1370 /* Set alert indicator */ 1371 aux->alert_mark = aux->head + range/2 - 1; 1372 te = aux_sdb_trailer(aux, aux->alert_mark); 1373 te->header.a = 1; 1374 1375 /* Reset hardware buffer head */ 1376 head = aux_sdb_index(aux, aux->head); 1377 base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE]; 1378 offset = head % CPUM_SF_SDB_PER_TABLE; 1379 cpuhw->lsctl.tear = virt_to_phys((void *)base) + offset * sizeof(unsigned long); 1380 cpuhw->lsctl.dear = virt_to_phys((void *)aux->sdb_index[head]); 1381 1382 return 0; 1383 } 1384 1385 /* 1386 * Set alert indicator on SDB at index @alert_index while sampler is running. 1387 * 1388 * Return true if successfully. 1389 * Return false if full indicator is already set by hardware sampler. 1390 */ 1391 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index, 1392 unsigned long long *overflow) 1393 { 1394 union hws_trailer_header prev, new; 1395 struct hws_trailer_entry *te; 1396 1397 te = aux_sdb_trailer(aux, alert_index); 1398 prev.val = READ_ONCE_ALIGNED_128(te->header.val); 1399 do { 1400 new.val = prev.val; 1401 *overflow = prev.overflow; 1402 if (prev.f) { 1403 /* 1404 * SDB is already set by hardware. 1405 * Abort and try to set somewhere 1406 * behind. 1407 */ 1408 return false; 1409 } 1410 new.a = 1; 1411 new.overflow = 0; 1412 } while (!try_cmpxchg128(&te->header.val, &prev.val, new.val)); 1413 return true; 1414 } 1415 1416 /* 1417 * aux_reset_buffer() - Scan and setup SDBs for new samples 1418 * @aux: The AUX buffer to set 1419 * @range: The range of SDBs to scan started from aux->head 1420 * @overflow: Set to overflow count 1421 * 1422 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is 1423 * marked as empty, check if it is already set full by the hardware sampler. 1424 * If yes, that means new data is already there before we can set an alert 1425 * indicator. Caller should try to set alert indicator to some position behind. 1426 * 1427 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used 1428 * previously and have already been consumed by user space. Reset these SDBs 1429 * (clear full indicator and alert indicator) for new data. 1430 * If aux->alert_mark fall in this area, just set it. Overflow count is 1431 * recorded while scanning. 1432 * 1433 * SDBs between aux->head and aux->empty_mark are already reset at last time. 1434 * and ready for new samples. So scanning on this area could be skipped. 1435 * 1436 * Return true if alert indicator is set successfully and false if not. 1437 */ 1438 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range, 1439 unsigned long long *overflow) 1440 { 1441 union hws_trailer_header prev, new; 1442 unsigned long i, range_scan, idx; 1443 unsigned long long orig_overflow; 1444 struct hws_trailer_entry *te; 1445 1446 if (range <= aux_sdb_num_empty(aux)) 1447 /* 1448 * No need to scan. All SDBs in range are marked as empty. 1449 * Just set alert indicator. Should check race with hardware 1450 * sampler. 1451 */ 1452 return aux_set_alert(aux, aux->alert_mark, overflow); 1453 1454 if (aux->alert_mark <= aux->empty_mark) 1455 /* 1456 * Set alert indicator on empty SDB. Should check race 1457 * with hardware sampler. 