1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance event support for the System z CPU-measurement Sampling Facility 4 * 5 * Copyright IBM Corp. 2013, 2018 6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> 7 */ 8 #define KMSG_COMPONENT "cpum_sf" 9 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/perf_event.h> 14 #include <linux/percpu.h> 15 #include <linux/pid.h> 16 #include <linux/notifier.h> 17 #include <linux/export.h> 18 #include <linux/slab.h> 19 #include <linux/mm.h> 20 #include <linux/moduleparam.h> 21 #include <asm/cpu_mf.h> 22 #include <asm/irq.h> 23 #include <asm/debug.h> 24 #include <asm/timex.h> 25 #include <linux/io.h> 26 27 /* Perf PMU definitions for the sampling facility */ 28 #define PERF_CPUM_SF_MAX_CTR 2 29 #define PERF_EVENT_CPUM_SF 0xB0000UL /* Event: Basic-sampling */ 30 #define PERF_EVENT_CPUM_SF_DIAG 0xBD000UL /* Event: Combined-sampling */ 31 #define PERF_CPUM_SF_BASIC_MODE 0x0001 /* Basic-sampling flag */ 32 #define PERF_CPUM_SF_DIAG_MODE 0x0002 /* Diagnostic-sampling flag */ 33 #define PERF_CPUM_SF_FREQ_MODE 0x0008 /* Sampling with frequency */ 34 35 #define OVERFLOW_REG(hwc) ((hwc)->extra_reg.config) 36 #define SFB_ALLOC_REG(hwc) ((hwc)->extra_reg.alloc) 37 #define TEAR_REG(hwc) ((hwc)->last_tag) 38 #define SAMPL_RATE(hwc) ((hwc)->event_base) 39 #define SAMPL_FLAGS(hwc) ((hwc)->config_base) 40 #define SAMPL_DIAG_MODE(hwc) (SAMPL_FLAGS(hwc) & PERF_CPUM_SF_DIAG_MODE) 41 #define SAMPL_FREQ_MODE(hwc) (SAMPL_FLAGS(hwc) & PERF_CPUM_SF_FREQ_MODE) 42 43 /* Minimum number of sample-data-block-tables: 44 * At least one table is required for the sampling buffer structure. 45 * A single table contains up to 511 pointers to sample-data-blocks. 46 */ 47 #define CPUM_SF_MIN_SDBT 1 48 49 /* Number of sample-data-blocks per sample-data-block-table (SDBT): 50 * A table contains SDB pointers (8 bytes) and one table-link entry 51 * that points to the origin of the next SDBT. 52 */ 53 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8) 54 55 /* Maximum page offset for an SDBT table-link entry: 56 * If this page offset is reached, a table-link entry to the next SDBT 57 * must be added. 58 */ 59 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8) 60 static inline int require_table_link(const void *sdbt) 61 { 62 return ((unsigned long)sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET; 63 } 64 65 /* Minimum and maximum sampling buffer sizes: 66 * 67 * This number represents the maximum size of the sampling buffer taking 68 * the number of sample-data-block-tables into account. Note that these 69 * numbers apply to the basic-sampling function only. 70 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if 71 * the diagnostic-sampling function is active. 72 * 73 * Sampling buffer size Buffer characteristics 74 * --------------------------------------------------- 75 * 64KB == 16 pages (4KB per page) 76 * 1 page for SDB-tables 77 * 15 pages for SDBs 78 * 79 * 32MB == 8192 pages (4KB per page) 80 * 16 pages for SDB-tables 81 * 8176 pages for SDBs 82 */ 83 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15; 84 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176; 85 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1; 86 87 struct sf_buffer { 88 unsigned long *sdbt; /* Sample-data-block-table origin */ 89 /* buffer characteristics (required for buffer increments) */ 90 unsigned long num_sdb; /* Number of sample-data-blocks */ 91 unsigned long num_sdbt; /* Number of sample-data-block-tables */ 92 unsigned long *tail; /* last sample-data-block-table */ 93 }; 94 95 struct aux_buffer { 96 struct sf_buffer sfb; 97 unsigned long head; /* index of SDB of buffer head */ 98 unsigned long alert_mark; /* index of SDB of alert request position */ 99 unsigned long empty_mark; /* mark of SDB not marked full */ 100 unsigned long *sdb_index; /* SDB address for fast lookup */ 101 unsigned long *sdbt_index; /* SDBT address for fast lookup */ 102 }; 103 104 struct cpu_hw_sf { 105 /* CPU-measurement sampling information block */ 106 struct hws_qsi_info_block qsi; 107 /* CPU-measurement sampling control block */ 108 struct hws_lsctl_request_block lsctl; 109 struct sf_buffer sfb; /* Sampling buffer */ 110 unsigned int flags; /* Status flags */ 111 struct perf_event *event; /* Scheduled perf event */ 112 struct perf_output_handle handle; /* AUX buffer output handle */ 113 }; 114 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf); 115 116 /* Debug feature */ 117 static debug_info_t *sfdbg; 118 119 /* Sampling control helper functions */ 120 static inline unsigned long freq_to_sample_rate(struct hws_qsi_info_block *qsi, 121 unsigned long freq) 122 { 123 return (USEC_PER_SEC / freq) * qsi->cpu_speed; 124 } 125 126 static inline unsigned long sample_rate_to_freq(struct hws_qsi_info_block *qsi, 127 unsigned long rate) 128 { 129 return USEC_PER_SEC * qsi->cpu_speed / rate; 130 } 131 132 /* Return pointer to trailer entry of an sample data block */ 133 static inline struct hws_trailer_entry *trailer_entry_ptr(unsigned long v) 134 { 135 void *ret; 136 137 ret = (void *)v; 138 ret += PAGE_SIZE; 139 ret -= sizeof(struct hws_trailer_entry); 140 141 return ret; 142 } 143 144 /* 145 * Return true if the entry in the sample data block table (sdbt) 146 * is a link to the next sdbt 147 */ 148 static inline int is_link_entry(unsigned long *s) 149 { 150 return *s & 0x1UL ? 1 : 0; 151 } 152 153 /* Return pointer to the linked sdbt */ 154 static inline unsigned long *get_next_sdbt(unsigned long *s) 155 { 156 return phys_to_virt(*s & ~0x1UL); 157 } 158 159 /* 160 * sf_disable() - Switch off sampling facility 161 */ 162 static void sf_disable(void) 163 { 164 struct hws_lsctl_request_block sreq; 165 166 memset(&sreq, 0, sizeof(sreq)); 167 lsctl(&sreq); 168 } 169 170 /* 171 * sf_buffer_available() - Check for an allocated sampling buffer 172 */ 173 static int sf_buffer_available(struct cpu_hw_sf *cpuhw) 174 { 175 return !!cpuhw->sfb.sdbt; 176 } 177 178 /* 179 * deallocate sampling facility buffer 180 */ 181 static void free_sampling_buffer(struct sf_buffer *sfb) 182 { 183 unsigned long *sdbt, *curr; 184 185 if (!sfb->sdbt) 186 return; 187 188 sdbt = sfb->sdbt; 189 curr = sdbt; 190 191 /* Free the SDBT after all SDBs are processed... */ 192 while (1) { 193 if (!*curr || !sdbt) 194 break; 195 196 /* Process table-link entries */ 197 if (is_link_entry(curr)) { 198 curr = get_next_sdbt(curr); 199 if (sdbt) 200 free_page((unsigned long)sdbt); 201 202 /* If the origin is reached, sampling buffer is freed */ 203 if (curr == sfb->sdbt) 204 break; 205 else 206 sdbt = curr; 207 } else { 208 /* Process SDB pointer */ 209 if (*curr) { 210 free_page((unsigned long)phys_to_virt(*curr)); 211 curr++; 212 } 213 } 214 } 215 216 memset(sfb, 0, sizeof(*sfb)); 217 } 218 219 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags) 220 { 221 struct hws_trailer_entry *te; 222 unsigned long sdb; 223 224 /* Allocate and initialize sample-data-block */ 225 sdb = get_zeroed_page(gfp_flags); 226 if (!sdb) 227 return -ENOMEM; 228 te = trailer_entry_ptr(sdb); 229 te->header.a = 1; 230 231 /* Link SDB into the sample-data-block-table */ 232 *sdbt = virt_to_phys((void *)sdb); 233 234 return 0; 235 } 236 237 /* 238 * realloc_sampling_buffer() - extend sampler memory 239 * 240 * Allocates new sample-data-blocks and adds them to the specified sampling 241 * buffer memory. 242 * 243 * Important: This modifies the sampling buffer and must be called when the 244 * sampling facility is disabled. 245 * 246 * Returns zero on success, non-zero otherwise. 247 */ 248 static int realloc_sampling_buffer(struct sf_buffer *sfb, 249 unsigned long num_sdb, gfp_t gfp_flags) 250 { 251 int i, rc; 252 unsigned long *new, *tail, *tail_prev = NULL; 253 254 if (!sfb->sdbt || !sfb->tail) 255 return -EINVAL; 256 257 if (!is_link_entry(sfb->tail)) 258 return -EINVAL; 259 260 /* Append to the existing sampling buffer, overwriting the table-link 261 * register. 262 * The tail variables always points to the "tail" (last and table-link) 263 * entry in an SDB-table. 264 */ 265 tail = sfb->tail; 266 267 /* Do a sanity check whether the table-link entry points to 268 * the sampling buffer origin. 