1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance event support for s390x - CPU-measurement Counter Facility 4 * 5 * Copyright IBM Corp. 2012, 2023 6 * Author(s): Hendrik Brueckner <brueckner@linux.ibm.com> 7 * Thomas Richter <tmricht@linux.ibm.com> 8 */ 9 #define KMSG_COMPONENT "cpum_cf" 10 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/percpu.h> 15 #include <linux/notifier.h> 16 #include <linux/init.h> 17 #include <linux/export.h> 18 #include <linux/miscdevice.h> 19 #include <linux/perf_event.h> 20 21 #include <asm/cpu_mf.h> 22 #include <asm/hwctrset.h> 23 #include <asm/debug.h> 24 25 enum cpumf_ctr_set { 26 CPUMF_CTR_SET_BASIC = 0, /* Basic Counter Set */ 27 CPUMF_CTR_SET_USER = 1, /* Problem-State Counter Set */ 28 CPUMF_CTR_SET_CRYPTO = 2, /* Crypto-Activity Counter Set */ 29 CPUMF_CTR_SET_EXT = 3, /* Extended Counter Set */ 30 CPUMF_CTR_SET_MT_DIAG = 4, /* MT-diagnostic Counter Set */ 31 32 /* Maximum number of counter sets */ 33 CPUMF_CTR_SET_MAX, 34 }; 35 36 #define CPUMF_LCCTL_ENABLE_SHIFT 16 37 #define CPUMF_LCCTL_ACTCTL_SHIFT 0 38 39 static inline void ctr_set_enable(u64 *state, u64 ctrsets) 40 { 41 *state |= ctrsets << CPUMF_LCCTL_ENABLE_SHIFT; 42 } 43 44 static inline void ctr_set_disable(u64 *state, u64 ctrsets) 45 { 46 *state &= ~(ctrsets << CPUMF_LCCTL_ENABLE_SHIFT); 47 } 48 49 static inline void ctr_set_start(u64 *state, u64 ctrsets) 50 { 51 *state |= ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT; 52 } 53 54 static inline void ctr_set_stop(u64 *state, u64 ctrsets) 55 { 56 *state &= ~(ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT); 57 } 58 59 static inline int ctr_stcctm(enum cpumf_ctr_set set, u64 range, u64 *dest) 60 { 61 switch (set) { 62 case CPUMF_CTR_SET_BASIC: 63 return stcctm(BASIC, range, dest); 64 case CPUMF_CTR_SET_USER: 65 return stcctm(PROBLEM_STATE, range, dest); 66 case CPUMF_CTR_SET_CRYPTO: 67 return stcctm(CRYPTO_ACTIVITY, range, dest); 68 case CPUMF_CTR_SET_EXT: 69 return stcctm(EXTENDED, range, dest); 70 case CPUMF_CTR_SET_MT_DIAG: 71 return stcctm(MT_DIAG_CLEARING, range, dest); 72 case CPUMF_CTR_SET_MAX: 73 return 3; 74 } 75 return 3; 76 } 77 78 struct cpu_cf_events { 79 refcount_t refcnt; /* Reference count */ 80 atomic_t ctr_set[CPUMF_CTR_SET_MAX]; 81 u64 state; /* For perf_event_open SVC */ 82 u64 dev_state; /* For /dev/hwctr */ 83 unsigned int flags; 84 size_t used; /* Bytes used in data */ 85 size_t usedss; /* Bytes used in start/stop */ 86 unsigned char start[PAGE_SIZE]; /* Counter set at event add */ 87 unsigned char stop[PAGE_SIZE]; /* Counter set at event delete */ 88 unsigned char data[PAGE_SIZE]; /* Counter set at /dev/hwctr */ 89 unsigned int sets; /* # Counter set saved in memory */ 90 }; 91 92 static unsigned int cfdiag_cpu_speed; /* CPU speed for CF_DIAG trailer */ 93 static debug_info_t *cf_dbg; 94 95 /* 96 * The CPU Measurement query counter information instruction contains 97 * information which varies per machine generation, but is constant and 98 * does not change when running on a particular machine, such as counter 99 * first and second version number. This is needed to determine the size 100 * of counter sets. Extract this information at device driver initialization. 101 */ 102 static struct cpumf_ctr_info cpumf_ctr_info; 103 104 struct cpu_cf_ptr { 105 struct cpu_cf_events *cpucf; 106 }; 107 108 static struct cpu_cf_root { /* Anchor to per CPU data */ 109 refcount_t refcnt; /* Overall active events */ 110 struct cpu_cf_ptr __percpu *cfptr; 111 } cpu_cf_root; 112 113 /* 114 * Serialize event initialization and event removal. Both are called from 115 * user space in task context with perf_event_open() and close() 116 * system calls. 117 * 118 * This mutex serializes functions cpum_cf_alloc_cpu() called at event 119 * initialization via cpumf_pmu_event_init() and function cpum_cf_free_cpu() 120 * called at event removal via call back function hw_perf_event_destroy() 121 * when the event is deleted. They are serialized to enforce correct 122 * bookkeeping of pointer and reference counts anchored by 123 * struct cpu_cf_root and the access to cpu_cf_root::refcnt and the 124 * per CPU pointers stored in cpu_cf_root::cfptr. 125 */ 126 static DEFINE_MUTEX(pmc_reserve_mutex); 127 128 /* 129 * Get pointer to per-cpu structure. 130 * 131 * Function get_cpu_cfhw() is called from 132 * - cfset_copy_all(): This function is protected by cpus_read_lock(), so 133 * CPU hot plug remove can not happen. Event removal requires a close() 134 * first. 135 * 136 * Function this_cpu_cfhw() is called from perf common code functions: 137 * - pmu_{en|dis}able(), pmu_{add|del}()and pmu_{start|stop}(): 138 * All functions execute with interrupts disabled on that particular CPU. 139 * - cfset_ioctl_{on|off}, cfset_cpu_read(): see comment cfset_copy_all(). 140 * 141 * Therefore it is safe to access the CPU specific pointer to the event. 142 */ 143 static struct cpu_cf_events *get_cpu_cfhw(int cpu) 144 { 145 struct cpu_cf_ptr __percpu *p = cpu_cf_root.cfptr; 146 147 if (p) { 148 struct cpu_cf_ptr *q = per_cpu_ptr(p, cpu); 149 150 return q->cpucf; 151 } 152 return NULL; 153 } 154 155 static struct cpu_cf_events *this_cpu_cfhw(void) 156 { 157 return get_cpu_cfhw(smp_processor_id()); 158 } 159 160 /* Disable counter sets on dedicated CPU */ 161 static void cpum_cf_reset_cpu(void *flags) 162 { 163 lcctl(0); 164 } 165 166 /* Free per CPU data when the last event is removed. */ 167 static void cpum_cf_free_root(void) 168 { 169 if (!refcount_dec_and_test(&cpu_cf_root.refcnt)) 170 return; 171 free_percpu(cpu_cf_root.cfptr); 172 cpu_cf_root.cfptr = NULL; 173 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT); 174 on_each_cpu(cpum_cf_reset_cpu, NULL, 1); 175 debug_sprintf_event(cf_dbg, 4, "%s root.refcnt %u cfptr %d\n", 176 __func__, refcount_read(&cpu_cf_root.refcnt), 177 !cpu_cf_root.cfptr); 178 } 179 180 /* 181 * On initialization of first event also allocate per CPU data dynamically. 182 * Start with an array of pointers, the array size is the maximum number of 183 * CPUs possible, which might be larger than the number of CPUs currently 184 * online. 185 */ 186 static int cpum_cf_alloc_root(void) 187 { 188 int rc = 0; 189 190 if (refcount_inc_not_zero(&cpu_cf_root.refcnt)) 191 return rc; 192 193 /* The memory is already zeroed. */ 194 cpu_cf_root.cfptr = alloc_percpu(struct cpu_cf_ptr); 195 if (cpu_cf_root.cfptr) { 196 refcount_set(&cpu_cf_root.refcnt, 1); 197 on_each_cpu(cpum_cf_reset_cpu, NULL, 1); 198 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT); 199 } else { 200 rc = -ENOMEM; 201 } 202 203 return rc; 204 } 205 206 /* Free CPU counter data structure for a PMU */ 207 static void cpum_cf_free_cpu(int cpu) 208 { 209 struct cpu_cf_events *cpuhw; 210 struct cpu_cf_ptr *p; 211 212 mutex_lock(&pmc_reserve_mutex); 213 /* 214 * When invoked via CPU hotplug handler, there might be no events 215 * installed or that particular CPU might not have an 216 * event installed. This anchor pointer can be NULL! 217 */ 218 if (!cpu_cf_root.cfptr) 219 goto out; 220 p = per_cpu_ptr(cpu_cf_root.cfptr, cpu); 221 cpuhw = p->cpucf; 222 /* 223 * Might be zero when called from CPU hotplug handler and no event 224 * installed on that CPU, but on different CPUs. 225 */ 226 if (!cpuhw) 227 goto out; 228 229 if (refcount_dec_and_test(&cpuhw->refcnt)) { 230 kfree(cpuhw); 231 p->cpucf = NULL; 232 } 233 cpum_cf_free_root(); 234 out: 235 mutex_unlock(&pmc_reserve_mutex); 236 } 237 238 /* Allocate CPU counter data structure for a PMU. Called under mutex lock. */ 239 static int cpum_cf_alloc_cpu(int cpu) 240 { 241 struct cpu_cf_events *cpuhw; 242 struct cpu_cf_ptr *p; 243 int rc; 244 245 mutex_lock(&pmc_reserve_mutex); 246 rc = cpum_cf_alloc_root(); 247 if (rc) 248 goto unlock; 249 p = per_cpu_ptr(cpu_cf_root.cfptr, cpu); 250 cpuhw = p->cpucf; 251 252 if (!cpuhw) { 253 cpuhw = kzalloc(sizeof(*cpuhw), GFP_KERNEL); 254 if (cpuhw) { 255 p->cpucf = cpuhw; 256 refcount_set(&cpuhw->refcnt, 1); 257 } else { 258 rc = -ENOMEM; 259 } 260 } else { 261 refcount_inc(&cpuhw->refcnt); 262 } 263 if (rc) { 264 /* 265 * Error in allocation of event, decrement anchor. Since 266 * cpu_cf_event in not created, its destroy() function is not 267 * invoked. Adjust the reference counter for the anchor. 