1458 */ 1459 if (!aux_set_alert(aux, aux->alert_mark, overflow)) 1460 return false; 1461 1462 /* 1463 * Scan the SDBs to clear full and alert indicator used previously. 1464 * Start scanning from one SDB behind empty_mark. If the new alert 1465 * indicator fall into this range, set it. 1466 */ 1467 range_scan = range - aux_sdb_num_empty(aux); 1468 idx = aux->empty_mark + 1; 1469 for (i = 0; i < range_scan; i++, idx++) { 1470 te = aux_sdb_trailer(aux, idx); 1471 prev.val = READ_ONCE_ALIGNED_128(te->header.val); 1472 do { 1473 new.val = prev.val; 1474 orig_overflow = prev.overflow; 1475 new.f = 0; 1476 new.overflow = 0; 1477 if (idx == aux->alert_mark) 1478 new.a = 1; 1479 else 1480 new.a = 0; 1481 } while (!try_cmpxchg128(&te->header.val, &prev.val, new.val)); 1482 *overflow += orig_overflow; 1483 } 1484 1485 /* Update empty_mark to new position */ 1486 aux->empty_mark = aux->head + range - 1; 1487 1488 return true; 1489 } 1490 1491 /* 1492 * Measurement alert handler for diagnostic mode sampling. 1493 */ 1494 static void hw_collect_aux(struct cpu_hw_sf *cpuhw) 1495 { 1496 struct aux_buffer *aux; 1497 int done = 0; 1498 unsigned long range = 0, size; 1499 unsigned long long overflow = 0; 1500 struct perf_output_handle *handle = &cpuhw->handle; 1501 unsigned long num_sdb; 1502 1503 aux = perf_get_aux(handle); 1504 if (!aux) 1505 return; 1506 1507 /* Inform user space new data arrived */ 1508 size = aux_sdb_num_alert(aux) << PAGE_SHIFT; 1509 debug_sprintf_event(sfdbg, 6, "%s #alert %ld\n", __func__, 1510 size >> PAGE_SHIFT); 1511 perf_aux_output_end(handle, size); 1512 1513 num_sdb = aux->sfb.num_sdb; 1514 while (!done) { 1515 /* Get an output handle */ 1516 aux = perf_aux_output_begin(handle, cpuhw->event); 1517 if (handle->size == 0) { 1518 pr_err("The AUX buffer with %lu pages for the " 1519 "diagnostic-sampling mode is full\n", 1520 num_sdb); 1521 break; 1522 } 1523 if (!aux) 1524 return; 1525 1526 /* Update head and alert_mark to new position */ 1527 aux->head = handle->head >> PAGE_SHIFT; 1528 range = (handle->size + 1) >> PAGE_SHIFT; 1529 if (range == 1) 1530 aux->alert_mark = aux->head; 1531 else 1532 aux->alert_mark = aux->head + range/2 - 1; 1533 1534 if (aux_reset_buffer(aux, range, &overflow)) { 1535 if (!overflow) { 1536 done = 1; 1537 break; 1538 } 1539 size = range << PAGE_SHIFT; 1540 perf_aux_output_end(&cpuhw->handle, size); 1541 pr_err("Sample data caused the AUX buffer with %lu " 1542 "pages to overflow\n", aux->sfb.num_sdb); 1543 } else { 1544 size = aux_sdb_num_alert(aux) << PAGE_SHIFT; 1545 perf_aux_output_end(&cpuhw->handle, size); 1546 } 1547 } 1548 } 1549 1550 /* 1551 * Callback when freeing AUX buffers. 1552 */ 1553 static void aux_buffer_free(void *data) 1554 { 1555 struct aux_buffer *aux = data; 1556 unsigned long i, num_sdbt; 1557 1558 if (!aux) 1559 return; 1560 1561 /* Free SDBT. SDB is freed by the caller */ 1562 num_sdbt = aux->sfb.num_sdbt; 1563 for (i = 0; i < num_sdbt; i++) 1564 free_page(aux->sdbt_index[i]); 1565 1566 kfree(aux->sdbt_index); 1567 kfree(aux->sdb_index); 1568 kfree(aux); 1569 } 1570 1571 static void aux_sdb_init(unsigned long sdb) 1572 { 1573 struct hws_trailer_entry *te; 1574 1575 te = trailer_entry_ptr(sdb); 1576 1577 /* Save clock base */ 1578 