269 */ 270 if (sfb->sdbt != get_next_sdbt(tail)) { 271 debug_sprintf_event(sfdbg, 3, "%s buffer not linked origin %#lx tail %#lx\n", 272 __func__, (unsigned long)sfb->sdbt, 273 (unsigned long)tail); 274 return -EINVAL; 275 } 276 277 /* Allocate remaining SDBs */ 278 rc = 0; 279 for (i = 0; i < num_sdb; i++) { 280 /* Allocate a new SDB-table if it is full. */ 281 if (require_table_link(tail)) { 282 new = (unsigned long *)get_zeroed_page(gfp_flags); 283 if (!new) { 284 rc = -ENOMEM; 285 break; 286 } 287 sfb->num_sdbt++; 288 /* Link current page to tail of chain */ 289 *tail = virt_to_phys((void *)new) + 1; 290 tail_prev = tail; 291 tail = new; 292 } 293 294 /* Allocate a new sample-data-block. 295 * If there is not enough memory, stop the realloc process 296 * and simply use what was allocated. If this is a temporary 297 * issue, a new realloc call (if required) might succeed. 298 */ 299 rc = alloc_sample_data_block(tail, gfp_flags); 300 if (rc) { 301 /* Undo last SDBT. An SDBT with no SDB at its first 302 * entry but with an SDBT entry instead can not be 303 * handled by the interrupt handler code. 304 * Avoid this situation. 305 */ 306 if (tail_prev) { 307 sfb->num_sdbt--; 308 free_page((unsigned long)new); 309 tail = tail_prev; 310 } 311 break; 312 } 313 sfb->num_sdb++; 314 tail++; 315 tail_prev = new = NULL; /* Allocated at least one SBD */ 316 } 317 318 /* Link sampling buffer to its origin */ 319 *tail = virt_to_phys(sfb->sdbt) + 1; 320 sfb->tail = tail; 321 322 return rc; 323 } 324 325 /* 326 * allocate_sampling_buffer() - allocate sampler memory 327 * 328 * Allocates and initializes a sampling buffer structure using the 329 * specified number of sample-data-blocks (SDB). For each allocation, 330 * a 4K page is used. The number of sample-data-block-tables (SDBT) 331 * are calculated from SDBs. 332 * Also set the ALERT_REQ mask in each SDBs trailer. 333 * 334 * Returns zero on success, non-zero otherwise. 335 */ 336 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb) 337 { 338 int rc; 339 340 if (sfb->sdbt) 341 return -EINVAL; 342 343 /* Allocate the sample-data-block-table origin */ 344 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL); 345 if (!sfb->sdbt) 346 return -ENOMEM; 347 sfb->num_sdb = 0; 348 sfb->num_sdbt = 1; 349 350 /* Link the table origin to point to itself to prepare for 351 * realloc_sampling_buffer() invocation. 352 */ 353 sfb->tail = sfb->sdbt; 354 *sfb->tail = virt_to_phys((void *)sfb->sdbt) + 1; 355 356 /* Allocate requested number of sample-data-blocks */ 357 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL); 358 if (rc) 359 free_sampling_buffer(sfb); 360 return rc; 361 } 362 363 static void sfb_set_limits(unsigned long min, unsigned long max) 364 { 365 struct hws_qsi_info_block si; 366 367 CPUM_SF_MIN_SDB = min; 368 CPUM_SF_MAX_SDB = max; 369 370 memset(&si, 0, sizeof(si)); 371 qsi(&si); 372 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes); 373 } 374 375 static unsigned long sfb_max_limit(struct hw_perf_event *hwc) 376 { 377 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR 378 : CPUM_SF_MAX_SDB; 379 } 380 381 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb, 382 struct hw_perf_event *hwc) 383 { 384 if (!sfb->sdbt) 385 return SFB_ALLOC_REG(hwc); 386 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb) 387 return SFB_ALLOC_REG(hwc) - sfb->num_sdb; 388 return 0; 389 } 390 391 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc) 392 { 393 /* Limit the number of SDBs to not exceed the maximum */ 394 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc)); 395 if (num) 396 SFB_ALLOC_REG(hwc) += num; 397 } 398 399 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc) 400 { 401 SFB_ALLOC_REG(hwc) = 0; 402 sfb_account_allocs(num, hwc); 403 } 404 405 static void deallocate_buffers(struct cpu_hw_sf *cpuhw) 406 { 407 if (sf_buffer_available(cpuhw)) 408 free_sampling_buffer(&cpuhw->sfb); 409 } 410 411 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc) 412 { 413 unsigned long n_sdb, freq; 414 415 /* Calculate sampling buffers using 4K pages 416 * 417 * 1. The sampling size is 32 bytes for basic sampling. This size 418 * is the same for all machine types. Diagnostic 419 * sampling uses auxlilary data buffer setup which provides the 420 * memory for SDBs using linux common code auxiliary trace 421 * setup. 422 * 423 * 2. Function alloc_sampling_buffer() sets the Alert Request 424 * Control indicator to trigger a measurement-alert to harvest 425 * sample-data-blocks (SDB). This is done per SDB. This 426 * measurement alert interrupt fires quick enough to handle 427 * one SDB, on very high frequency and work loads there might 428 * be 2 to 3 SBDs available for sample processing. 429 * Currently there is no need for setup alert request on every 430 * n-th page. This is counterproductive as one IRQ triggers 431 * a very high number of samples to be processed at one IRQ. 432 * 433 * 3. Use the sampling frequency as input. 434 * Compute the number of SDBs and ensure a minimum 435 * of CPUM_SF_MIN_SDB. Depending on frequency add some more 436 * SDBs to handle a higher sampling rate. 437 * Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples 438 * (one SDB) for every 10000 HZ frequency increment. 439 * 440 * 4. Compute the number of sample-data-block-tables (SDBT) and 441 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up 442 * to 511 SDBs). 443 */ 444 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)); 445 n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000); 446 447 /* If there is already a sampling buffer allocated, it is very likely 448 * that the sampling facility is enabled too. If the event to be 449 * initialized requires a greater sampling buffer, the allocation must 450 * be postponed. Changing the sampling buffer requires the sampling 451 * facility to be in the disabled state. So, account the number of 452 * required SDBs and let cpumsf_pmu_enable() resize the buffer just 453 * before the event is started. 454 */ 455 sfb_init_allocs(n_sdb, hwc); 456 if (sf_buffer_available(cpuhw)) 457 return 0; 458 459 return alloc_sampling_buffer(&cpuhw->sfb, 460 sfb_pending_allocs(&cpuhw->sfb, hwc)); 461 } 462 463 static unsigned long min_percent(unsigned int percent, unsigned long base, 464 unsigned long min) 465 { 466 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100)); 467 } 468 469 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base) 470 { 471 /* Use a percentage-based approach to extend the sampling facility 472 * buffer. Accept up to 5% sample data loss. 473 * Vary the extents between 1% to 5% of the current number of 474 * sample-data-blocks. 475 */ 476 if (ratio <= 5) 477 return 0; 478 if (ratio <= 25) 479 return min_percent(1, base, 1); 480 if (ratio <= 50) 481 return min_percent(1, base, 1); 482 if (ratio <= 75) 483 return min_percent(2, base, 2); 484 if (ratio <= 100) 485 return min_percent(3, base, 3); 486 if (ratio <= 250) 487 return min_percent(4, base, 4); 488 489 return min_percent(5, base, 8); 490 } 491 492 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw, 493 struct hw_perf_event *hwc) 494 { 495 unsigned long ratio, num; 496 497 if (!OVERFLOW_REG(hwc)) 498 return; 499 500 /* The sample_overflow contains the average number of sample data 501 * that has been lost because sample-data-blocks were full. 502 * 503 * Calculate the total number of sample data entries that has been 504 * discarded. Then calculate the ratio of lost samples to total samples 505 * per second in percent. 506 */ 507 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb, 508 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc))); 509 510 /* Compute number of sample-data-blocks */ 511 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb); 512 if (num) 513 sfb_account_allocs(num, hwc); 514 515 OVERFLOW_REG(hwc) = 0; 516 } 517 518 /* extend_sampling_buffer() - Extend sampling buffer 519 * @sfb: Sampling buffer structure (for local CPU) 520 * @hwc: Perf event hardware structure 521 * 522 * Use this function to extend the sampling buffer based on the overflow counter 523 * and postponed allocation extents stored in the specified Perf event hardware. 