268 */ 269 cpum_cf_free_root(); 270 } 271 unlock: 272 mutex_unlock(&pmc_reserve_mutex); 273 return rc; 274 } 275 276 /* 277 * Create/delete per CPU data structures for /dev/hwctr interface and events 278 * created by perf_event_open(). 279 * If cpu is -1, track task on all available CPUs. This requires 280 * allocation of hardware data structures for all CPUs. This setup handles 281 * perf_event_open() with task context and /dev/hwctr interface. 282 * If cpu is non-zero install event on this CPU only. This setup handles 283 * perf_event_open() with CPU context. 284 */ 285 static int cpum_cf_alloc(int cpu) 286 { 287 cpumask_var_t mask; 288 int rc; 289 290 if (cpu == -1) { 291 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 292 return -ENOMEM; 293 for_each_online_cpu(cpu) { 294 rc = cpum_cf_alloc_cpu(cpu); 295 if (rc) { 296 for_each_cpu(cpu, mask) 297 cpum_cf_free_cpu(cpu); 298 break; 299 } 300 cpumask_set_cpu(cpu, mask); 301 } 302 free_cpumask_var(mask); 303 } else { 304 rc = cpum_cf_alloc_cpu(cpu); 305 } 306 return rc; 307 } 308 309 static void cpum_cf_free(int cpu) 310 { 311 if (cpu == -1) { 312 for_each_online_cpu(cpu) 313 cpum_cf_free_cpu(cpu); 314 } else { 315 cpum_cf_free_cpu(cpu); 316 } 317 } 318 319 #define CF_DIAG_CTRSET_DEF 0xfeef /* Counter set header mark */ 320 /* interval in seconds */ 321 322 /* Counter sets are stored as data stream in a page sized memory buffer and 323 * exported to user space via raw data attached to the event sample data. 324 * Each counter set starts with an eight byte header consisting of: 325 * - a two byte eye catcher (0xfeef) 326 * - a one byte counter set number 327 * - a two byte counter set size (indicates the number of counters in this set) 328 * - a three byte reserved value (must be zero) to make the header the same 329 * size as a counter value. 330 * All counter values are eight byte in size. 331 * 332 * All counter sets are followed by a 64 byte trailer. 333 * The trailer consists of a: 334 * - flag field indicating valid fields when corresponding bit set 335 * - the counter facility first and second version number 336 * - the CPU speed if nonzero 337 * - the time stamp the counter sets have been collected 338 * - the time of day (TOD) base value 339 * - the machine type. 340 * 341 * The counter sets are saved when the process is prepared to be executed on a 342 * CPU and saved again when the process is going to be removed from a CPU. 343 * The difference of both counter sets are calculated and stored in the event 344 * sample data area. 345 */ 346 struct cf_ctrset_entry { /* CPU-M CF counter set entry (8 byte) */ 347 unsigned int def:16; /* 0-15 Data Entry Format */ 348 unsigned int set:16; /* 16-31 Counter set identifier */ 349 unsigned int ctr:16; /* 32-47 Number of stored counters */ 350 unsigned int res1:16; /* 48-63 Reserved */ 351 }; 352 353 struct cf_trailer_entry { /* CPU-M CF_DIAG trailer (64 byte) */ 354 /* 0 - 7 */ 355 union { 356 struct { 357 unsigned int clock_base:1; /* TOD clock base set */ 358 unsigned int speed:1; /* CPU speed set */ 359 /* Measurement alerts */ 360 unsigned int mtda:1; /* Loss of MT ctr. data alert */ 361 unsigned int caca:1; /* Counter auth. change alert */ 362 unsigned int lcda:1; /* Loss of counter data alert */ 363 }; 364 unsigned long flags; /* 0-63 All indicators */ 365 }; 366 /* 8 - 15 */ 367 unsigned int cfvn:16; /* 64-79 Ctr First Version */ 368 unsigned int csvn:16; /* 80-95 Ctr Second Version */ 369 unsigned int cpu_speed:32; /* 96-127 CPU speed */ 370 /* 16 - 23 */ 371 unsigned long timestamp; /* 128-191 Timestamp (TOD) */ 372 /* 24 - 55 */ 373 union { 374 struct { 375 unsigned long progusage1; 376 unsigned long progusage2; 377 unsigned long progusage3; 378 unsigned long tod_base; 379 }; 380 unsigned long progusage[4]; 381 }; 382 /* 56 - 63 */ 383 unsigned int mach_type:16; /* Machine type */ 384 unsigned int res1:16; /* Reserved */ 385 unsigned int res2:32; /* Reserved */ 386 }; 387 388 /* Create the trailer data at the end of a page. */ 389 static void cfdiag_trailer(struct cf_trailer_entry *te) 390 { 391 struct cpuid cpuid; 392 393 te->cfvn = cpumf_ctr_info.cfvn; /* Counter version numbers */ 394 te->csvn = cpumf_ctr_info.csvn; 395 396 get_cpu_id(&cpuid); /* Machine type */ 397 te->mach_type = cpuid.machine; 398 te->cpu_speed = cfdiag_cpu_speed; 399 if (te->cpu_speed) 400 te->speed = 1; 401 te->clock_base = 1; /* Save clock base */ 402 te->tod_base = tod_clock_base.tod; 403 te->timestamp = get_tod_clock_fast(); 404 } 405 406 /* 407 * The number of counters per counter set varies between machine generations, 408 * but is constant when running on a particular machine generation. 409 * Determine each counter set size at device driver initialization and 410 * retrieve it later. 411 */ 412 static size_t cpumf_ctr_setsizes[CPUMF_CTR_SET_MAX]; 413 static void cpum_cf_make_setsize(enum cpumf_ctr_set ctrset) 414 { 415 size_t ctrset_size = 0; 416 417 switch (ctrset) { 418 case CPUMF_CTR_SET_BASIC: 419 if (cpumf_ctr_info.cfvn >= 1) 420 ctrset_size = 6; 421 break; 422 case CPUMF_CTR_SET_USER: 423 if (cpumf_ctr_info.cfvn == 1) 424 ctrset_size = 6; 425 else if (cpumf_ctr_info.cfvn >= 3) 426 ctrset_size = 2; 427 break; 428 case CPUMF_CTR_SET_CRYPTO: 429 if (cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5) 430 ctrset_size = 16; 431 else if (cpumf_ctr_info.csvn == 6 || cpumf_ctr_info.csvn == 7) 432 ctrset_size = 20; 433 break; 434 case CPUMF_CTR_SET_EXT: 435 if (cpumf_ctr_info.csvn == 1) 436 ctrset_size = 32; 437 else if (cpumf_ctr_info.csvn == 2) 438 ctrset_size = 48; 439 else if (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5) 440 ctrset_size = 128; 441 else if (cpumf_ctr_info.csvn == 6 || cpumf_ctr_info.csvn == 7) 442 ctrset_size = 160; 443 break; 444 case CPUMF_CTR_SET_MT_DIAG: 445 if (cpumf_ctr_info.csvn > 3) 446 ctrset_size = 48; 447 break; 448 case CPUMF_CTR_SET_MAX: 449 break; 450 } 451 cpumf_ctr_setsizes[ctrset] = ctrset_size; 452 } 453 454 /* 455 * Return the maximum possible counter set size (in number of 8 byte counters) 456 * depending on type and model number. 457 */ 458 static size_t cpum_cf_read_setsize(enum cpumf_ctr_set ctrset) 459 { 460 return cpumf_ctr_setsizes[ctrset]; 461 } 462 463 /* Read a counter set. The counter set number determines the counter set and 464 * the CPUM-CF first and second version number determine the number of 465 * available counters in each counter set. 466 * Each counter set starts with header containing the counter set number and 467 * the number of eight byte counters. 468 * 469 * The functions returns the number of bytes occupied by this counter set 470 * including the header. 471 * If there is no counter in the counter set, this counter set is useless and 472 * zero is returned on this case. 473 * 474 * Note that the counter sets may not be enabled or active and the stcctm 475 * instruction might return error 3. Depending on error_ok value this is ok, 476 * for example when called from cpumf_pmu_start() call back function. 