te->clock_base = 1; 1579 te->progusage2 = tod_clock_base.tod; 1580 } 1581 1582 /* 1583 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling 1584 * @event: Event the buffer is setup for, event->cpu == -1 means current 1585 * @pages: Array of pointers to buffer pages passed from perf core 1586 * @nr_pages: Total pages 1587 * @snapshot: Flag for snapshot mode 1588 * 1589 * This is the callback when setup an event using AUX buffer. Perf tool can 1590 * trigger this by an additional mmap() call on the event. Unlike the buffer 1591 * for basic samples, AUX buffer belongs to the event. It is scheduled with 1592 * the task among online cpus when it is a per-thread event. 1593 * 1594 * Return the private AUX buffer structure if success or NULL if fails. 1595 */ 1596 static void *aux_buffer_setup(struct perf_event *event, void **pages, 1597 int nr_pages, bool snapshot) 1598 { 1599 struct sf_buffer *sfb; 1600 struct aux_buffer *aux; 1601 unsigned long *new, *tail; 1602 int i, n_sdbt; 1603 1604 if (!nr_pages || !pages) 1605 return NULL; 1606 1607 if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) { 1608 pr_err("AUX buffer size (%i pages) is larger than the " 1609 "maximum sampling buffer limit\n", 1610 nr_pages); 1611 return NULL; 1612 } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) { 1613 pr_err("AUX buffer size (%i pages) is less than the " 1614 "minimum sampling buffer limit\n", 1615 nr_pages); 1616 return NULL; 1617 } 1618 1619 /* Allocate aux_buffer struct for the event */ 1620 aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL); 1621 if (!aux) 1622 goto no_aux; 1623 sfb = &aux->sfb; 1624 1625 /* Allocate sdbt_index for fast reference */ 1626 n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE); 1627 aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL); 1628 if (!aux->sdbt_index) 1629 goto no_sdbt_index; 1630 1631 /* Allocate sdb_index for fast reference */ 1632 aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL); 1633 if (!aux->sdb_index) 1634 goto no_sdb_index; 1635 1636 /* Allocate the first SDBT */ 1637 sfb->num_sdbt = 0; 1638 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL); 1639 if (!sfb->sdbt) 1640 goto no_sdbt; 1641 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt; 1642 tail = sfb->tail = sfb->sdbt; 1643 1644 /* 1645 * Link the provided pages of AUX buffer to SDBT. 1646 * Allocate SDBT if needed. 1647 */ 1648 for (i = 0; i < nr_pages; i++, tail++) { 1649 if (require_table_link(tail)) { 1650 new = (unsigned long *)get_zeroed_page(GFP_KERNEL); 1651 if (!new) 1652 goto no_sdbt; 1653 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new; 1654 /* Link current page to tail of chain */ 1655 *tail = virt_to_phys(new) + 1; 1656 tail = new; 1657 } 1658 /* Tail is the entry in a SDBT */ 1659 *tail = virt_to_phys(pages[i]); 1660 aux->sdb_index[i] = (unsigned long)pages[i]; 1661 aux_sdb_init((unsigned long)pages[i]); 1662 } 1663 sfb->num_sdb = nr_pages; 1664 1665 /* Link the last entry in the SDBT to the first SDBT */ 1666 *tail = virt_to_phys(sfb->sdbt) + 1; 1667 sfb->tail = tail; 1668 1669 /* 1670 * Initial all SDBs are zeroed. Mark it as empty. 1671 * So there is no need to clear the full indicator 1672 * when this event is first added. 