524 * 525 * Important: This function disables the sampling facility in order to safely 526 * change the sampling buffer structure. Do not call this function 527 * when the PMU is active. 528 */ 529 static void extend_sampling_buffer(struct sf_buffer *sfb, 530 struct hw_perf_event *hwc) 531 { 532 unsigned long num; 533 534 num = sfb_pending_allocs(sfb, hwc); 535 if (!num) 536 return; 537 538 /* Disable the sampling facility to reset any states and also 539 * clear pending measurement alerts. 540 */ 541 sf_disable(); 542 543 /* Extend the sampling buffer. 544 * This memory allocation typically happens in an atomic context when 545 * called by perf. Because this is a reallocation, it is fine if the 546 * new SDB-request cannot be satisfied immediately. 547 */ 548 realloc_sampling_buffer(sfb, num, GFP_ATOMIC); 549 } 550 551 /* Number of perf events counting hardware events */ 552 static refcount_t num_events; 553 /* Used to avoid races in calling reserve/release_cpumf_hardware */ 554 static DEFINE_MUTEX(pmc_reserve_mutex); 555 556 #define PMC_INIT 0 557 #define PMC_RELEASE 1 558 static void setup_pmc_cpu(void *flags) 559 { 560 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 561 562 sf_disable(); 563 switch (*((int *)flags)) { 564 case PMC_INIT: 565 memset(cpuhw, 0, sizeof(*cpuhw)); 566 qsi(&cpuhw->qsi); 567 cpuhw->flags |= PMU_F_RESERVED; 568 break; 569 case PMC_RELEASE: 570 cpuhw->flags &= ~PMU_F_RESERVED; 571 deallocate_buffers(cpuhw); 572 break; 573 } 574 } 575 576 static void release_pmc_hardware(void) 577 { 578 int flags = PMC_RELEASE; 579 580 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT); 581 on_each_cpu(setup_pmc_cpu, &flags, 1); 582 } 583 584 static void reserve_pmc_hardware(void) 585 { 586 int flags = PMC_INIT; 587 588 on_each_cpu(setup_pmc_cpu, &flags, 1); 589 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT); 590 } 591 592 static void hw_perf_event_destroy(struct perf_event *event) 593 { 594 /* Release PMC if this is the last perf event */ 595 if (refcount_dec_and_mutex_lock(&num_events, &pmc_reserve_mutex)) { 596 release_pmc_hardware(); 597 mutex_unlock(&pmc_reserve_mutex); 598 } 599 } 600 601 static void hw_init_period(struct hw_perf_event *hwc, u64 period) 602 { 603 hwc->sample_period = period; 604 hwc->last_period = hwc->sample_period; 605 local64_set(&hwc->period_left, hwc->sample_period); 606 } 607 608 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si, 609 unsigned long rate) 610 { 611 return clamp_t(unsigned long, rate, 612 si->min_sampl_rate, si->max_sampl_rate); 613 } 614 615 static u32 cpumsf_pid_type(struct perf_event *event, 616 u32 pid, enum pid_type type) 617 { 618 struct task_struct *tsk; 619 620 /* Idle process */ 621 if (!pid) 622 goto out; 623 624 tsk = find_task_by_pid_ns(pid, &init_pid_ns); 625 pid = -1; 626 if (tsk) { 627 /* 628 * Only top level events contain the pid namespace in which 629 * they are created. 630 */ 631 if (event->parent) 632 event = event->parent; 633 pid = __task_pid_nr_ns(tsk, type, event->ns); 634 /* 635 * See also 1d953111b648 636 * "perf/core: Don't report zero PIDs for exiting tasks". 637 */ 638 if (!pid && !pid_alive(tsk)) 639 pid = -1; 640 } 641 out: 642 return pid; 643 } 644 645 static void cpumsf_output_event_pid(struct perf_event *event, 646 struct perf_sample_data *data, 647 struct pt_regs *regs) 648 { 649 u32 pid; 650 struct perf_event_header header; 651 struct perf_output_handle handle; 652 653 /* 654 * Obtain the PID from the basic-sampling data entry and 655 * correct the data->tid_entry.pid value. 656 */ 657 pid = data->tid_entry.pid; 658 659 /* Protect callchain buffers, tasks */ 660 rcu_read_lock(); 661 662 perf_prepare_sample(data, event, regs); 663 perf_prepare_header(&header, data, event, regs); 664 if (perf_output_begin(&handle, data, event, header.size)) 665 goto out; 666 667 /* Update the process ID (see also kernel/events/core.c) */ 668 data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID); 669 data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID); 670 671 perf_output_sample(&handle, &header, data, event); 672 perf_output_end(&handle); 673 out: 674 rcu_read_unlock(); 675 } 676 677 static unsigned long getrate(bool freq, unsigned long sample, 678 struct hws_qsi_info_block *si) 679 { 680 unsigned long rate; 681 682 if (freq) { 683 rate = freq_to_sample_rate(si, sample); 684 rate = hw_limit_rate(si, rate); 685 } else { 686 /* The min/max sampling rates specifies the valid range 687 * of sample periods. If the specified sample period is 688 * out of range, limit the period to the range boundary. 689 */ 690 rate = hw_limit_rate(si, sample); 691 692 /* The perf core maintains a maximum sample rate that is 693 * configurable through the sysctl interface. Ensure the 694 * sampling rate does not exceed this value. This also helps 695 * to avoid throttling when pushing samples with 696 * perf_event_overflow(). 697 */ 698 if (sample_rate_to_freq(si, rate) > 699 sysctl_perf_event_sample_rate) { 700 rate = 0; 701 } 702 } 703 return rate; 704 } 705 706 /* The sampling information (si) contains information about the 707 * min/max sampling intervals and the CPU speed. So calculate the 708 * correct sampling interval and avoid the whole period adjust 709 * feedback loop. 710 * 711 * Since the CPU Measurement sampling facility can not handle frequency 712 * calculate the sampling interval when frequency is specified using 713 * this formula: 714 * interval := cpu_speed * 1000000 / sample_freq 715 * 716 * Returns errno on bad input and zero on success with parameter interval 717 * set to the correct sampling rate. 718 * 719 * Note: This function turns off freq bit to avoid calling function 720 * perf_adjust_period(). This causes frequency adjustment in the common 721 * code part which causes tremendous variations in the counter values. 722 */ 723 static int __hw_perf_event_init_rate(struct perf_event *event, 724 struct hws_qsi_info_block *si) 725 { 726 struct perf_event_attr *attr = &event->attr; 727 struct hw_perf_event *hwc = &event->hw; 728 unsigned long rate; 729 730 if (attr->freq) { 731 if (!attr->sample_freq) 732 return -EINVAL; 733 rate = getrate(attr->freq, attr->sample_freq, si); 734 attr->freq = 0; /* Don't call perf_adjust_period() */ 735 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE; 736 } else { 737 rate = getrate(attr->freq, attr->sample_period, si); 738 if (!rate) 739 return -EINVAL; 740 } 741 attr->sample_period = rate; 742 SAMPL_RATE(hwc) = rate; 743 hw_init_period(hwc, SAMPL_RATE(hwc)); 744 return 0; 745 } 746 747 static int __hw_perf_event_init(struct perf_event *event) 748 { 749 struct cpu_hw_sf *cpuhw; 750 struct hws_qsi_info_block si; 751 struct perf_event_attr *attr = &event->attr; 752 struct hw_perf_event *hwc = &event->hw; 753 int cpu, err = 0; 754 755 /* Reserve CPU-measurement sampling facility */ 756 mutex_lock(&pmc_reserve_mutex); 757 if (!refcount_inc_not_zero(&num_events)) { 758 reserve_pmc_hardware(); 759 refcount_set(&num_events, 1); 760 } 761 event->destroy = hw_perf_event_destroy; 762 763 /* Access per-CPU sampling information (query sampling info) */ 764 /* 765 * The event->cpu value can be -1 to count on every CPU, for example, 766 * when attaching to a task. If this is specified, use the query 767 * sampling info from the current CPU, otherwise use event->cpu to 768 * retrieve the per-CPU information. 769 * Later, cpuhw indicates whether to allocate sampling buffers for a 770 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL). 771 */ 772 memset(&si, 0, sizeof(si)); 773 cpuhw = NULL; 774 if (event->cpu == -1) { 775 qsi(&si); 776 } else { 777 /* Event is pinned to a particular CPU, retrieve the per-CPU 778 * sampling structure for accessing the CPU-specific QSI. 779 */ 780 cpuhw = &per_cpu(cpu_hw_sf, event->cpu); 781 si = cpuhw->qsi; 782 } 783 784 /* Check sampling facility authorization and, if not authorized, 785 * fall back to other PMUs. It is safe to check any CPU because 786 * the authorization is identical for all configured CPUs. 787 */ 788 if (!si.as) { 789 err = -ENOENT; 790 goto out; 791 } 792 793 if (si.ribm & CPU_MF_SF_RIBM_NOTAV) { 794 pr_warn("CPU Measurement Facility sampling is temporarily not available\n"); 795 err = -EBUSY; 796 goto out; 797 } 798 799 /* Always enable basic sampling */ 800 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE; 801 802 /* Check if diagnostic sampling is requested. Deny if the required 803 * sampling authorization is missing. 