477 */ 478 static size_t cfdiag_getctrset(struct cf_ctrset_entry *ctrdata, int ctrset, 479 size_t room, bool error_ok) 480 { 481 size_t ctrset_size, need = 0; 482 int rc = 3; /* Assume write failure */ 483 484 ctrdata->def = CF_DIAG_CTRSET_DEF; 485 ctrdata->set = ctrset; 486 ctrdata->res1 = 0; 487 ctrset_size = cpum_cf_read_setsize(ctrset); 488 489 if (ctrset_size) { /* Save data */ 490 need = ctrset_size * sizeof(u64) + sizeof(*ctrdata); 491 if (need <= room) { 492 rc = ctr_stcctm(ctrset, ctrset_size, 493 (u64 *)(ctrdata + 1)); 494 } 495 if (rc != 3 || error_ok) 496 ctrdata->ctr = ctrset_size; 497 else 498 need = 0; 499 } 500 501 return need; 502 } 503 504 static const u64 cpumf_ctr_ctl[CPUMF_CTR_SET_MAX] = { 505 [CPUMF_CTR_SET_BASIC] = 0x02, 506 [CPUMF_CTR_SET_USER] = 0x04, 507 [CPUMF_CTR_SET_CRYPTO] = 0x08, 508 [CPUMF_CTR_SET_EXT] = 0x01, 509 [CPUMF_CTR_SET_MT_DIAG] = 0x20, 510 }; 511 512 /* Read out all counter sets and save them in the provided data buffer. 513 * The last 64 byte host an artificial trailer entry. 514 */ 515 static size_t cfdiag_getctr(void *data, size_t sz, unsigned long auth, 516 bool error_ok) 517 { 518 struct cf_trailer_entry *trailer; 519 size_t offset = 0, done; 520 int i; 521 522 memset(data, 0, sz); 523 sz -= sizeof(*trailer); /* Always room for trailer */ 524 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 525 struct cf_ctrset_entry *ctrdata = data + offset; 526 527 if (!(auth & cpumf_ctr_ctl[i])) 528 continue; /* Counter set not authorized */ 529 530 done = cfdiag_getctrset(ctrdata, i, sz - offset, error_ok); 531 offset += done; 532 } 533 trailer = data + offset; 534 cfdiag_trailer(trailer); 535 return offset + sizeof(*trailer); 536 } 537 538 /* Calculate the difference for each counter in a counter set. */ 539 static void cfdiag_diffctrset(u64 *pstart, u64 *pstop, int counters) 540 { 541 for (; --counters >= 0; ++pstart, ++pstop) 542 if (*pstop >= *pstart) 543 *pstop -= *pstart; 544 else 545 *pstop = *pstart - *pstop + 1; 546 } 547 548 /* Scan the counter sets and calculate the difference of each counter 549 * in each set. The result is the increment of each counter during the 550 * period the counter set has been activated. 551 * 552 * Return true on success. 553 */ 554 static int cfdiag_diffctr(struct cpu_cf_events *cpuhw, unsigned long auth) 555 { 556 struct cf_trailer_entry *trailer_start, *trailer_stop; 557 struct cf_ctrset_entry *ctrstart, *ctrstop; 558 size_t offset = 0; 559 560 auth &= (1 << CPUMF_LCCTL_ENABLE_SHIFT) - 1; 561 do { 562 ctrstart = (struct cf_ctrset_entry *)(cpuhw->start + offset); 563 ctrstop = (struct cf_ctrset_entry *)(cpuhw->stop + offset); 564 565 if (memcmp(ctrstop, ctrstart, sizeof(*ctrstop))) { 566 pr_err_once("cpum_cf_diag counter set compare error " 567 "in set %i\n", ctrstart->set); 568 return 0; 569 } 570 auth &= ~cpumf_ctr_ctl[ctrstart->set]; 571 if (ctrstart->def == CF_DIAG_CTRSET_DEF) { 572 cfdiag_diffctrset((u64 *)(ctrstart + 1), 573 (u64 *)(ctrstop + 1), ctrstart->ctr); 574 offset += ctrstart->ctr * sizeof(u64) + 575 sizeof(*ctrstart); 576 } 577 } while (ctrstart->def && auth); 578 579 /* Save time_stamp from start of event in stop's trailer */ 580 trailer_start = (struct cf_trailer_entry *)(cpuhw->start + offset); 581 trailer_stop = (struct cf_trailer_entry *)(cpuhw->stop + offset); 582 trailer_stop->progusage[0] = trailer_start->timestamp; 583 584 return 1; 585 } 586 587 static enum cpumf_ctr_set get_counter_set(u64 event) 588 { 589 int set = CPUMF_CTR_SET_MAX; 590 591 if (event < 32) 592 set = CPUMF_CTR_SET_BASIC; 593 else if (event < 64) 594 set = CPUMF_CTR_SET_USER; 595 else if (event < 128) 596 set = CPUMF_CTR_SET_CRYPTO; 597 else if (event < 288) 598 set = CPUMF_CTR_SET_EXT; 599 else if (event >= 448 && event < 496) 600 set = CPUMF_CTR_SET_MT_DIAG; 601 602 return set; 603 } 604 605 static int validate_ctr_version(const u64 config, enum cpumf_ctr_set set) 606 { 607 u16 mtdiag_ctl; 608 int err = 0; 609 610 /* check required version for counter sets */ 611 switch (set) { 612 case CPUMF_CTR_SET_BASIC: 613 case CPUMF_CTR_SET_USER: 614 if (cpumf_ctr_info.cfvn < 1) 615 err = -EOPNOTSUPP; 616 break; 617 case CPUMF_CTR_SET_CRYPTO: 618 if ((cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5 && 619 config > 79) || (cpumf_ctr_info.csvn >= 6 && config > 83)) 620 err = -EOPNOTSUPP; 621 break; 622 case CPUMF_CTR_SET_EXT: 623 if (cpumf_ctr_info.csvn < 1) 624 err = -EOPNOTSUPP; 625 if ((cpumf_ctr_info.csvn == 1 && config > 159) || 626 (cpumf_ctr_info.csvn == 2 && config > 175) || 627 (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5 && 628 config > 255) || 629 (cpumf_ctr_info.csvn >= 6 && config > 287)) 630 err = -EOPNOTSUPP; 631 break; 632 case CPUMF_CTR_SET_MT_DIAG: 633 if (cpumf_ctr_info.csvn <= 3) 634 err = -EOPNOTSUPP; 635 /* 636 * MT-diagnostic counters are read-only. The counter set 637 * is automatically enabled and activated on all CPUs with 638 * multithreading (SMT). Deactivation of multithreading 639 * also disables the counter set. State changes are ignored 640 * by lcctl(). Because Linux controls SMT enablement through 641 * a kernel parameter only, the counter set is either disabled 642 * or enabled and active. 643 * 644 * Thus, the counters can only be used if SMT is on and the 645 * counter set is enabled and active. 646 */ 647 mtdiag_ctl = cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG]; 648 if (!((cpumf_ctr_info.auth_ctl & mtdiag_ctl) && 649 (cpumf_ctr_info.enable_ctl & mtdiag_ctl) && 650 (cpumf_ctr_info.act_ctl & mtdiag_ctl))) 651 err = -EOPNOTSUPP; 652 break; 653 case CPUMF_CTR_SET_MAX: 654 err = -EOPNOTSUPP; 655 } 656 657 return err; 658 } 659 660 /* 661 * Change the CPUMF state to active. 662 * Enable and activate the CPU-counter sets according 663 * to the per-cpu control state. 664 */ 665 static void cpumf_pmu_enable(struct pmu *pmu) 666 { 667 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 668 int err; 669 670 if (!cpuhw || (cpuhw->flags & PMU_F_ENABLED)) 671 return; 672 673 err = lcctl(cpuhw->state | cpuhw->dev_state); 674 if (err) 675 pr_err("Enabling the performance measuring unit failed with rc=%x\n", err); 676 else 677 cpuhw->flags |= PMU_F_ENABLED; 678 } 679 680 /* 681 * Change the CPUMF state to inactive. 682 * Disable and enable (inactive) the CPU-counter sets according 683 * to the per-cpu control state. 684 */ 685 static void cpumf_pmu_disable(struct pmu *pmu) 686 { 687 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 688 u64 inactive; 689 int err; 690 691 if (!cpuhw || !(cpuhw->flags & PMU_F_ENABLED)) 692 return; 693 694 inactive = cpuhw->state & ~((1 << CPUMF_LCCTL_ENABLE_SHIFT) - 1); 695 inactive |= cpuhw->dev_state; 696 err = lcctl(inactive); 697 if (err) 698 pr_err("Disabling the performance measuring unit failed with rc=%x\n", err); 699 else 700 cpuhw->flags &= ~PMU_F_ENABLED; 701 } 702 703 /* Release the PMU if event is the last perf event */ 704 static void hw_perf_event_destroy(struct perf_event *event) 705 { 706 cpum_cf_free(event->cpu); 707 } 708 709 /* CPUMF <-> perf event mappings for kernel+userspace (basic set) */ 710 static const int cpumf_generic_events_basic[] = { 711 [PERF_COUNT_HW_CPU_CYCLES] = 0, 712 [PERF_COUNT_HW_INSTRUCTIONS] = 1, 713 [PERF_COUNT_HW_CACHE_REFERENCES] = -1, 714 [PERF_COUNT_HW_CACHE_MISSES] = -1, 715 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1, 716 [PERF_COUNT_HW_BRANCH_MISSES] = -1, 717 [PERF_COUNT_HW_BUS_CYCLES] = -1, 718 }; 719 /* CPUMF <-> perf event mappings for userspace (problem-state set) */ 720 static const int cpumf_generic_events_user[] = { 721 [PERF_COUNT_HW_CPU_CYCLES] = 32, 722 [PERF_COUNT_HW_INSTRUCTIONS] = 33, 723 [PERF_COUNT_HW_CACHE_REFERENCES] = -1, 724 [PERF_COUNT_HW_CACHE_MISSES] = -1, 725 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1, 726 [PERF_COUNT_HW_BRANCH_MISSES] = -1, 727 [PERF_COUNT_HW_BUS_CYCLES] = -1, 728 }; 729 730 static int is_userspace_event(u64 ev) 731 { 732 return cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev || 733 cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev; 734 } 735 