1673 */ 1674 aux->empty_mark = sfb->num_sdb - 1; 1675 1676 return aux; 1677 1678 no_sdbt: 1679 /* SDBs (AUX buffer pages) are freed by caller */ 1680 for (i = 0; i < sfb->num_sdbt; i++) 1681 free_page(aux->sdbt_index[i]); 1682 kfree(aux->sdb_index); 1683 no_sdb_index: 1684 kfree(aux->sdbt_index); 1685 no_sdbt_index: 1686 kfree(aux); 1687 no_aux: 1688 return NULL; 1689 } 1690 1691 static void cpumsf_pmu_read(struct perf_event *event) 1692 { 1693 /* Nothing to do ... updates are interrupt-driven */ 1694 } 1695 1696 /* Check if the new sampling period/frequency is appropriate. 1697 * 1698 * Return non-zero on error and zero on passed checks. 1699 */ 1700 static int cpumsf_pmu_check_period(struct perf_event *event, u64 value) 1701 { 1702 struct hws_qsi_info_block si; 1703 unsigned long rate; 1704 bool do_freq; 1705 1706 memset(&si, 0, sizeof(si)); 1707 if (event->cpu == -1) { 1708 qsi(&si); 1709 } else { 1710 /* Event is pinned to a particular CPU, retrieve the per-CPU 1711 * sampling structure for accessing the CPU-specific QSI. 1712 */ 1713 struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu); 1714 1715 si = cpuhw->qsi; 1716 } 1717 1718 do_freq = !!SAMPL_FREQ_MODE(&event->hw); 1719 rate = getrate(do_freq, value, &si); 1720 if (!rate) 1721 return -EINVAL; 1722 1723 event->attr.sample_period = rate; 1724 SAMPL_RATE(&event->hw) = rate; 1725 hw_init_period(&event->hw, SAMPL_RATE(&event->hw)); 1726 return 0; 1727 } 1728 1729 /* Activate sampling control. 1730 * Next call of pmu_enable() starts sampling. 1731 */ 1732 static void cpumsf_pmu_start(struct perf_event *event, int flags) 1733 { 1734 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1735 1736 if (!(event->hw.state & PERF_HES_STOPPED)) 1737 return; 1738 perf_pmu_disable(event->pmu); 1739 event->hw.state = 0; 1740 cpuhw->lsctl.cs = 1; 1741 if (SAMPL_DIAG_MODE(&event->hw)) 1742 cpuhw->lsctl.cd = 1; 1743 perf_pmu_enable(event->pmu); 1744 } 1745 1746 /* Deactivate sampling control. 1747 * Next call of pmu_enable() stops sampling. 1748 */ 1749 static void cpumsf_pmu_stop(struct perf_event *event, int flags) 1750 { 1751 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1752 1753 if (event->hw.state & PERF_HES_STOPPED) 1754 return; 1755 1756 perf_pmu_disable(event->pmu); 1757 cpuhw->lsctl.cs = 0; 1758 cpuhw->lsctl.cd = 0; 1759 event->hw.state |= PERF_HES_STOPPED; 1760 1761 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) { 1762 /* CPU hotplug off removes SDBs. No samples to extract. */ 1763 if (cpuhw->flags & PMU_F_RESERVED) 1764 hw_perf_event_update(event, 1); 1765 event->hw.state |= PERF_HES_UPTODATE; 1766 } 1767 perf_pmu_enable(event->pmu); 1768 } 1769 1770 static int cpumsf_pmu_add(struct perf_event *event, int flags) 1771 { 1772 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1773 struct aux_buffer *aux; 1774 int err = 0; 1775 1776 if (cpuhw->flags & PMU_F_IN_USE) 1777 return -EAGAIN; 1778 1779 if (!SAMPL_DIAG_MODE(&event->hw) && !sf_buffer_available(cpuhw)) 1780 return -EINVAL; 1781 1782 perf_pmu_disable(event->pmu); 1783 1784 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1785 1786 /* Set up sampling controls. Always program the sampling register 1787 * using the SDB-table start. Reset TEAR_REG event hardware register 1788 * that is used by hw_perf_event_update() to store the sampling buffer 1789 * position after samples have been flushed. 