804 */ 805 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) { 806 if (!si.ad) { 807 err = -EPERM; 808 goto out; 809 } 810 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE; 811 } 812 813 err = __hw_perf_event_init_rate(event, &si); 814 if (err) 815 goto out; 816 817 /* Use AUX buffer. No need to allocate it by ourself */ 818 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) 819 goto out; 820 821 /* Allocate the per-CPU sampling buffer using the CPU information 822 * from the event. If the event is not pinned to a particular 823 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling 824 * buffers for each online CPU. 825 */ 826 if (cpuhw) 827 /* Event is pinned to a particular CPU */ 828 err = allocate_buffers(cpuhw, hwc); 829 else { 830 /* Event is not pinned, allocate sampling buffer on 831 * each online CPU 832 */ 833 for_each_online_cpu(cpu) { 834 cpuhw = &per_cpu(cpu_hw_sf, cpu); 835 err = allocate_buffers(cpuhw, hwc); 836 if (err) 837 break; 838 } 839 } 840 841 /* If PID/TID sampling is active, replace the default overflow 842 * handler to extract and resolve the PIDs from the basic-sampling 843 * data entries. 844 */ 845 if (event->attr.sample_type & PERF_SAMPLE_TID) 846 if (is_default_overflow_handler(event)) 847 event->overflow_handler = cpumsf_output_event_pid; 848 out: 849 mutex_unlock(&pmc_reserve_mutex); 850 return err; 851 } 852 853 static bool is_callchain_event(struct perf_event *event) 854 { 855 u64 sample_type = event->attr.sample_type; 856 857 return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER | 858 PERF_SAMPLE_STACK_USER); 859 } 860 861 static int cpumsf_pmu_event_init(struct perf_event *event) 862 { 863 int err; 864 865 /* No support for taken branch sampling */ 866 /* No support for callchain, stacks and registers */ 867 if (has_branch_stack(event) || is_callchain_event(event)) 868 return -EOPNOTSUPP; 869 870 switch (event->attr.type) { 871 case PERF_TYPE_RAW: 872 if ((event->attr.config != PERF_EVENT_CPUM_SF) && 873 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG)) 874 return -ENOENT; 875 break; 876 case PERF_TYPE_HARDWARE: 877 /* Support sampling of CPU cycles in addition to the 878 * counter facility. However, the counter facility 879 * is more precise and, hence, restrict this PMU to 880 * sampling events only. 881 */ 882 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES) 883 return -ENOENT; 884 if (!is_sampling_event(event)) 885 return -ENOENT; 886 break; 887 default: 888 return -ENOENT; 889 } 890 891 /* Force reset of idle/hv excludes regardless of what the 892 * user requested. 893 */ 894 if (event->attr.exclude_hv) 895 event->attr.exclude_hv = 0; 896 if (event->attr.exclude_idle) 897 event->attr.exclude_idle = 0; 898 899 err = __hw_perf_event_init(event); 900 if (unlikely(err)) 901 if (event->destroy) 902 event->destroy(event); 903 return err; 904 } 905 906 static void cpumsf_pmu_enable(struct pmu *pmu) 907 { 908 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 909 struct hw_perf_event *hwc; 910 int err; 911 912 /* 913 * Event must be 914 * - added/started on this CPU (PMU_F_IN_USE set) 915 * - and CPU must be available (PMU_F_RESERVED set) 916 * - and not already enabled (PMU_F_ENABLED not set) 917 * - and not in error condition (PMU_F_ERR_MASK not set) 918 */ 919 if (cpuhw->flags != (PMU_F_IN_USE | PMU_F_RESERVED)) 920 return; 921 922 /* Check whether to extent the sampling buffer. 923 * 924 * Two conditions trigger an increase of the sampling buffer for a 925 * perf event: 926 * 1. Postponed buffer allocations from the event initialization. 927 * 2. Sampling overflows that contribute to pending allocations. 928 * 929 * Note that the extend_sampling_buffer() function disables the sampling 930 * facility, but it can be fully re-enabled using sampling controls that 931 * have been saved in cpumsf_pmu_disable(). 932 */ 933 hwc = &cpuhw->event->hw; 934 if (!(SAMPL_DIAG_MODE(hwc))) { 935 /* 936 * Account number of overflow-designated buffer extents 937 */ 938 sfb_account_overflows(cpuhw, hwc); 939 extend_sampling_buffer(&cpuhw->sfb, hwc); 940 } 941 /* Rate may be adjusted with ioctl() */ 942 cpuhw->lsctl.interval = SAMPL_RATE(hwc); 943 944 /* (Re)enable the PMU and sampling facility */ 945 err = lsctl(&cpuhw->lsctl); 946 if (err) { 947 pr_err("Loading sampling controls failed: op 1 err %i\n", err); 948 return; 949 } 950 951 /* Load current program parameter */ 952 lpp(&get_lowcore()->lpp); 953 cpuhw->flags |= PMU_F_ENABLED; 954 } 955 956 static void cpumsf_pmu_disable(struct pmu *pmu) 957 { 958 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 959 struct hws_lsctl_request_block inactive; 960 struct hws_qsi_info_block si; 961 int err; 962 963 if (!(cpuhw->flags & PMU_F_ENABLED)) 964 return; 965 966 if (cpuhw->flags & PMU_F_ERR_MASK) 967 return; 968 969 /* Switch off sampling activation control */ 970 inactive = cpuhw->lsctl; 971 inactive.cs = 0; 972 inactive.cd = 0; 973 974 err = lsctl(&inactive); 975 if (err) { 976 pr_err("Loading sampling controls failed: op 2 err %i\n", err); 977 return; 978 } 979 980 /* 981 * Save state of TEAR and DEAR register contents. 982 * TEAR/DEAR values are valid only if the sampling facility is 983 * enabled. Note that cpumsf_pmu_disable() might be called even 984 * for a disabled sampling facility because cpumsf_pmu_enable() 985 * controls the enable/disable state. 986 */ 987 qsi(&si); 988 if (si.es) { 989 cpuhw->lsctl.tear = si.tear; 990 cpuhw->lsctl.dear = si.dear; 991 } 992 993 cpuhw->flags &= ~PMU_F_ENABLED; 994 } 995 996 /* perf_exclude_event() - Filter event 997 * @event: The perf event 998 * @regs: pt_regs structure 999 * @sde_regs: Sample-data-entry (sde) regs structure 1000 * 1001 * Filter perf events according to their exclude specification. 1002 * 1003 * Return non-zero if the event shall be excluded. 1004 */ 1005 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs, 1006 struct perf_sf_sde_regs *sde_regs) 1007 { 1008 if (event->attr.exclude_user && user_mode(regs)) 1009 return 1; 1010 if (event->attr.exclude_kernel && !user_mode(regs)) 1011 return 1; 1012 if (event->attr.exclude_guest && sde_regs->in_guest) 1013 return 1; 1014 if (event->attr.exclude_host && !sde_regs->in_guest) 1015 return 1; 1016 return 0; 1017 } 1018 1019 /* perf_push_sample() - Push samples to perf 1020 * @event: The perf event 1021 * @sample: Hardware sample data 1022 * 1023 * Use the hardware sample data to create perf event sample. The sample 1024 * is the pushed to the event subsystem and the function checks for 1025 * possible event overflows. If an event overflow occurs, the PMU is 1026 * stopped. 1027 * 1028 * Return non-zero if an event overflow occurred. 1029 */ 1030 static int perf_push_sample(struct perf_event *event, 1031 struct hws_basic_entry *basic) 1032 { 1033 int overflow; 1034 struct pt_regs regs; 1035 struct perf_sf_sde_regs *sde_regs; 1036 struct perf_sample_data data; 1037 1038 /* Setup perf sample */ 1039 perf_sample_data_init(&data, 0, event->hw.last_period); 1040 1041 /* Setup pt_regs to look like an CPU-measurement external interrupt 1042 * using the Program Request Alert code. The regs.int_parm_long 1043 * field which is unused contains additional sample-data-entry related 1044 * indicators. 1045 */ 1046 memset(®s, 0, sizeof(regs)); 1047 regs.int_code = 0x1407; 1048 regs.int_parm = CPU_MF_INT_SF_PRA; 1049 sde_regs = (struct perf_sf_sde_regs *) ®s.int_parm_long; 1050 1051 psw_bits(regs.psw).ia = basic->ia; 1052 psw_bits(regs.psw).dat = basic->T; 1053 psw_bits(regs.psw).wait = basic->W; 1054 psw_bits(regs.psw).pstate = basic->P; 1055 psw_bits(regs.psw).as = basic->AS; 1056 1057 /* 1058 * Use the hardware provided configuration level to decide if the 1059 * sample belongs to a guest or host. If that is not available, 1060 * fall back to the following heuristics: 1061 * A non-zero guest program parameter always indicates a guest 1062 * sample. Some early samples or samples from guests without 1063 * lpp usage would be misaccounted to the host. We use the asn 1064 * value as an addon heuristic to detect most of these guest samples. 