736 static int __hw_perf_event_init(struct perf_event *event, unsigned int type) 737 { 738 struct perf_event_attr *attr = &event->attr; 739 struct hw_perf_event *hwc = &event->hw; 740 enum cpumf_ctr_set set; 741 u64 ev; 742 743 switch (type) { 744 case PERF_TYPE_RAW: 745 /* Raw events are used to access counters directly, 746 * hence do not permit excludes */ 747 if (attr->exclude_kernel || attr->exclude_user || 748 attr->exclude_hv) 749 return -EOPNOTSUPP; 750 ev = attr->config; 751 break; 752 753 case PERF_TYPE_HARDWARE: 754 if (is_sampling_event(event)) /* No sampling support */ 755 return -ENOENT; 756 ev = attr->config; 757 if (!attr->exclude_user && attr->exclude_kernel) { 758 /* 759 * Count user space (problem-state) only 760 * Handle events 32 and 33 as 0:u and 1:u 761 */ 762 if (!is_userspace_event(ev)) { 763 if (ev >= ARRAY_SIZE(cpumf_generic_events_user)) 764 return -EOPNOTSUPP; 765 ev = cpumf_generic_events_user[ev]; 766 } 767 } else if (!attr->exclude_kernel && attr->exclude_user) { 768 /* No support for kernel space counters only */ 769 return -EOPNOTSUPP; 770 } else { 771 /* Count user and kernel space, incl. events 32 + 33 */ 772 if (!is_userspace_event(ev)) { 773 if (ev >= ARRAY_SIZE(cpumf_generic_events_basic)) 774 return -EOPNOTSUPP; 775 ev = cpumf_generic_events_basic[ev]; 776 } 777 } 778 break; 779 780 default: 781 return -ENOENT; 782 } 783 784 if (ev == -1) 785 return -ENOENT; 786 787 if (ev > PERF_CPUM_CF_MAX_CTR) 788 return -ENOENT; 789 790 /* Obtain the counter set to which the specified counter belongs */ 791 set = get_counter_set(ev); 792 switch (set) { 793 case CPUMF_CTR_SET_BASIC: 794 case CPUMF_CTR_SET_USER: 795 case CPUMF_CTR_SET_CRYPTO: 796 case CPUMF_CTR_SET_EXT: 797 case CPUMF_CTR_SET_MT_DIAG: 798 /* 799 * Use the hardware perf event structure to store the 800 * counter number in the 'config' member and the counter 801 * set number in the 'config_base' as bit mask. 802 * It is later used to enable/disable the counter(s). 803 */ 804 hwc->config = ev; 805 hwc->config_base = cpumf_ctr_ctl[set]; 806 break; 807 case CPUMF_CTR_SET_MAX: 808 /* The counter could not be associated to a counter set */ 809 return -EINVAL; 810 } 811 812 /* Initialize for using the CPU-measurement counter facility */ 813 if (cpum_cf_alloc(event->cpu)) 814 return -ENOMEM; 815 event->destroy = hw_perf_event_destroy; 816 817 /* 818 * Finally, validate version and authorization of the counter set. 819 * If the particular CPU counter set is not authorized, 820 * return with -ENOENT in order to fall back to other 821 * PMUs that might suffice the event request. 822 */ 823 if (!(hwc->config_base & cpumf_ctr_info.auth_ctl)) 824 return -ENOENT; 825 return validate_ctr_version(hwc->config, set); 826 } 827 828 /* Events CPU_CYLCES and INSTRUCTIONS can be submitted with two different 829 * attribute::type values: 830 * - PERF_TYPE_HARDWARE: 831 * - pmu->type: 832 * Handle both type of invocations identical. They address the same hardware. 833 * The result is different when event modifiers exclude_kernel and/or 834 * exclude_user are also set. 835 */ 836 static int cpumf_pmu_event_type(struct perf_event *event) 837 { 838 u64 ev = event->attr.config; 839 840 if (cpumf_generic_events_basic[PERF_COUNT_HW_CPU_CYCLES] == ev || 841 cpumf_generic_events_basic[PERF_COUNT_HW_INSTRUCTIONS] == ev || 842 cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev || 843 cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev) 844 return PERF_TYPE_HARDWARE; 845 return PERF_TYPE_RAW; 846 } 847 848 static int cpumf_pmu_event_init(struct perf_event *event) 849 { 850 unsigned int type = event->attr.type; 851 int err; 852 853 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_RAW) 854 err = __hw_perf_event_init(event, type); 855 else if (event->pmu->type == type) 856 /* Registered as unknown PMU */ 857 err = __hw_perf_event_init(event, cpumf_pmu_event_type(event)); 858 else 859 return -ENOENT; 860 861 if (unlikely(err) && event->destroy) 862 event->destroy(event); 863 864 return err; 865 } 866 867 static int hw_perf_event_reset(struct perf_event *event) 868 { 869 u64 prev, new; 870 int err; 871 872 do { 873 prev = local64_read(&event->hw.prev_count); 874 err = ecctr(event->hw.config, &new); 875 if (err) { 876 if (err != 3) 877 break; 878 /* The counter is not (yet) available. This 879 * might happen if the counter set to which 880 * this counter belongs is in the disabled 881 * state. 882 */ 883 new = 0; 884 } 885 } while (local64_cmpxchg(&event->hw.prev_count, prev, new) != prev); 886 887 return err; 888 } 889 890 static void hw_perf_event_update(struct perf_event *event) 891 { 892 u64 prev, new, delta; 893 int err; 894 895 do { 896 prev = local64_read(&event->hw.prev_count); 897 err = ecctr(event->hw.config, &new); 898 if (err) 899 return; 900 } while (local64_cmpxchg(&event->hw.prev_count, prev, new) != prev); 901 902 delta = (prev <= new) ? new - prev 903 : (-1ULL - prev) + new + 1; /* overflow */ 904 local64_add(delta, &event->count); 905 } 906 907 static void cpumf_pmu_read(struct perf_event *event) 908 { 909 if (event->hw.state & PERF_HES_STOPPED) 910 return; 911 912 hw_perf_event_update(event); 913 } 914 915 static void cpumf_pmu_start(struct perf_event *event, int flags) 916 { 917 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 918 struct hw_perf_event *hwc = &event->hw; 919 int i; 920 921 if (!(hwc->state & PERF_HES_STOPPED)) 922 return; 923 924 hwc->state = 0; 925 926 /* (Re-)enable and activate the counter set */ 927 ctr_set_enable(&cpuhw->state, hwc->config_base); 928 ctr_set_start(&cpuhw->state, hwc->config_base); 929 930 /* The counter set to which this counter belongs can be already active. 931 * Because all counters in a set are active, the event->hw.prev_count 932 * needs to be synchronized. At this point, the counter set can be in 933 * the inactive or disabled state. 934 */ 935 if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) { 936 cpuhw->usedss = cfdiag_getctr(cpuhw->start, 937 sizeof(cpuhw->start), 938 hwc->config_base, true); 939 } else { 940 hw_perf_event_reset(event); 941 } 942 943 /* Increment refcount for counter sets */ 944 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) 945 if ((hwc->config_base & cpumf_ctr_ctl[i])) 946 atomic_inc(&cpuhw->ctr_set[i]); 947 } 948 949 /* Create perf event sample with the counter sets as raw data. The sample 950 * is then pushed to the event subsystem and the function checks for 951 * possible event overflows. If an event overflow occurs, the PMU is 952 * stopped. 953 * 954 * Return non-zero if an event overflow occurred. 955 */ 956 static int cfdiag_push_sample(struct perf_event *event, 957 struct cpu_cf_events *cpuhw) 958 { 959 struct perf_sample_data data; 960 struct perf_raw_record raw; 961 struct pt_regs regs; 962 int overflow; 963 964 /* Setup perf sample */ 965 perf_sample_data_init(&data, 0, event->hw.last_period); 966 memset(®s, 0, sizeof(regs)); 967 memset(&raw, 0, sizeof(raw)); 968 969 if (event->attr.sample_type & PERF_SAMPLE_CPU) 970 data.cpu_entry.cpu = event->cpu; 971 if (event->attr.sample_type & PERF_SAMPLE_RAW) { 972 raw.frag.size = cpuhw->usedss; 973 raw.frag.data = cpuhw->stop; 974 perf_sample_save_raw_data(&data, &raw); 975 } 976 977 overflow = perf_event_overflow(event, &data, ®s); 978 if (overflow) 979 event->pmu->stop(event, 0); 980 981 perf_event_update_userpage(event); 982 return overflow; 983 } 984 985 static void cpumf_pmu_stop(struct perf_event *event, int flags) 986 { 987 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 988 struct hw_perf_event *hwc = &event->hw; 989 int i; 990 991 if (!(hwc->state & PERF_HES_STOPPED)) { 992 /* Decrement reference count for this counter set and if this 993 * is the last used counter in the set, clear activation 994 * control and set the counter set state to inactive. 