1790 */ 1791 cpuhw->lsctl.s = 0; 1792 cpuhw->lsctl.h = 1; 1793 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw); 1794 if (!SAMPL_DIAG_MODE(&event->hw)) { 1795 cpuhw->lsctl.tear = virt_to_phys(cpuhw->sfb.sdbt); 1796 cpuhw->lsctl.dear = *(unsigned long *)cpuhw->sfb.sdbt; 1797 TEAR_REG(&event->hw) = (unsigned long)cpuhw->sfb.sdbt; 1798 } 1799 1800 /* Ensure sampling functions are in the disabled state. If disabled, 1801 * switch on sampling enable control. */ 1802 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) { 1803 err = -EAGAIN; 1804 goto out; 1805 } 1806 if (SAMPL_DIAG_MODE(&event->hw)) { 1807 aux = perf_aux_output_begin(&cpuhw->handle, event); 1808 if (!aux) { 1809 err = -EINVAL; 1810 goto out; 1811 } 1812 err = aux_output_begin(&cpuhw->handle, aux, cpuhw); 1813 if (err) 1814 goto out; 1815 cpuhw->lsctl.ed = 1; 1816 } 1817 cpuhw->lsctl.es = 1; 1818 1819 /* Set in_use flag and store event */ 1820 cpuhw->event = event; 1821 cpuhw->flags |= PMU_F_IN_USE; 1822 1823 if (flags & PERF_EF_START) 1824 cpumsf_pmu_start(event, PERF_EF_RELOAD); 1825 out: 1826 perf_event_update_userpage(event); 1827 perf_pmu_enable(event->pmu); 1828 return err; 1829 } 1830 1831 static void cpumsf_pmu_del(struct perf_event *event, int flags) 1832 { 1833 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1834 1835 perf_pmu_disable(event->pmu); 1836 cpumsf_pmu_stop(event, PERF_EF_UPDATE); 1837 1838 cpuhw->lsctl.es = 0; 1839 cpuhw->lsctl.ed = 0; 1840 cpuhw->flags &= ~PMU_F_IN_USE; 1841 cpuhw->event = NULL; 1842 1843 if (SAMPL_DIAG_MODE(&event->hw)) 1844 aux_output_end(&cpuhw->handle); 1845 perf_event_update_userpage(event); 1846 perf_pmu_enable(event->pmu); 1847 } 1848 1849 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF); 1850 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG); 1851 1852 /* Attribute list for CPU_SF. 1853 * 1854 * The availablitiy depends on the CPU_MF sampling facility authorization 1855 * for basic + diagnositic samples. This is determined at initialization 1856 * time by the sampling facility device driver. 1857 * If the authorization for basic samples is turned off, it should be 1858 * also turned off for diagnostic sampling. 1859 * 1860 * During initialization of the device driver, check the authorization 1861 * level for diagnostic sampling and installs the attribute 1862 * file for diagnostic sampling if necessary. 1863 * 1864 * For now install a placeholder to reference all possible attributes: 1865 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG. 1866 * Add another entry for the final NULL pointer. 