1065 * If the value differs from 0xffff (the host value), we assume to 1066 * be a KVM guest. 1067 */ 1068 switch (basic->CL) { 1069 case 1: /* logical partition */ 1070 sde_regs->in_guest = 0; 1071 break; 1072 case 2: /* virtual machine */ 1073 sde_regs->in_guest = 1; 1074 break; 1075 default: /* old machine, use heuristics */ 1076 if (basic->gpp || basic->prim_asn != 0xffff) 1077 sde_regs->in_guest = 1; 1078 break; 1079 } 1080 1081 /* 1082 * Store the PID value from the sample-data-entry to be 1083 * processed and resolved by cpumsf_output_event_pid(). 1084 */ 1085 data.tid_entry.pid = basic->hpp & LPP_PID_MASK; 1086 1087 overflow = 0; 1088 if (perf_exclude_event(event, ®s, sde_regs)) 1089 goto out; 1090 if (perf_event_overflow(event, &data, ®s)) { 1091 overflow = 1; 1092 event->pmu->stop(event, 0); 1093 } 1094 perf_event_update_userpage(event); 1095 out: 1096 return overflow; 1097 } 1098 1099 static void perf_event_count_update(struct perf_event *event, u64 count) 1100 { 1101 local64_add(count, &event->count); 1102 } 1103 1104 /* hw_collect_samples() - Walk through a sample-data-block and collect samples 1105 * @event: The perf event 1106 * @sdbt: Sample-data-block table 1107 * @overflow: Event overflow counter 1108 * 1109 * Walks through a sample-data-block and collects sampling data entries that are 1110 * then pushed to the perf event subsystem. Depending on the sampling function, 1111 * there can be either basic-sampling or combined-sampling data entries. A 1112 * combined-sampling data entry consists of a basic- and a diagnostic-sampling 1113 * data entry. The sampling function is determined by the flags in the perf 1114 * event hardware structure. The function always works with a combined-sampling 1115 * data entry but ignores the the diagnostic portion if it is not available. 1116 * 1117 * Note that the implementation focuses on basic-sampling data entries and, if 1118 * such an entry is not valid, the entire combined-sampling data entry is 1119 * ignored. 1120 * 1121 * The overflow variables counts the number of samples that has been discarded 1122 * due to a perf event overflow. 1123 */ 1124 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt, 1125 unsigned long long *overflow) 1126 { 1127 struct hws_trailer_entry *te; 1128 struct hws_basic_entry *sample; 1129 1130 te = trailer_entry_ptr((unsigned long)sdbt); 1131 sample = (struct hws_basic_entry *)sdbt; 1132 while ((unsigned long *)sample < (unsigned long *)te) { 1133 /* Check for an empty sample */ 1134 if (!sample->def || sample->LS) 1135 break; 1136 1137 /* Update perf event period */ 1138 perf_event_count_update(event, SAMPL_RATE(&event->hw)); 1139 1140 /* Check whether sample is valid */ 1141 if (sample->def == 0x0001) { 1142 /* If an event overflow occurred, the PMU is stopped to 1143 * throttle event delivery. Remaining sample data is 1144 * discarded. 1145 */ 1146 if (!*overflow) { 1147 /* Check whether sample is consistent */ 1148 if (sample->I == 0 && sample->W == 0) { 1149 /* Deliver sample data to perf */ 1150 *overflow = perf_push_sample(event, 1151 sample); 1152 } 1153 } else 1154 /* Count discarded samples */ 1155 *overflow += 1; 1156 } else { 1157 /* Sample slot is not yet written or other record. 1158 * 1159 * This condition can occur if the buffer was reused 1160 * from a combined basic- and diagnostic-sampling. 1161 * If only basic-sampling is then active, entries are 1162 * written into the larger diagnostic entries. 1163 * This is typically the case for sample-data-blocks 1164 * that are not full. Stop processing if the first 1165 * invalid format was detected. 1166 */ 1167 if (!te->header.f) 1168 break; 1169 } 1170 1171 /* Reset sample slot and advance to next sample */ 1172 sample->def = 0; 1173 sample++; 1174 } 1175 } 1176 1177 /* hw_perf_event_update() - Process sampling buffer 1178 * @event: The perf event 1179 * @flush_all: Flag to also flush partially filled sample-data-blocks 1180 * 1181 * Processes the sampling buffer and create perf event samples. 1182 * The sampling buffer position are retrieved and saved in the TEAR_REG 1183 * register of the specified perf event. 1184 * 1185 * Only full sample-data-blocks are processed. Specify the flush_all flag 1186 * to also walk through partially filled sample-data-blocks. 1187 */ 1188 static void hw_perf_event_update(struct perf_event *event, int flush_all) 1189 { 1190 unsigned long long event_overflow, sampl_overflow, num_sdb; 1191 struct hw_perf_event *hwc = &event->hw; 1192 union hws_trailer_header prev, new; 1193 struct hws_trailer_entry *te; 1194 unsigned long *sdbt, sdb; 1195 int done; 1196 1197 /* 1198 * AUX buffer is used when in diagnostic sampling mode. 1199 * No perf events/samples are created. 1200 */ 1201 if (SAMPL_DIAG_MODE(hwc)) 1202 return; 1203 1204 sdbt = (unsigned long *)TEAR_REG(hwc); 1205 done = event_overflow = sampl_overflow = num_sdb = 0; 1206 while (!done) { 1207 /* Get the trailer entry of the sample-data-block */ 1208 sdb = (unsigned long)phys_to_virt(*sdbt); 1209 te = trailer_entry_ptr(sdb); 1210 1211 /* Leave loop if no more work to do (block full indicator) */ 1212 if (!te->header.f) { 1213 done = 1; 1214 if (!flush_all) 1215 break; 1216 } 1217 1218 /* Check the sample overflow count */ 1219 if (te->header.overflow) 1220 /* Account sample overflows and, if a particular limit 1221 * is reached, extend the sampling buffer. 1222 * For details, see sfb_account_overflows(). 1223 */ 1224 sampl_overflow += te->header.overflow; 1225 1226 /* Collect all samples from a single sample-data-block and 1227 * flag if an (perf) event overflow happened. If so, the PMU 1228 * is stopped and remaining samples will be discarded. 1229 */ 1230 hw_collect_samples(event, (unsigned long *)sdb, &event_overflow); 1231 num_sdb++; 1232 1233 /* Reset trailer (using compare-double-and-swap) */ 1234 prev.val = READ_ONCE_ALIGNED_128(te->header.val); 1235 do { 1236 new.val = prev.val; 1237 new.f = 0; 1238 new.a = 1; 1239 new.overflow = 0; 1240 } while (!try_cmpxchg128(&te->header.val, &prev.val, new.val)); 1241 1242 /* Advance to next sample-data-block */ 1243 sdbt++; 1244 if (is_link_entry(sdbt)) 1245 sdbt = get_next_sdbt(sdbt); 1246 1247 /* Update event hardware registers */ 1248 TEAR_REG(hwc) = (unsigned long)sdbt; 1249 1250 /* Stop processing sample-data if all samples of the current 1251 * sample-data-block were flushed even if it was not full. 1252 */ 1253 if (flush_all && done) 1254 break; 1255 } 1256 1257 /* Account sample overflows in the event hardware structure */ 1258 if (sampl_overflow) 1259 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) + 1260 sampl_overflow, 1 + num_sdb); 1261 1262 /* Perf_event_overflow() and perf_event_account_interrupt() limit 1263 * the interrupt rate to an upper limit. Roughly 1000 samples per 1264 * task tick. 1265 * Hitting this limit results in a large number 1266 * of throttled REF_REPORT_THROTTLE entries and the samples 1267 * are dropped. 1268 * Slightly increase the interval to avoid hitting this limit. 1269 */ 1270 if (event_overflow) 1271 SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10); 1272 } 1273 1274 static inline unsigned long aux_sdb_index(struct aux_buffer *aux, 1275 unsigned long i) 1276 { 1277 return i % aux->sfb.num_sdb; 1278 } 1279 1280 static inline unsigned long aux_sdb_num(unsigned long start, unsigned long end) 1281 { 1282 return end >= start ? end - start + 1 : 0; 1283 } 1284 1285 static inline unsigned long aux_sdb_num_alert(struct aux_buffer *aux) 1286 { 1287 return aux_sdb_num(aux->head, aux->alert_mark); 1288 } 1289 1290 static inline unsigned long aux_sdb_num_empty(struct aux_buffer *aux) 1291 { 1292 return aux_sdb_num(aux->head, aux->empty_mark); 1293 } 1294 1295 /* 1296 * Get trailer entry by index of SDB. 1297 */ 1298 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux, 1299 unsigned long index) 1300 { 1301 unsigned long sdb; 1302 1303 index = aux_sdb_index(aux, index); 1304 sdb = aux->sdb_index[index]; 1305 return trailer_entry_ptr(sdb); 1306 } 1307 1308 /* 1309 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu 1310 * disabled. Collect the full SDBs in AUX buffer which have not reached 1311 * the point of alert indicator. And ignore the SDBs which are not 1312 * full. 1313 * 1314 * 1. Scan SDBs to see how much data is there and consume them. 1315 * 2. Remove alert indicator in the buffer. 