995 */ 996 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 997 if (!(hwc->config_base & cpumf_ctr_ctl[i])) 998 continue; 999 if (!atomic_dec_return(&cpuhw->ctr_set[i])) 1000 ctr_set_stop(&cpuhw->state, cpumf_ctr_ctl[i]); 1001 } 1002 hwc->state |= PERF_HES_STOPPED; 1003 } 1004 1005 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 1006 if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) { 1007 local64_inc(&event->count); 1008 cpuhw->usedss = cfdiag_getctr(cpuhw->stop, 1009 sizeof(cpuhw->stop), 1010 event->hw.config_base, 1011 false); 1012 if (cfdiag_diffctr(cpuhw, event->hw.config_base)) 1013 cfdiag_push_sample(event, cpuhw); 1014 } else { 1015 hw_perf_event_update(event); 1016 } 1017 hwc->state |= PERF_HES_UPTODATE; 1018 } 1019 } 1020 1021 static int cpumf_pmu_add(struct perf_event *event, int flags) 1022 { 1023 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1024 1025 ctr_set_enable(&cpuhw->state, event->hw.config_base); 1026 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1027 1028 if (flags & PERF_EF_START) 1029 cpumf_pmu_start(event, PERF_EF_RELOAD); 1030 1031 return 0; 1032 } 1033 1034 static void cpumf_pmu_del(struct perf_event *event, int flags) 1035 { 1036 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1037 int i; 1038 1039 cpumf_pmu_stop(event, PERF_EF_UPDATE); 1040 1041 /* Check if any counter in the counter set is still used. If not used, 1042 * change the counter set to the disabled state. This also clears the 1043 * content of all counters in the set. 1044 * 1045 * When a new perf event has been added but not yet started, this can 1046 * clear enable control and resets all counters in a set. Therefore, 1047 * cpumf_pmu_start() always has to reenable a counter set. 1048 */ 1049 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) 1050 if (!atomic_read(&cpuhw->ctr_set[i])) 1051 ctr_set_disable(&cpuhw->state, cpumf_ctr_ctl[i]); 1052 } 1053 1054 /* Performance monitoring unit for s390x */ 1055 static struct pmu cpumf_pmu = { 1056 .task_ctx_nr = perf_sw_context, 1057 .capabilities = PERF_PMU_CAP_NO_INTERRUPT, 1058 .pmu_enable = cpumf_pmu_enable, 1059 .pmu_disable = cpumf_pmu_disable, 1060 .event_init = cpumf_pmu_event_init, 1061 .add = cpumf_pmu_add, 1062 .del = cpumf_pmu_del, 1063 .start = cpumf_pmu_start, 1064 .stop = cpumf_pmu_stop, 1065 .read = cpumf_pmu_read, 1066 }; 1067 1068 static struct cfset_session { /* CPUs and counter set bit mask */ 1069 struct list_head head; /* Head of list of active processes */ 1070 } cfset_session = { 1071 .head = LIST_HEAD_INIT(cfset_session.head) 1072 }; 1073 1074 static refcount_t cfset_opencnt = REFCOUNT_INIT(0); /* Access count */ 1075 /* 1076 * Synchronize access to device /dev/hwc. This mutex protects against 1077 * concurrent access to functions cfset_open() and cfset_release(). 1078 * Same for CPU hotplug add and remove events triggering 1079 * cpum_cf_online_cpu() and cpum_cf_offline_cpu(). 1080 * It also serializes concurrent device ioctl access from multiple 1081 * processes accessing /dev/hwc. 1082 * 1083 * The mutex protects concurrent access to the /dev/hwctr session management 1084 * struct cfset_session and reference counting variable cfset_opencnt. 1085 */ 1086 static DEFINE_MUTEX(cfset_ctrset_mutex); 1087 1088 /* 1089 * CPU hotplug handles only /dev/hwctr device. 1090 * For perf_event_open() the CPU hotplug handling is done on kernel common 1091 * code: 1092 * - CPU add: Nothing is done since a file descriptor can not be created 1093 * and returned to the user. 1094 * - CPU delete: Handled by common code via pmu_disable(), pmu_stop() and 1095 * pmu_delete(). The event itself is removed when the file descriptor is 1096 * closed. 1097 */ 1098 static int cfset_online_cpu(unsigned int cpu); 1099 1100 static int cpum_cf_online_cpu(unsigned int cpu) 1101 { 1102 int rc = 0; 1103 1104 /* 1105 * Ignore notification for perf_event_open(). 1106 * Handle only /dev/hwctr device sessions. 1107 */ 1108 mutex_lock(&cfset_ctrset_mutex); 1109 if (refcount_read(&cfset_opencnt)) { 1110 rc = cpum_cf_alloc_cpu(cpu); 1111 if (!rc) 1112 cfset_online_cpu(cpu); 1113 } 1114 mutex_unlock(&cfset_ctrset_mutex); 1115 return rc; 1116 } 1117 1118 static int cfset_offline_cpu(unsigned int cpu); 1119 1120 static int cpum_cf_offline_cpu(unsigned int cpu) 1121 { 1122 /* 1123 * During task exit processing of grouped perf events triggered by CPU 1124 * hotplug processing, pmu_disable() is called as part of perf context 1125 * removal process. Therefore do not trigger event removal now for 1126 * perf_event_open() created events. Perf common code triggers event 1127 * destruction when the event file descriptor is closed. 1128 * 1129 * Handle only /dev/hwctr device sessions. 1130 */ 1131 mutex_lock(&cfset_ctrset_mutex); 1132 if (refcount_read(&cfset_opencnt)) { 1133 cfset_offline_cpu(cpu); 1134 cpum_cf_free_cpu(cpu); 1135 } 1136 mutex_unlock(&cfset_ctrset_mutex); 1137 return 0; 1138 } 1139 1140 /* Return true if store counter set multiple instruction is available */ 1141 static inline int stccm_avail(void) 1142 { 1143 return test_facility(142); 1144 } 1145 1146 /* CPU-measurement alerts for the counter facility */ 1147 static void cpumf_measurement_alert(struct ext_code ext_code, 1148 unsigned int alert, unsigned long unused) 1149 { 1150 struct cpu_cf_events *cpuhw; 1151 1152 if (!(alert & CPU_MF_INT_CF_MASK)) 1153 return; 1154 1155 inc_irq_stat(IRQEXT_CMC); 1156 1157 /* 1158 * Measurement alerts are shared and might happen when the PMU 1159 * is not reserved. Ignore these alerts in this case. 1160 */ 1161 cpuhw = this_cpu_cfhw(); 1162 if (!cpuhw) 1163 return; 1164 1165 /* counter authorization change alert */ 1166 if (alert & CPU_MF_INT_CF_CACA) 1167 qctri(&cpumf_ctr_info); 1168 1169 /* loss of counter data alert */ 1170 if (alert & CPU_MF_INT_CF_LCDA) 1171 pr_err("CPU[%i] Counter data was lost\n", smp_processor_id()); 1172 1173 /* loss of MT counter data alert */ 1174 if (alert & CPU_MF_INT_CF_MTDA) 1175 pr_warn("CPU[%i] MT counter data was lost\n", 1176 smp_processor_id()); 1177 } 1178 1179 static int cfset_init(void); 1180 static int __init cpumf_pmu_init(void) 1181 { 1182 int rc; 1183 1184 /* Extract counter measurement facility information */ 1185 if (!cpum_cf_avail() || qctri(&cpumf_ctr_info)) 1186 return -ENODEV; 1187 1188 /* Determine and store counter set sizes for later reference */ 1189 for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc) 1190 cpum_cf_make_setsize(rc); 1191 1192 /* 1193 * Clear bit 15 of cr0 to unauthorize problem-state to 1194 * extract measurement counters 1195 */ 1196 system_ctl_clear_bit(0, CR0_CPUMF_EXTRACTION_AUTH_BIT); 1197 1198 /* register handler for measurement-alert interruptions */ 1199 rc = register_external_irq(EXT_IRQ_MEASURE_ALERT, 1200 cpumf_measurement_alert); 1201 if (rc) { 1202 pr_err("Registering for CPU-measurement alerts failed with rc=%i\n", rc); 1203 return rc; 1204 } 1205 1206 /* Setup s390dbf facility */ 1207 cf_dbg = debug_register(KMSG_COMPONENT, 2, 1, 128); 1208 if (!cf_dbg) { 1209 pr_err("Registration of s390dbf(cpum_cf) failed\n"); 1210 rc = -ENOMEM; 1211 goto out1; 1212 } 1213 debug_register_view(cf_dbg, &debug_sprintf_view); 1214 1215 cpumf_pmu.attr_groups = cpumf_cf_event_group(); 1216 rc = perf_pmu_register(&cpumf_pmu, "cpum_cf", -1); 1217 if (rc) { 1218 pr_err("Registering the cpum_cf PMU failed with rc=%i\n", rc); 1219 goto out2; 1220 } else if (stccm_avail()) { /* Setup counter set device */ 1221 cfset_init(); 1222 } 1223 1224 rc = cpuhp_setup_state(CPUHP_AP_PERF_S390_CF_ONLINE, 1225 "perf/s390/cf:online", 1226 cpum_cf_online_cpu, cpum_cf_offline_cpu); 1227 return rc; 1228 1229 out2: 1230 debug_unregister_view(cf_dbg, &debug_sprintf_view); 1231 debug_unregister(cf_dbg); 1232 out1: 1233 unregister_external_irq(EXT_IRQ_MEASURE_ALERT, cpumf_measurement_alert); 1234 return rc; 1235 } 1236 1237 /* Support for the CPU Measurement Facility counter set extraction using 1238 * device /dev/hwctr. This allows user space programs to extract complete 1239 * counter set via normal file operations. 