1867 */ 1868 enum { 1869 SF_CYCLES_BASIC_ATTR_IDX = 0, 1870 SF_CYCLES_BASIC_DIAG_ATTR_IDX, 1871 SF_CYCLES_ATTR_MAX 1872 }; 1873 1874 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = { 1875 [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC) 1876 }; 1877 1878 PMU_FORMAT_ATTR(event, "config:0-63"); 1879 1880 static struct attribute *cpumsf_pmu_format_attr[] = { 1881 &format_attr_event.attr, 1882 NULL, 1883 }; 1884 1885 static struct attribute_group cpumsf_pmu_events_group = { 1886 .name = "events", 1887 .attrs = cpumsf_pmu_events_attr, 1888 }; 1889 1890 static struct attribute_group cpumsf_pmu_format_group = { 1891 .name = "format", 1892 .attrs = cpumsf_pmu_format_attr, 1893 }; 1894 1895 static const struct attribute_group *cpumsf_pmu_attr_groups[] = { 1896 &cpumsf_pmu_events_group, 1897 &cpumsf_pmu_format_group, 1898 NULL, 1899 }; 1900 1901 static struct pmu cpumf_sampling = { 1902 .pmu_enable = cpumsf_pmu_enable, 1903 .pmu_disable = cpumsf_pmu_disable, 1904 1905 .event_init = cpumsf_pmu_event_init, 1906 .add = cpumsf_pmu_add, 1907 .del = cpumsf_pmu_del, 1908 1909 .start = cpumsf_pmu_start, 1910 .stop = cpumsf_pmu_stop, 1911 .read = cpumsf_pmu_read, 1912 1913 .attr_groups = cpumsf_pmu_attr_groups, 1914 1915 .setup_aux = aux_buffer_setup, 1916 .free_aux = aux_buffer_free, 1917 1918 .check_period = cpumsf_pmu_check_period, 1919 }; 1920 1921 static void cpumf_measurement_alert(struct ext_code ext_code, 1922 unsigned int alert, unsigned long unused) 1923 { 1924 struct cpu_hw_sf *cpuhw; 1925 1926 if (!(alert & CPU_MF_INT_SF_MASK)) 1927 return; 1928 inc_irq_stat(IRQEXT_CMS); 1929 cpuhw = this_cpu_ptr(&cpu_hw_sf); 1930 1931 /* Measurement alerts are shared and might happen when the PMU 1932 * is not reserved. Ignore these alerts in this case. */ 1933 if (!(cpuhw->flags & PMU_F_RESERVED)) 1934 return; 1935 1936 /* The processing below must take care of multiple alert events that 1937 * might be indicated concurrently. */ 1938 1939 /* Program alert request */ 1940 if (alert & CPU_MF_INT_SF_PRA) { 1941 if (cpuhw->flags & PMU_F_IN_USE) { 1942 if (SAMPL_DIAG_MODE(&cpuhw->event->hw)) 1943 hw_collect_aux(cpuhw); 1944 else 1945 hw_perf_event_update(cpuhw->event, 0); 1946 } 1947 } 1948 1949 /* Report measurement alerts only for non-PRA codes */ 1950 if (alert != CPU_MF_INT_SF_PRA) 1951 debug_sprintf_event(sfdbg, 6, "%s alert %#x\n", __func__, 1952 alert); 1953 1954 /* Sampling authorization change request */ 1955 if (alert & CPU_MF_INT_SF_SACA) 1956 qsi(&cpuhw->qsi); 1957 1958 /* Loss of sample data due to high-priority machine activities */ 1959 if (alert & CPU_MF_INT_SF_LSDA) { 1960 pr_err("Sample data was lost\n"); 1961 cpuhw->flags |= PMU_F_ERR_LSDA; 1962 sf_disable(); 1963 } 1964 1965 /* Invalid sampling buffer entry */ 1966 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) { 1967 pr_err("A sampling buffer entry is incorrect (alert=%#x)\n", 1968 alert); 1969 cpuhw->flags |= PMU_F_ERR_IBE; 1970 sf_disable(); 1971 } 1972 } 1973 1974 static int cpusf_pmu_setup(unsigned int cpu, int flags) 1975 { 1976 /* Ignore the notification if no events are scheduled on the PMU. 1977 * This might be racy... 1978 */ 1979 if (!refcount_read(&num_events)) 1980 return 0; 1981 1982 local_irq_disable(); 1983 setup_pmc_cpu(&flags); 1984 local_irq_enable(); 1985 return 0; 1986 } 1987 1988 static int s390_pmu_sf_online_cpu(unsigned int cpu) 1989 { 1990 return cpusf_pmu_setup(cpu, PMC_INIT); 1991 } 1992 1993 static int s390_pmu_sf_offline_cpu(unsigned int cpu) 1994 { 1995 return cpusf_pmu_setup(cpu, PMC_RELEASE); 1996 } 1997 1998 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp) 1999 { 2000 if (!cpum_sf_avail()) 2001 return -ENODEV; 2002 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); 2003 } 2004 2005 static int param_set_sfb_size(const char *val, const struct kernel_param *kp) 2006 { 2007 int rc; 2008 unsigned long min, max; 2009 2010 if (!cpum_sf_avail()) 2011 return -ENODEV; 2012 if (!val || !strlen(val)) 2013 return -EINVAL; 2014 2015 /* Valid parameter values: "min,max" or "max" */ 2016 min = CPUM_SF_MIN_SDB; 2017 max = CPUM_SF_MAX_SDB; 2018 if (strchr(val, ',')) 2019 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL; 2020 else 2021 rc = kstrtoul(val, 10, &max); 2022 2023 if (min < 2 || min >= max || max > get_num_physpages()) 2024 rc = -EINVAL; 2025 if (rc) 2026 return rc; 2027 2028 sfb_set_limits(min, max); 2029 pr_info("The sampling buffer limits have changed to: " 2030 "min %lu max %lu (diag %lu)\n", 2031 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR); 2032 return 0; 2033 } 2034 2035 #define param_check_sfb_size(name, p) __param_check(name, p, void) 2036 static const struct kernel_param_ops param_ops_sfb_size = { 2037 .set = param_set_sfb_size, 2038 .get = param_get_sfb_size, 2039 }; 2040 2041 enum { 2042 RS_INIT_FAILURE_BSDES = 2, /* Bad basic sampling size */ 2043 RS_INIT_FAILURE_ALRT = 3, /* IRQ registration failure */ 2044 RS_INIT_FAILURE_PERF = 4 /* PMU registration failure */ 2045 }; 2046 2047 static void __init pr_cpumsf_err(unsigned int reason) 2048 { 2049 pr_err("Sampling facility support for perf is not available: " 2050 "reason %#x\n", reason); 2051 } 2052 2053 static int __init init_cpum_sampling_pmu(void) 2054 { 2055 struct hws_qsi_info_block si; 2056 int err; 2057 2058 if (!cpum_sf_avail()) 2059 return -ENODEV; 2060 2061 memset(&si, 0, sizeof(si)); 2062 qsi(&si); 2063 if (!si.as && !si.ad) 2064 return -ENODEV; 2065 2066 if (si.bsdes != sizeof(struct hws_basic_entry)) { 2067 pr_cpumsf_err(RS_INIT_FAILURE_BSDES); 2068 return -EINVAL; 2069 } 2070 2071 if (si.ad) { 2072 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); 2073 /* Sampling of diagnostic data authorized, 2074 * install event into attribute list of PMU device. 2075 */ 2076 cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] = 2077 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG); 2078 } 2079 2080 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80); 2081 if (!sfdbg) { 2082 pr_err("Registering for s390dbf failed\n"); 2083 return -ENOMEM; 2084 } 2085 debug_register_view(sfdbg, &debug_sprintf_view); 2086 2087 err = register_external_irq(EXT_IRQ_MEASURE_ALERT, 2088 cpumf_measurement_alert); 2089 if (err) { 2090 pr_cpumsf_err(RS_INIT_FAILURE_ALRT); 2091 debug_unregister(sfdbg); 2092 goto out; 2093 } 2094 2095 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW); 2096 if (err) { 2097 pr_cpumsf_err(RS_INIT_FAILURE_PERF); 2098 unregister_external_irq(EXT_IRQ_MEASURE_ALERT, 2099 cpumf_measurement_alert); 2100 debug_unregister(sfdbg); 2101 goto out; 2102 } 2103 2104 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online", 2105 s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu); 2106 out: 2107 return err; 2108 } 2109 2110 arch_initcall(init_cpum_sampling_pmu); 2111 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644); 2112