1316 */ 1317 static void aux_output_end(struct perf_output_handle *handle) 1318 { 1319 unsigned long i, range_scan, idx; 1320 struct aux_buffer *aux; 1321 struct hws_trailer_entry *te; 1322 1323 aux = perf_get_aux(handle); 1324 if (!aux) 1325 return; 1326 1327 range_scan = aux_sdb_num_alert(aux); 1328 for (i = 0, idx = aux->head; i < range_scan; i++, idx++) { 1329 te = aux_sdb_trailer(aux, idx); 1330 if (!te->header.f) 1331 break; 1332 } 1333 /* i is num of SDBs which are full */ 1334 perf_aux_output_end(handle, i << PAGE_SHIFT); 1335 1336 /* Remove alert indicators in the buffer */ 1337 te = aux_sdb_trailer(aux, aux->alert_mark); 1338 te->header.a = 0; 1339 } 1340 1341 /* 1342 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event 1343 * is first added to the CPU or rescheduled again to the CPU. It is called 1344 * with pmu disabled. 1345 * 1346 * 1. Reset the trailer of SDBs to get ready for new data. 1347 * 2. Tell the hardware where to put the data by reset the SDBs buffer 1348 * head(tear/dear). 1349 */ 1350 static int aux_output_begin(struct perf_output_handle *handle, 1351 struct aux_buffer *aux, 1352 struct cpu_hw_sf *cpuhw) 1353 { 1354 unsigned long range, i, range_scan, idx, head, base, offset; 1355 struct hws_trailer_entry *te; 1356 1357 if (handle->head & ~PAGE_MASK) 1358 return -EINVAL; 1359 1360 aux->head = handle->head >> PAGE_SHIFT; 1361 range = (handle->size + 1) >> PAGE_SHIFT; 1362 if (range <= 1) 1363 return -ENOMEM; 1364 1365 /* 1366 * SDBs between aux->head and aux->empty_mark are already ready 1367 * for new data. range_scan is num of SDBs not within them. 1368 */ 1369 if (range > aux_sdb_num_empty(aux)) { 1370 range_scan = range - aux_sdb_num_empty(aux); 1371 idx = aux->empty_mark + 1; 1372 for (i = 0; i < range_scan; i++, idx++) { 1373 te = aux_sdb_trailer(aux, idx); 1374 te->header.f = 0; 1375 te->header.a = 0; 1376 te->header.overflow = 0; 1377 } 1378 /* Save the position of empty SDBs */ 1379 aux->empty_mark = aux->head + range - 1; 1380 } 1381 1382 /* Set alert indicator */ 1383 aux->alert_mark = aux->head + range/2 - 1; 1384 te = aux_sdb_trailer(aux, aux->alert_mark); 1385 te->header.a = 1; 1386 1387 /* Reset hardware buffer head */ 1388 head = aux_sdb_index(aux, aux->head); 1389 base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE]; 1390 offset = head % CPUM_SF_SDB_PER_TABLE; 1391 cpuhw->lsctl.tear = virt_to_phys((void *)base) + offset * sizeof(unsigned long); 1392 cpuhw->lsctl.dear = virt_to_phys((void *)aux->sdb_index[head]); 1393 1394 return 0; 1395 } 1396 1397 /* 1398 * Set alert indicator on SDB at index @alert_index while sampler is running. 1399 * 1400 * Return true if successfully. 1401 * Return false if full indicator is already set by hardware sampler. 1402 */ 1403 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index, 1404 unsigned long long *overflow) 1405 { 1406 union hws_trailer_header prev, new; 1407 struct hws_trailer_entry *te; 1408 1409 te = aux_sdb_trailer(aux, alert_index); 1410 prev.val = READ_ONCE_ALIGNED_128(te->header.val); 1411 do { 1412 new.val = prev.val; 1413 *overflow = prev.overflow; 1414 if (prev.f) { 1415 /* 1416 * SDB is already set by hardware. 1417 * Abort and try to set somewhere 1418 * behind. 1419 */ 1420 return false; 1421 } 1422 new.a = 1; 1423 new.overflow = 0; 1424 } while (!try_cmpxchg128(&te->header.val, &prev.val, new.val)); 1425 return true; 1426 } 1427 1428 /* 1429 * aux_reset_buffer() - Scan and setup SDBs for new samples 1430 * @aux: The AUX buffer to set 1431 * @range: The range of SDBs to scan started from aux->head 1432 * @overflow: Set to overflow count 1433 * 1434 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is 1435 * marked as empty, check if it is already set full by the hardware sampler. 1436 * If yes, that means new data is already there before we can set an alert 1437 * indicator. Caller should try to set alert indicator to some position behind. 1438 * 1439 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used 1440 * previously and have already been consumed by user space. Reset these SDBs 1441 * (clear full indicator and alert indicator) for new data. 1442 * If aux->alert_mark fall in this area, just set it. Overflow count is 1443 * recorded while scanning. 1444 * 1445 * SDBs between aux->head and aux->empty_mark are already reset at last time. 1446 * and ready for new samples. So scanning on this area could be skipped. 1447 * 1448 * Return true if alert indicator is set successfully and false if not. 1449 */ 1450 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range, 1451 unsigned long long *overflow) 1452 { 1453 union hws_trailer_header prev, new; 1454 unsigned long i, range_scan, idx; 1455 unsigned long long orig_overflow; 1456 struct hws_trailer_entry *te; 1457 1458 if (range <= aux_sdb_num_empty(aux)) 1459 /* 1460 * No need to scan. All SDBs in range are marked as empty. 1461 * Just set alert indicator. Should check race with hardware 1462 * sampler. 1463 */ 1464 return aux_set_alert(aux, aux->alert_mark, overflow); 1465 1466 if (aux->alert_mark <= aux->empty_mark) 1467 /* 1468 * Set alert indicator on empty SDB. Should check race 1469 * with hardware sampler. 1470 */ 1471 if (!aux_set_alert(aux, aux->alert_mark, overflow)) 1472 return false; 1473 1474 /* 1475 * Scan the SDBs to clear full and alert indicator used previously. 1476 * Start scanning from one SDB behind empty_mark. If the new alert 1477 * indicator fall into this range, set it. 1478 */ 1479 range_scan = range - aux_sdb_num_empty(aux); 1480 idx = aux->empty_mark + 1; 1481 for (i = 0; i < range_scan; i++, idx++) { 1482 te = aux_sdb_trailer(aux, idx); 1483 prev.val = READ_ONCE_ALIGNED_128(te->header.val); 1484 do { 1485 new.val = prev.val; 1486 orig_overflow = prev.overflow; 1487 new.f = 0; 1488 new.overflow = 0; 1489 if (idx == aux->alert_mark) 1490 new.a = 1; 1491 else 1492 new.a = 0; 1493 } while (!try_cmpxchg128(&te->header.val, &prev.val, new.val)); 1494 *overflow += orig_overflow; 1495 } 1496 1497 /* Update empty_mark to new position */ 1498 aux->empty_mark = aux->head + range - 1; 1499 1500 return true; 1501 } 1502 1503 /* 1504 * Measurement alert handler for diagnostic mode sampling. 1505 */ 1506 static void hw_collect_aux(struct cpu_hw_sf *cpuhw) 1507 { 1508 struct aux_buffer *aux; 1509 int done = 0; 1510 unsigned long range = 0, size; 1511 unsigned long long overflow = 0; 1512 struct perf_output_handle *handle = &cpuhw->handle; 1513 unsigned long num_sdb; 1514 1515 aux = perf_get_aux(handle); 1516 if (!aux) 1517 return; 1518 1519 /* Inform user space new data arrived */ 1520 size = aux_sdb_num_alert(aux) << PAGE_SHIFT; 1521 debug_sprintf_event(sfdbg, 6, "%s #alert %ld\n", __func__, 1522 size >> PAGE_SHIFT); 1523 perf_aux_output_end(handle, size); 1524 1525 num_sdb = aux->sfb.num_sdb; 1526 while (!done) { 1527 /* Get an output handle */ 1528 aux = perf_aux_output_begin(handle, cpuhw->event); 1529 if (handle->size == 0) { 1530 pr_err("The AUX buffer with %lu pages for the " 1531 "diagnostic-sampling mode is full\n", 1532 num_sdb); 1533 break; 1534 } 1535 if (!aux) 1536 return; 1537 1538 /* Update head and alert_mark to new position */ 1539 aux->head = handle->head >> PAGE_SHIFT; 1540 range = (handle->size + 1) >> PAGE_SHIFT; 1541 if (range == 1) 1542 aux->alert_mark = aux->head; 1543 else 1544 aux->alert_mark = aux->head + range/2 - 1; 1545 1546 if (aux_reset_buffer(aux, range, &overflow)) { 1547 if (!overflow) { 1548 done = 1; 1549 break; 1550 } 1551 size = range << PAGE_SHIFT; 1552 perf_aux_output_end(&cpuhw->handle, size); 1553 pr_err("Sample data caused the AUX buffer with %lu " 1554 "pages to overflow\n", aux->sfb.num_sdb); 1555 } else { 1556 size = aux_sdb_num_alert(aux) << PAGE_SHIFT; 1557 perf_aux_output_end(&cpuhw->handle, size); 1558 } 1559 } 1560 } 1561 1562 /* 1563 * Callback when freeing AUX buffers. 