1240 */ 1241 1242 struct cfset_call_on_cpu_parm { /* Parm struct for smp_call_on_cpu */ 1243 unsigned int sets; /* Counter set bit mask */ 1244 atomic_t cpus_ack; /* # CPUs successfully executed func */ 1245 }; 1246 1247 struct cfset_request { /* CPUs and counter set bit mask */ 1248 unsigned long ctrset; /* Bit mask of counter set to read */ 1249 cpumask_t mask; /* CPU mask to read from */ 1250 struct list_head node; /* Chain to cfset_session.head */ 1251 }; 1252 1253 static void cfset_session_init(void) 1254 { 1255 INIT_LIST_HEAD(&cfset_session.head); 1256 } 1257 1258 /* Remove current request from global bookkeeping. Maintain a counter set bit 1259 * mask on a per CPU basis. 1260 * Done in process context under mutex protection. 1261 */ 1262 static void cfset_session_del(struct cfset_request *p) 1263 { 1264 list_del(&p->node); 1265 } 1266 1267 /* Add current request to global bookkeeping. Maintain a counter set bit mask 1268 * on a per CPU basis. 1269 * Done in process context under mutex protection. 1270 */ 1271 static void cfset_session_add(struct cfset_request *p) 1272 { 1273 list_add(&p->node, &cfset_session.head); 1274 } 1275 1276 /* The /dev/hwctr device access uses PMU_F_IN_USE to mark the device access 1277 * path is currently used. 1278 * The cpu_cf_events::dev_state is used to denote counter sets in use by this 1279 * interface. It is always or'ed in. If this interface is not active, its 1280 * value is zero and no additional counter sets will be included. 1281 * 1282 * The cpu_cf_events::state is used by the perf_event_open SVC and remains 1283 * unchanged. 1284 * 1285 * perf_pmu_enable() and perf_pmu_enable() and its call backs 1286 * cpumf_pmu_enable() and cpumf_pmu_disable() are called by the 1287 * performance measurement subsystem to enable per process 1288 * CPU Measurement counter facility. 1289 * The XXX_enable() and XXX_disable functions are used to turn off 1290 * x86 performance monitoring interrupt (PMI) during scheduling. 1291 * s390 uses these calls to temporarily stop and resume the active CPU 1292 * counters sets during scheduling. 1293 * 1294 * We do allow concurrent access of perf_event_open() SVC and /dev/hwctr 1295 * device access. The perf_event_open() SVC interface makes a lot of effort 1296 * to only run the counters while the calling process is actively scheduled 1297 * to run. 1298 * When /dev/hwctr interface is also used at the same time, the counter sets 1299 * will keep running, even when the process is scheduled off a CPU. 1300 * However this is not a problem and does not lead to wrong counter values 1301 * for the perf_event_open() SVC. The current counter value will be recorded 1302 * during schedule-in. At schedule-out time the current counter value is 1303 * extracted again and the delta is calculated and added to the event. 1304 */ 1305 /* Stop all counter sets via ioctl interface */ 1306 static void cfset_ioctl_off(void *parm) 1307 { 1308 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1309 struct cfset_call_on_cpu_parm *p = parm; 1310 int rc; 1311 1312 /* Check if any counter set used by /dev/hwctr */ 1313 for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc) 1314 if ((p->sets & cpumf_ctr_ctl[rc])) { 1315 if (!atomic_dec_return(&cpuhw->ctr_set[rc])) { 1316 ctr_set_disable(&cpuhw->dev_state, 1317 cpumf_ctr_ctl[rc]); 1318 ctr_set_stop(&cpuhw->dev_state, 1319 cpumf_ctr_ctl[rc]); 1320 } 1321 } 1322 /* Keep perf_event_open counter sets */ 1323 rc = lcctl(cpuhw->dev_state | cpuhw->state); 1324 if (rc) 1325 pr_err("Counter set stop %#llx of /dev/%s failed rc=%i\n", 1326 cpuhw->state, S390_HWCTR_DEVICE, rc); 1327 if (!cpuhw->dev_state) 1328 cpuhw->flags &= ~PMU_F_IN_USE; 1329 } 1330 1331 /* Start counter sets on particular CPU */ 1332 static void cfset_ioctl_on(void *parm) 1333 { 1334 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1335 struct cfset_call_on_cpu_parm *p = parm; 1336 int rc; 1337 1338 cpuhw->flags |= PMU_F_IN_USE; 1339 ctr_set_enable(&cpuhw->dev_state, p->sets); 1340 ctr_set_start(&cpuhw->dev_state, p->sets); 1341 for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc) 1342 if ((p->sets & cpumf_ctr_ctl[rc])) 1343 atomic_inc(&cpuhw->ctr_set[rc]); 1344 rc = lcctl(cpuhw->dev_state | cpuhw->state); /* Start counter sets */ 1345 if (!rc) 1346 atomic_inc(&p->cpus_ack); 1347 else 1348 pr_err("Counter set start %#llx of /dev/%s failed rc=%i\n", 1349 cpuhw->dev_state | cpuhw->state, S390_HWCTR_DEVICE, rc); 1350 } 1351 1352 static void cfset_release_cpu(void *p) 1353 { 1354 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1355 int rc; 1356 1357 cpuhw->dev_state = 0; 1358 rc = lcctl(cpuhw->state); /* Keep perf_event_open counter sets */ 1359 if (rc) 1360 pr_err("Counter set release %#llx of /dev/%s failed rc=%i\n", 1361 cpuhw->state, S390_HWCTR_DEVICE, rc); 1362 } 1363 1364 /* This modifies the process CPU mask to adopt it to the currently online 1365 * CPUs. Offline CPUs can not be addresses. This call terminates the access 1366 * and is usually followed by close() or a new iotcl(..., START, ...) which 1367 * creates a new request structure. 1368 */ 1369 static void cfset_all_stop(struct cfset_request *req) 1370 { 1371 struct cfset_call_on_cpu_parm p = { 1372 .sets = req->ctrset, 1373 }; 1374 1375 cpumask_and(&req->mask, &req->mask, cpu_online_mask); 1376 on_each_cpu_mask(&req->mask, cfset_ioctl_off, &p, 1); 1377 } 1378 1379 /* Release function is also called when application gets terminated without 1380 * doing a proper ioctl(..., S390_HWCTR_STOP, ...) command. 1381 */ 1382 static int cfset_release(struct inode *inode, struct file *file) 1383 { 1384 mutex_lock(&cfset_ctrset_mutex); 1385 /* Open followed by close/exit has no private_data */ 1386 if (file->private_data) { 1387 cfset_all_stop(file->private_data); 1388 cfset_session_del(file->private_data); 1389 kfree(file->private_data); 1390 file->private_data = NULL; 1391 } 1392 if (refcount_dec_and_test(&cfset_opencnt)) { /* Last close */ 1393 on_each_cpu(cfset_release_cpu, NULL, 1); 1394 cpum_cf_free(-1); 1395 } 1396 mutex_unlock(&cfset_ctrset_mutex); 1397 return 0; 1398 } 1399 1400 /* 1401 * Open via /dev/hwctr device. Allocate all per CPU resources on the first 1402 * open of the device. The last close releases all per CPU resources. 1403 * Parallel perf_event_open system calls also use per CPU resources. 1404 * These invocations are handled via reference counting on the per CPU data 1405 * structures. 1406 */ 1407 static int cfset_open(struct inode *inode, struct file *file) 1408 { 1409 int rc = 0; 1410 1411 if (!perfmon_capable()) 1412 return -EPERM; 1413 file->private_data = NULL; 1414 1415 mutex_lock(&cfset_ctrset_mutex); 1416 if (!refcount_inc_not_zero(&cfset_opencnt)) { /* First open */ 1417 rc = cpum_cf_alloc(-1); 1418 if (!rc) { 1419 cfset_session_init(); 1420 refcount_set(&cfset_opencnt, 1); 1421 } 1422 } 1423 mutex_unlock(&cfset_ctrset_mutex); 1424 1425 /* nonseekable_open() never fails */ 1426 return rc ?: nonseekable_open(inode, file); 1427 } 1428 1429 static int cfset_all_start(struct cfset_request *req) 1430 { 1431 struct cfset_call_on_cpu_parm p = { 1432 .sets = req->ctrset, 1433 .cpus_ack = ATOMIC_INIT(0), 1434 }; 1435 cpumask_var_t mask; 1436 int rc = 0; 1437 1438 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1439 return -ENOMEM; 1440 cpumask_and(mask, &req->mask, cpu_online_mask); 1441 on_each_cpu_mask(mask, cfset_ioctl_on, &p, 1); 1442 if (atomic_read(&p.cpus_ack) != cpumask_weight(mask)) { 1443 on_each_cpu_mask(mask, cfset_ioctl_off, &p, 1); 1444 rc = -EIO; 1445 } 1446 free_cpumask_var(mask); 1447 return rc; 1448 } 1449 1450 /* Return the maximum required space for all possible CPUs in case one 1451 * CPU will be onlined during the START, READ, STOP cycles. 1452 * To find out the size of the counter sets, any one CPU will do. They 1453 * all have the same counter sets. 1454 */ 1455 static size_t cfset_needspace(unsigned int sets) 1456 { 1457 size_t bytes = 0; 1458 int i; 1459 1460 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 1461 if (!(sets & cpumf_ctr_ctl[i])) 1462 continue; 1463 bytes += cpum_cf_read_setsize(i) * sizeof(u64) + 1464 sizeof(((struct s390_ctrset_setdata *)0)->set) + 1465 sizeof(((struct s390_ctrset_setdata *)0)->no_cnts); 1466 } 1467 bytes = sizeof(((struct s390_ctrset_read *)0)->no_cpus) + nr_cpu_ids * 1468 (bytes + sizeof(((struct s390_ctrset_cpudata *)0)->cpu_nr) + 1469 sizeof(((struct s390_ctrset_cpudata *)0)->no_sets)); 1470 return bytes; 1471 } 1472 1473 static int cfset_all_copy(unsigned long arg, cpumask_t *mask) 1474 { 1475 struct s390_ctrset_read __user *ctrset_read; 1476 unsigned int cpu, cpus, rc = 0; 1477 void __user *uptr; 1478 1479 ctrset_read = (struct s390_ctrset_read __user *)arg; 1480 uptr = ctrset_read->data; 1481 for_each_cpu(cpu, mask) { 1482 struct cpu_cf_events *cpuhw = get_cpu_cfhw(cpu); 1483 struct s390_ctrset_cpudata __user *ctrset_cpudata; 1484 1485 ctrset_cpudata = uptr; 1486 rc = put_user(cpu, &ctrset_cpudata->cpu_nr); 1487 rc |= put_user(cpuhw->sets, &ctrset_cpudata->no_sets); 1488 rc |= copy_to_user(ctrset_cpudata->data, cpuhw->data, 1489 cpuhw->used); 1490 if (rc) { 1491 rc = -EFAULT; 1492 goto out; 1493 } 1494 uptr += sizeof(struct s390_ctrset_cpudata) + cpuhw->used; 1495 cond_resched(); 1496 } 1497 cpus = cpumask_weight(mask); 1498 if (put_user(cpus, &ctrset_read->no_cpus)) 1499 rc = -EFAULT; 1500 out: 1501 return rc; 1502 } 1503 1504 static size_t cfset_cpuset_read(struct s390_ctrset_setdata *p, int ctrset, 1505 int ctrset_size, size_t room) 1506 { 1507 size_t need = 0; 1508 int rc = -1; 1509 1510 need = sizeof(*p) + sizeof(u64) * ctrset_size; 1511 if (need <= room) { 1512 p->set = cpumf_ctr_ctl[ctrset]; 1513 p->no_cnts = ctrset_size; 1514 rc = ctr_stcctm(ctrset, ctrset_size, (u64 *)p->cv); 1515 if (rc == 3) /* Nothing stored */ 1516 need = 0; 1517 } 1518 return need; 1519 } 1520 1521 /* Read all counter sets. */ 1522 static void cfset_cpu_read(void *parm) 1523 { 1524 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1525 struct cfset_call_on_cpu_parm *p = parm; 1526 int set, set_size; 1527 size_t space; 1528 1529 /* No data saved yet */ 1530 cpuhw->used = 0; 1531 cpuhw->sets = 0; 1532 memset(cpuhw->data, 0, sizeof(cpuhw->data)); 1533 1534 /* Scan the counter sets */ 1535 for (set = CPUMF_CTR_SET_BASIC; set < CPUMF_CTR_SET_MAX; ++set) { 1536 struct s390_ctrset_setdata *sp = (void *)cpuhw->data + 1537 cpuhw->used; 1538 1539 if (!(p->sets & cpumf_ctr_ctl[set])) 1540 continue; /* Counter set not in list */ 1541 set_size = cpum_cf_read_setsize(set); 1542 space = sizeof(cpuhw->data) - cpuhw->used; 1543 space = cfset_cpuset_read(sp, set, set_size, space); 1544 if (space) { 1545 cpuhw->used += space; 1546 cpuhw->sets += 1; 1547 } 1548 } 1549 } 1550 1551 static int cfset_all_read(unsigned long arg, struct cfset_request *req) 1552 { 1553 struct cfset_call_on_cpu_parm p; 1554 cpumask_var_t mask; 1555 int rc; 1556 1557 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1558 return -ENOMEM; 1559 1560 p.sets = req->ctrset; 1561 cpumask_and(mask, &req->mask, cpu_online_mask); 1562 on_each_cpu_mask(mask, cfset_cpu_read, &p, 1); 1563 rc = cfset_all_copy(arg, mask); 1564 free_cpumask_var(mask); 1565 return rc; 1566 } 1567 1568 static long cfset_ioctl_read(unsigned long arg, struct cfset_request *req) 1569 { 1570 int ret = -ENODATA; 1571 1572 if (req && req->ctrset) 1573 ret = cfset_all_read(arg, req); 1574 return ret; 1575 } 1576 1577 static long cfset_ioctl_stop(struct file *file) 1578 { 1579 struct cfset_request *req = file->private_data; 1580 int ret = -ENXIO; 1581 1582 if (req) { 1583 cfset_all_stop(req); 1584 cfset_session_del(req); 1585 kfree(req); 1586 file->private_data = NULL; 1587 ret = 0; 1588 } 1589 return ret; 1590 } 1591 1592 static long cfset_ioctl_start(unsigned long arg, struct file *file) 1593 { 1594 struct s390_ctrset_start __user *ustart; 1595 struct s390_ctrset_start start; 1596 struct cfset_request *preq; 1597 void __user *umask; 1598 unsigned int len; 1599 int ret = 0; 1600 size_t need; 1601 1602 if (file->private_data) 1603 return -EBUSY; 1604 ustart = (struct s390_ctrset_start __user *)arg; 1605 if (copy_from_user(&start, ustart, sizeof(start))) 1606 return -EFAULT; 1607 if (start.version != S390_HWCTR_START_VERSION) 1608 return -EINVAL; 1609 if (start.counter_sets & ~(cpumf_ctr_ctl[CPUMF_CTR_SET_BASIC] | 1610 cpumf_ctr_ctl[CPUMF_CTR_SET_USER] | 1611 cpumf_ctr_ctl[CPUMF_CTR_SET_CRYPTO] | 1612 cpumf_ctr_ctl[CPUMF_CTR_SET_EXT] | 1613 cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG])) 1614 return -EINVAL; /* Invalid counter set */ 1615 if (!start.counter_sets) 1616 return -EINVAL; /* No counter set at all? */ 1617 1618 preq = kzalloc(sizeof(*preq), GFP_KERNEL); 1619 if (!preq) 1620 return -ENOMEM; 1621 cpumask_clear(&preq->mask); 1622 len = min_t(u64, start.cpumask_len, cpumask_size()); 1623 umask = (void __user *)start.cpumask; 1624 if (copy_from_user(&preq->mask, umask, len)) { 1625 kfree(preq); 1626 return -EFAULT; 1627 } 1628 if (cpumask_empty(&preq->mask)) { 1629 kfree(preq); 1630 return -EINVAL; 1631 } 1632 need = cfset_needspace(start.counter_sets); 1633 if (put_user(need, &ustart->data_bytes)) { 1634 kfree(preq); 1635 return -EFAULT; 1636 } 1637 preq->ctrset = start.counter_sets; 1638 ret = cfset_all_start(preq); 1639 if (!ret) { 1640 cfset_session_add(preq); 1641 file->private_data = preq; 1642 } else { 1643 kfree(preq); 1644 } 1645 return ret; 1646 } 1647 1648 /* Entry point to the /dev/hwctr device interface. 1649 * The ioctl system call supports three subcommands: 1650 * S390_HWCTR_START: Start the specified counter sets on a CPU list. The 1651 * counter set keeps running until explicitly stopped. Returns the number 1652 * of bytes needed to store the counter values. If another S390_HWCTR_START 1653 * ioctl subcommand is called without a previous S390_HWCTR_STOP stop 1654 * command on the same file descriptor, -EBUSY is returned. 1655 * S390_HWCTR_READ: Read the counter set values from specified CPU list given 1656 * with the S390_HWCTR_START command. 1657 * S390_HWCTR_STOP: Stops the counter sets on the CPU list given with the 1658 * previous S390_HWCTR_START subcommand. 1659 */ 1660 static long cfset_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1661 { 1662 int ret; 1663 1664 cpus_read_lock(); 1665 mutex_lock(&cfset_ctrset_mutex); 1666 switch (cmd) { 1667 case S390_HWCTR_START: 1668 ret = cfset_ioctl_start(arg, file); 1669 break; 1670 case S390_HWCTR_STOP: 1671 ret = cfset_ioctl_stop(file); 1672 break; 1673 case S390_HWCTR_READ: 1674 ret = cfset_ioctl_read(arg, file->private_data); 1675 break; 1676 default: 1677 ret = -ENOTTY; 1678 break; 1679 } 1680 mutex_unlock(&cfset_ctrset_mutex); 1681 cpus_read_unlock(); 1682 return ret; 1683 } 1684 1685 static const struct file_operations cfset_fops = { 1686 .owner = THIS_MODULE, 1687 .open = cfset_open, 1688 .release = cfset_release, 1689 .unlocked_ioctl = cfset_ioctl, 1690 .compat_ioctl = cfset_ioctl, 1691 .llseek = no_llseek 1692 }; 1693 1694 static struct miscdevice cfset_dev = { 1695 .name = S390_HWCTR_DEVICE, 1696 .minor = MISC_DYNAMIC_MINOR, 1697 .fops = &cfset_fops, 1698 .mode = 0666, 1699 }; 1700 1701 /* Hotplug add of a CPU. Scan through all active processes and add 1702 * that CPU to the list of CPUs supplied with ioctl(..., START, ...). 