1564 */ 1565 static void aux_buffer_free(void *data) 1566 { 1567 struct aux_buffer *aux = data; 1568 unsigned long i, num_sdbt; 1569 1570 if (!aux) 1571 return; 1572 1573 /* Free SDBT. SDB is freed by the caller */ 1574 num_sdbt = aux->sfb.num_sdbt; 1575 for (i = 0; i < num_sdbt; i++) 1576 free_page(aux->sdbt_index[i]); 1577 1578 kfree(aux->sdbt_index); 1579 kfree(aux->sdb_index); 1580 kfree(aux); 1581 } 1582 1583 static void aux_sdb_init(unsigned long sdb) 1584 { 1585 struct hws_trailer_entry *te; 1586 1587 te = trailer_entry_ptr(sdb); 1588 1589 /* Save clock base */ 1590 te->clock_base = 1; 1591 te->progusage2 = tod_clock_base.tod; 1592 } 1593 1594 /* 1595 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling 1596 * @event: Event the buffer is setup for, event->cpu == -1 means current 1597 * @pages: Array of pointers to buffer pages passed from perf core 1598 * @nr_pages: Total pages 1599 * @snapshot: Flag for snapshot mode 1600 * 1601 * This is the callback when setup an event using AUX buffer. Perf tool can 1602 * trigger this by an additional mmap() call on the event. Unlike the buffer 1603 * for basic samples, AUX buffer belongs to the event. It is scheduled with 1604 * the task among online cpus when it is a per-thread event. 1605 * 1606 * Return the private AUX buffer structure if success or NULL if fails. 1607 */ 1608 static void *aux_buffer_setup(struct perf_event *event, void **pages, 1609 int nr_pages, bool snapshot) 1610 { 1611 struct sf_buffer *sfb; 1612 struct aux_buffer *aux; 1613 unsigned long *new, *tail; 1614 int i, n_sdbt; 1615 1616 if (!nr_pages || !pages) 1617 return NULL; 1618 1619 if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) { 1620 pr_err("AUX buffer size (%i pages) is larger than the " 1621 "maximum sampling buffer limit\n", 1622 nr_pages); 1623 return NULL; 1624 } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) { 1625 pr_err("AUX buffer size (%i pages) is less than the " 1626 "minimum sampling buffer limit\n", 1627 nr_pages); 1628 return NULL; 1629 } 1630 1631 /* Allocate aux_buffer struct for the event */ 1632 aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL); 1633 if (!aux) 1634 goto no_aux; 1635 sfb = &aux->sfb; 1636 1637 /* Allocate sdbt_index for fast reference */ 1638 n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE); 1639 aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL); 1640 if (!aux->sdbt_index) 1641 goto no_sdbt_index; 1642 1643 /* Allocate sdb_index for fast reference */ 1644 aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL); 1645 if (!aux->sdb_index) 1646 goto no_sdb_index; 1647 1648 /* Allocate the first SDBT */ 1649 sfb->num_sdbt = 0; 1650 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL); 1651 if (!sfb->sdbt) 1652 goto no_sdbt; 1653 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt; 1654 tail = sfb->tail = sfb->sdbt; 1655 1656 /* 1657 * Link the provided pages of AUX buffer to SDBT. 1658 * Allocate SDBT if needed. 1659 */ 1660 for (i = 0; i < nr_pages; i++, tail++) { 1661 if (require_table_link(tail)) { 1662 new = (unsigned long *)get_zeroed_page(GFP_KERNEL); 1663 if (!new) 1664 goto no_sdbt; 1665 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new; 1666 /* Link current page to tail of chain */ 1667 *tail = virt_to_phys(new) + 1; 1668 tail = new; 1669 } 1670 /* Tail is the entry in a SDBT */ 1671 *tail = virt_to_phys(pages[i]); 1672 aux->sdb_index[i] = (unsigned long)pages[i]; 1673 aux_sdb_init((unsigned long)pages[i]); 1674 } 1675 sfb->num_sdb = nr_pages; 1676 1677 /* Link the last entry in the SDBT to the first SDBT */ 1678 *tail = virt_to_phys(sfb->sdbt) + 1; 1679 sfb->tail = tail; 1680 1681 /* 1682 * Initial all SDBs are zeroed. Mark it as empty. 1683 * So there is no need to clear the full indicator 1684 * when this event is first added. 1685 */ 1686 aux->empty_mark = sfb->num_sdb - 1; 1687 1688 return aux; 1689 1690 no_sdbt: 1691 /* SDBs (AUX buffer pages) are freed by caller */ 1692 for (i = 0; i < sfb->num_sdbt; i++) 1693 free_page(aux->sdbt_index[i]); 1694 kfree(aux->sdb_index); 1695 no_sdb_index: 1696 kfree(aux->sdbt_index); 1697 no_sdbt_index: 1698 kfree(aux); 1699 no_aux: 1700 return NULL; 1701 } 1702 1703 static void cpumsf_pmu_read(struct perf_event *event) 1704 { 1705 /* Nothing to do ... updates are interrupt-driven */ 1706 } 1707 1708 /* Check if the new sampling period/frequency is appropriate. 1709 * 1710 * Return non-zero on error and zero on passed checks. 1711 */ 1712 static int cpumsf_pmu_check_period(struct perf_event *event, u64 value) 1713 { 1714 struct hws_qsi_info_block si; 1715 unsigned long rate; 1716 bool do_freq; 1717 1718 memset(&si, 0, sizeof(si)); 1719 if (event->cpu == -1) { 1720 qsi(&si); 1721 } else { 1722 /* Event is pinned to a particular CPU, retrieve the per-CPU 1723 * sampling structure for accessing the CPU-specific QSI. 1724 */ 1725 struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu); 1726 1727 si = cpuhw->qsi; 1728 } 1729 1730 do_freq = !!SAMPL_FREQ_MODE(&event->hw); 1731 rate = getrate(do_freq, value, &si); 1732 if (!rate) 1733 return -EINVAL; 1734 1735 event->attr.sample_period = rate; 1736 SAMPL_RATE(&event->hw) = rate; 1737 hw_init_period(&event->hw, SAMPL_RATE(&event->hw)); 1738 return 0; 1739 } 1740 1741 /* Activate sampling control. 1742 * Next call of pmu_enable() starts sampling. 1743 */ 1744 static void cpumsf_pmu_start(struct perf_event *event, int flags) 1745 { 1746 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1747 1748 if (!(event->hw.state & PERF_HES_STOPPED)) 1749 return; 1750 perf_pmu_disable(event->pmu); 1751 event->hw.state = 0; 1752 cpuhw->lsctl.cs = 1; 1753 if (SAMPL_DIAG_MODE(&event->hw)) 1754 cpuhw->lsctl.cd = 1; 1755 perf_pmu_enable(event->pmu); 1756 } 1757 1758 /* Deactivate sampling control. 1759 * Next call of pmu_enable() stops sampling. 1760 */ 1761 static void cpumsf_pmu_stop(struct perf_event *event, int flags) 1762 { 1763 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1764 1765 if (event->hw.state & PERF_HES_STOPPED) 1766 return; 1767 1768 perf_pmu_disable(event->pmu); 1769 cpuhw->lsctl.cs = 0; 1770 cpuhw->lsctl.cd = 0; 1771 event->hw.state |= PERF_HES_STOPPED; 1772 1773 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) { 1774 /* CPU hotplug off removes SDBs. No samples to extract. */ 1775 if (cpuhw->flags & PMU_F_RESERVED) 1776 hw_perf_event_update(event, 1); 1777 event->hw.state |= PERF_HES_UPTODATE; 1778 } 1779 perf_pmu_enable(event->pmu); 1780 } 1781 1782 static int cpumsf_pmu_add(struct perf_event *event, int flags) 1783 { 1784 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1785 struct aux_buffer *aux; 1786 int err = 0; 1787 1788 if (cpuhw->flags & PMU_F_IN_USE) 1789 return -EAGAIN; 1790 1791 if (!SAMPL_DIAG_MODE(&event->hw) && !sf_buffer_available(cpuhw)) 1792 return -EINVAL; 1793 1794 perf_pmu_disable(event->pmu); 1795 1796 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1797 1798 /* Set up sampling controls. Always program the sampling register 1799 * using the SDB-table start. Reset TEAR_REG event hardware register 1800 * that is used by hw_perf_event_update() to store the sampling buffer 1801 * position after samples have been flushed. 1802 */ 1803 cpuhw->lsctl.s = 0; 1804 cpuhw->lsctl.h = 1; 1805 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw); 1806 if (!SAMPL_DIAG_MODE(&event->hw)) { 1807 cpuhw->lsctl.tear = virt_to_phys(cpuhw->sfb.sdbt); 1808 cpuhw->lsctl.dear = *(unsigned long *)cpuhw->sfb.sdbt; 1809 TEAR_REG(&event->hw) = (unsigned long)cpuhw->sfb.sdbt; 1810 } 1811 1812 /* Ensure sampling functions are in the disabled state. If disabled, 1813 * switch on sampling enable control. */ 1814 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) { 1815 err = -EAGAIN; 1816 goto out; 1817 } 1818 if (SAMPL_DIAG_MODE(&event->hw)) { 1819 aux = perf_aux_output_begin(&cpuhw->handle, event); 1820 if (!aux) { 1821 err = -EINVAL; 1822 goto out; 1823 } 1824 err = aux_output_begin(&cpuhw->handle, aux, cpuhw); 1825 if (err) 1826 goto out; 1827 cpuhw->lsctl.ed = 1; 1828 } 1829 cpuhw->lsctl.es = 1; 1830 1831 /* Set in_use flag and store event */ 1832 cpuhw->event = event; 1833 cpuhw->flags |= PMU_F_IN_USE; 1834 1835 if (flags & PERF_EF_START) 1836 cpumsf_pmu_start(event, PERF_EF_RELOAD); 1837 out: 1838 perf_event_update_userpage(event); 1839 perf_pmu_enable(event->pmu); 1840 return err; 1841 } 1842 1843 static void cpumsf_pmu_del(struct perf_event *event, int flags) 1844 { 1845 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); 1846 1847 perf_pmu_disable(event->pmu); 1848 cpumsf_pmu_stop(event, PERF_EF_UPDATE); 1849 1850 cpuhw->lsctl.es = 0; 1851 cpuhw->lsctl.ed = 0; 1852 cpuhw->flags &= ~PMU_F_IN_USE; 1853 cpuhw->event = NULL; 1854 1855 if (SAMPL_DIAG_MODE(&event->hw)) 1856 aux_output_end(&cpuhw->handle); 1857 perf_event_update_userpage(event); 1858 perf_pmu_enable(event->pmu); 1859 } 1860 1861 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF); 1862 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG); 1863 1864 /* Attribute list for CPU_SF. 1865 * 1866 * The availablitiy depends on the CPU_MF sampling facility authorization 1867 * for basic + diagnositic samples. This is determined at initialization 1868 * time by the sampling facility device driver. 1869 * If the authorization for basic samples is turned off, it should be 1870 * also turned off for diagnostic sampling. 1871 * 1872 * During initialization of the device driver, check the authorization 1873 * level for diagnostic sampling and installs the attribute 1874 * file for diagnostic sampling if necessary. 1875 * 1876 * For now install a placeholder to reference all possible attributes: 1877 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG. 1878 * Add another entry for the final NULL pointer. 1879 */ 1880 enum { 1881 SF_CYCLES_BASIC_ATTR_IDX = 0, 1882 SF_CYCLES_BASIC_DIAG_ATTR_IDX, 1883 SF_CYCLES_ATTR_MAX 1884 }; 1885 1886 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = { 1887 [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC) 1888 }; 1889 1890 PMU_FORMAT_ATTR(event, "config:0-63"); 1891 1892 static struct attribute *cpumsf_pmu_format_attr[] = { 1893 &format_attr_event.attr, 1894 NULL, 1895 }; 1896 1897 static struct attribute_group cpumsf_pmu_events_group = { 1898 .name = "events", 1899 .attrs = cpumsf_pmu_events_attr, 1900 }; 1901 1902 static struct attribute_group cpumsf_pmu_format_group = { 1903 .name = "format", 1904 .attrs = cpumsf_pmu_format_attr, 1905 }; 1906 1907 static const struct attribute_group *cpumsf_pmu_attr_groups[] = { 1908 &cpumsf_pmu_events_group, 1909 &cpumsf_pmu_format_group, 1910 NULL, 1911 }; 1912 1913 static struct pmu cpumf_sampling = { 1914 .pmu_enable = cpumsf_pmu_enable, 1915 .pmu_disable = cpumsf_pmu_disable, 1916 1917 .event_init = cpumsf_pmu_event_init, 1918 .add = cpumsf_pmu_add, 1919 .del = cpumsf_pmu_del, 1920 1921 .start = cpumsf_pmu_start, 1922 .stop = cpumsf_pmu_stop, 1923 .read = cpumsf_pmu_read, 1924 1925 .attr_groups = cpumsf_pmu_attr_groups, 1926 1927 .setup_aux = aux_buffer_setup, 1928 .free_aux = aux_buffer_free, 1929 1930 .check_period = cpumsf_pmu_check_period, 1931 }; 1932 1933 static void cpumf_measurement_alert(struct ext_code ext_code, 1934 unsigned int alert, unsigned long unused) 1935 { 1936 struct cpu_hw_sf *cpuhw; 1937 1938 if (!(alert & CPU_MF_INT_SF_MASK)) 1939 return; 1940 inc_irq_stat(IRQEXT_CMS); 1941 cpuhw = this_cpu_ptr(&cpu_hw_sf); 1942 1943 /* Measurement alerts are shared and might happen when the PMU 1944 * is not reserved. Ignore these alerts in this case. */ 1945 if (!(cpuhw->flags & PMU_F_RESERVED)) 1946 return; 1947 1948 /* The processing below must take care of multiple alert events that 1949 * might be indicated concurrently. */ 1950 1951 /* Program alert request */ 1952 if (alert & CPU_MF_INT_SF_PRA) { 1953 if (cpuhw->flags & PMU_F_IN_USE) { 1954 if (SAMPL_DIAG_MODE(&cpuhw->event->hw)) 1955 hw_collect_aux(cpuhw); 1956 else 1957 hw_perf_event_update(cpuhw->event, 0); 1958 } 1959 } 1960 1961 /* Report measurement alerts only for non-PRA codes */ 1962 if (alert != CPU_MF_INT_SF_PRA) 1963 debug_sprintf_event(sfdbg, 6, "%s alert %#x\n", __func__, 1964 alert); 1965 1966 /* Sampling authorization change request */ 1967 if (alert & CPU_MF_INT_SF_SACA) 1968 qsi(&cpuhw->qsi); 1969 1970 /* Loss of sample data due to high-priority machine activities */ 1971 if (alert & CPU_MF_INT_SF_LSDA) { 1972 pr_err("Sample data was lost\n"); 1973 cpuhw->flags |= PMU_F_ERR_LSDA; 1974 sf_disable(); 1975 } 1976 1977 /* Invalid sampling buffer entry */ 1978 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) { 1979 pr_err("A sampling buffer entry is incorrect (alert=%#x)\n", 1980 alert); 1981 cpuhw->flags |= PMU_F_ERR_IBE; 1982 sf_disable(); 1983 } 1984 } 1985 1986 static int cpusf_pmu_setup(unsigned int cpu, int flags) 1987 { 1988 /* Ignore the notification if no events are scheduled on the PMU. 1989 * This might be racy... 1990 */ 1991 if (!refcount_read(&num_events)) 1992 return 0; 1993 1994 local_irq_disable(); 1995 setup_pmc_cpu(&flags); 1996 local_irq_enable(); 1997 return 0; 1998 } 1999 2000 static int s390_pmu_sf_online_cpu(unsigned int cpu) 2001 { 2002 return cpusf_pmu_setup(cpu, PMC_INIT); 2003 } 2004 2005 static int s390_pmu_sf_offline_cpu(unsigned int cpu) 2006 { 2007 return cpusf_pmu_setup(cpu, PMC_RELEASE); 2008 } 2009 2010 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp) 2011 { 2012 if (!cpum_sf_avail()) 2013 return -ENODEV; 2014 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); 2015 } 2016 2017 static int param_set_sfb_size(const char *val, const struct kernel_param *kp) 2018 { 2019 int rc; 2020 unsigned long min, max; 2021 2022 if (!cpum_sf_avail()) 2023 return -ENODEV; 2024 if (!val || !strlen(val)) 2025 return -EINVAL; 2026 2027 /* Valid parameter values: "min,max" or "max" */ 2028 min = CPUM_SF_MIN_SDB; 2029 max = CPUM_SF_MAX_SDB; 2030 if (strchr(val, ',')) 2031 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL; 2032 else 2033 rc = kstrtoul(val, 10, &max); 2034 2035 if (min < 2 || min >= max || max > get_num_physpages()) 2036 rc = -EINVAL; 2037 if (rc) 2038 return rc; 2039 2040 sfb_set_limits(min, max); 2041 pr_info("The sampling buffer limits have changed to: " 2042 "min %lu max %lu (diag %lu)\n", 2043 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR); 2044 return 0; 2045 } 2046 2047 #define param_check_sfb_size(name, p) __param_check(name, p, void) 2048 static const struct kernel_param_ops param_ops_sfb_size = { 2049 .set = param_set_sfb_size, 2050 .get = param_get_sfb_size, 2051 }; 2052 2053 enum { 2054 RS_INIT_FAILURE_BSDES = 2, /* Bad basic sampling size */ 2055 RS_INIT_FAILURE_ALRT = 3, /* IRQ registration failure */ 2056 RS_INIT_FAILURE_PERF = 4 /* PMU registration failure */ 2057 }; 2058 2059 static void __init pr_cpumsf_err(unsigned int reason) 2060 { 2061 pr_err("Sampling facility support for perf is not available: " 2062 "reason %#x\n", reason); 2063 } 2064 2065 static int __init init_cpum_sampling_pmu(void) 2066 { 2067 struct hws_qsi_info_block si; 2068 int err; 2069 2070 if (!cpum_sf_avail()) 2071 return -ENODEV; 2072 2073 memset(&si, 0, sizeof(si)); 2074 qsi(&si); 2075 if (!si.as && !si.ad) 2076 return -ENODEV; 2077 2078 if (si.bsdes != sizeof(struct hws_basic_entry)) { 2079 pr_cpumsf_err(RS_INIT_FAILURE_BSDES); 2080 return -EINVAL; 2081 } 2082 2083 if (si.ad) { 2084 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); 2085 /* Sampling of diagnostic data authorized, 2086 * install event into attribute list of PMU device. 2087 */ 2088 cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] = 2089 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG); 2090 } 2091 2092 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80); 2093 if (!sfdbg) { 2094 pr_err("Registering for s390dbf failed\n"); 2095 return -ENOMEM; 2096 } 2097 debug_register_view(sfdbg, &debug_sprintf_view); 2098 2099 err = register_external_irq(EXT_IRQ_MEASURE_ALERT, 2100 cpumf_measurement_alert); 2101 if (err) { 2102 pr_cpumsf_err(RS_INIT_FAILURE_ALRT); 2103 debug_unregister(sfdbg); 2104 goto out; 2105 } 2106 2107 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW); 2108 if (err) { 2109 pr_cpumsf_err(RS_INIT_FAILURE_PERF); 2110 unregister_external_irq(EXT_IRQ_MEASURE_ALERT, 2111 cpumf_measurement_alert); 2112 debug_unregister(sfdbg); 2113 goto out; 2114 } 2115 2116 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online", 2117 s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu); 2118 out: 2119 return err; 2120 } 2121 2122 arch_initcall(init_cpum_sampling_pmu); 2123 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644); 2124