1703 */ 1704 static int cfset_online_cpu(unsigned int cpu) 1705 { 1706 struct cfset_call_on_cpu_parm p; 1707 struct cfset_request *rp; 1708 1709 if (!list_empty(&cfset_session.head)) { 1710 list_for_each_entry(rp, &cfset_session.head, node) { 1711 p.sets = rp->ctrset; 1712 cfset_ioctl_on(&p); 1713 cpumask_set_cpu(cpu, &rp->mask); 1714 } 1715 } 1716 return 0; 1717 } 1718 1719 /* Hotplug remove of a CPU. Scan through all active processes and clear 1720 * that CPU from the list of CPUs supplied with ioctl(..., START, ...). 1721 * Adjust reference counts. 1722 */ 1723 static int cfset_offline_cpu(unsigned int cpu) 1724 { 1725 struct cfset_call_on_cpu_parm p; 1726 struct cfset_request *rp; 1727 1728 if (!list_empty(&cfset_session.head)) { 1729 list_for_each_entry(rp, &cfset_session.head, node) { 1730 p.sets = rp->ctrset; 1731 cfset_ioctl_off(&p); 1732 cpumask_clear_cpu(cpu, &rp->mask); 1733 } 1734 } 1735 return 0; 1736 } 1737 1738 static void cfdiag_read(struct perf_event *event) 1739 { 1740 } 1741 1742 static int get_authctrsets(void) 1743 { 1744 unsigned long auth = 0; 1745 enum cpumf_ctr_set i; 1746 1747 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 1748 if (cpumf_ctr_info.auth_ctl & cpumf_ctr_ctl[i]) 1749 auth |= cpumf_ctr_ctl[i]; 1750 } 1751 return auth; 1752 } 1753 1754 /* Setup the event. Test for authorized counter sets and only include counter 1755 * sets which are authorized at the time of the setup. Including unauthorized 1756 * counter sets result in specification exception (and panic). 1757 */ 1758 static int cfdiag_event_init2(struct perf_event *event) 1759 { 1760 struct perf_event_attr *attr = &event->attr; 1761 int err = 0; 1762 1763 /* Set sample_period to indicate sampling */ 1764 event->hw.config = attr->config; 1765 event->hw.sample_period = attr->sample_period; 1766 local64_set(&event->hw.period_left, event->hw.sample_period); 1767 local64_set(&event->count, 0); 1768 event->hw.last_period = event->hw.sample_period; 1769 1770 /* Add all authorized counter sets to config_base. The 1771 * the hardware init function is either called per-cpu or just once 1772 * for all CPUS (event->cpu == -1). This depends on the whether 1773 * counting is started for all CPUs or on a per workload base where 1774 * the perf event moves from one CPU to another CPU. 1775 * Checking the authorization on any CPU is fine as the hardware 1776 * applies the same authorization settings to all CPUs. 1777 */ 1778 event->hw.config_base = get_authctrsets(); 1779 1780 /* No authorized counter sets, nothing to count/sample */ 1781 if (!event->hw.config_base) 1782 err = -EINVAL; 1783 1784 return err; 1785 } 1786 1787 static int cfdiag_event_init(struct perf_event *event) 1788 { 1789 struct perf_event_attr *attr = &event->attr; 1790 int err = -ENOENT; 1791 1792 if (event->attr.config != PERF_EVENT_CPUM_CF_DIAG || 1793 event->attr.type != event->pmu->type) 1794 goto out; 1795 1796 /* Raw events are used to access counters directly, 1797 * hence do not permit excludes. 1798 * This event is useless without PERF_SAMPLE_RAW to return counter set 1799 * values as raw data. 1800 */ 1801 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv || 1802 !(attr->sample_type & (PERF_SAMPLE_CPU | PERF_SAMPLE_RAW))) { 1803 err = -EOPNOTSUPP; 1804 goto out; 1805 } 1806 1807 /* Initialize for using the CPU-measurement counter facility */ 1808 if (cpum_cf_alloc(event->cpu)) 1809 return -ENOMEM; 1810 event->destroy = hw_perf_event_destroy; 1811 1812 err = cfdiag_event_init2(event); 1813 if (unlikely(err)) 1814 event->destroy(event); 1815 out: 1816 return err; 1817 } 1818 1819 /* Create cf_diag/events/CF_DIAG event sysfs file. This counter is used 1820 * to collect the complete counter sets for a scheduled process. Target 1821 * are complete counter sets attached as raw data to the artificial event. 1822 * This results in complete counter sets available when a process is 1823 * scheduled. Contains the delta of every counter while the process was 1824 * running. 1825 */ 1826 CPUMF_EVENT_ATTR(CF_DIAG, CF_DIAG, PERF_EVENT_CPUM_CF_DIAG); 1827 1828 static struct attribute *cfdiag_events_attr[] = { 1829 CPUMF_EVENT_PTR(CF_DIAG, CF_DIAG), 1830 NULL, 1831 }; 1832 1833 PMU_FORMAT_ATTR(event, "config:0-63"); 1834 1835 static struct attribute *cfdiag_format_attr[] = { 1836 &format_attr_event.attr, 1837 NULL, 1838 }; 1839 1840 static struct attribute_group cfdiag_events_group = { 1841 .name = "events", 1842 .attrs = cfdiag_events_attr, 1843 }; 1844 static struct attribute_group cfdiag_format_group = { 1845 .name = "format", 1846 .attrs = cfdiag_format_attr, 1847 }; 1848 static const struct attribute_group *cfdiag_attr_groups[] = { 1849 &cfdiag_events_group, 1850 &cfdiag_format_group, 1851 NULL, 1852 }; 1853 1854 /* Performance monitoring unit for event CF_DIAG. Since this event 1855 * is also started and stopped via the perf_event_open() system call, use 1856 * the same event enable/disable call back functions. They do not 1857 * have a pointer to the perf_event strcture as first parameter. 1858 * 1859 * The functions XXX_add, XXX_del, XXX_start and XXX_stop are also common. 1860 * Reuse them and distinguish the event (always first parameter) via 1861 * 'config' member. 1862 */ 1863 static struct pmu cf_diag = { 1864 .task_ctx_nr = perf_sw_context, 1865 .event_init = cfdiag_event_init, 1866 .pmu_enable = cpumf_pmu_enable, 1867 .pmu_disable = cpumf_pmu_disable, 1868 .add = cpumf_pmu_add, 1869 .del = cpumf_pmu_del, 1870 .start = cpumf_pmu_start, 1871 .stop = cpumf_pmu_stop, 1872 .read = cfdiag_read, 1873 1874 .attr_groups = cfdiag_attr_groups 1875 }; 1876 1877 /* Calculate memory needed to store all counter sets together with header and 1878 * trailer data. This is independent of the counter set authorization which 1879 * can vary depending on the configuration. 1880 */ 1881 static size_t cfdiag_maxsize(struct cpumf_ctr_info *info) 1882 { 1883 size_t max_size = sizeof(struct cf_trailer_entry); 1884 enum cpumf_ctr_set i; 1885 1886 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 1887 size_t size = cpum_cf_read_setsize(i); 1888 1889 if (size) 1890 max_size += size * sizeof(u64) + 1891 sizeof(struct cf_ctrset_entry); 1892 } 1893 return max_size; 1894 } 1895 1896 /* Get the CPU speed, try sampling facility first and CPU attributes second. */ 1897 static void cfdiag_get_cpu_speed(void) 1898 { 1899 unsigned long mhz; 1900 1901 if (cpum_sf_avail()) { /* Sampling facility first */ 1902 struct hws_qsi_info_block si; 1903 1904 memset(&si, 0, sizeof(si)); 1905 if (!qsi(&si)) { 1906 cfdiag_cpu_speed = si.cpu_speed; 1907 return; 1908 } 1909 } 1910 1911 /* Fallback: CPU speed extract static part. Used in case 1912 * CPU Measurement Sampling Facility is turned off. 1913 */ 1914 mhz = __ecag(ECAG_CPU_ATTRIBUTE, 0); 1915 if (mhz != -1UL) 1916 cfdiag_cpu_speed = mhz & 0xffffffff; 1917 } 1918 1919 static int cfset_init(void) 1920 { 1921 size_t need; 1922 int rc; 1923 1924 cfdiag_get_cpu_speed(); 1925 /* Make sure the counter set data fits into predefined buffer. */ 1926 need = cfdiag_maxsize(&cpumf_ctr_info); 1927 if (need > sizeof(((struct cpu_cf_events *)0)->start)) { 1928 pr_err("Insufficient memory for PMU(cpum_cf_diag) need=%zu\n", 1929 need); 1930 return -ENOMEM; 1931 } 1932 1933 rc = misc_register(&cfset_dev); 1934 if (rc) { 1935 pr_err("Registration of /dev/%s failed rc=%i\n", 1936 cfset_dev.name, rc); 1937 goto out; 1938 } 1939 1940 rc = perf_pmu_register(&cf_diag, "cpum_cf_diag", -1); 1941 if (rc) { 1942 misc_deregister(&cfset_dev); 1943 pr_err("Registration of PMU(cpum_cf_diag) failed with rc=%i\n", 1944 rc); 1945 } 1946 out: 1947 return rc; 1948 } 1949 1950 device_initcall(cpumf_pmu_init); 1951