xref: /linux/arch/s390/kernel/perf_cpum_cf.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance event support for s390x - CPU-measurement Counter Facility
4  *
5  *  Copyright IBM Corp. 2012, 2023
6  *  Author(s): Hendrik Brueckner <brueckner@linux.ibm.com>
7  *	       Thomas Richter <tmricht@linux.ibm.com>
8  */
9 #define pr_fmt(fmt) "cpum_cf: " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/percpu.h>
14 #include <linux/notifier.h>
15 #include <linux/init.h>
16 #include <linux/miscdevice.h>
17 #include <linux/perf_event.h>
18 
19 #include <asm/cpu_mf.h>
20 #include <asm/hwctrset.h>
21 #include <asm/debug.h>
22 
23 /* Perf PMU definitions for the counter facility */
24 #define PERF_CPUM_CF_MAX_CTR		0xffffUL  /* Max ctr for ECCTR */
25 #define PERF_EVENT_CPUM_CF_DIAG		0xBC000UL /* Event: Counter sets */
26 
27 enum cpumf_ctr_set {
28 	CPUMF_CTR_SET_BASIC   = 0,    /* Basic Counter Set */
29 	CPUMF_CTR_SET_USER    = 1,    /* Problem-State Counter Set */
30 	CPUMF_CTR_SET_CRYPTO  = 2,    /* Crypto-Activity Counter Set */
31 	CPUMF_CTR_SET_EXT     = 3,    /* Extended Counter Set */
32 	CPUMF_CTR_SET_MT_DIAG = 4,    /* MT-diagnostic Counter Set */
33 
34 	/* Maximum number of counter sets */
35 	CPUMF_CTR_SET_MAX,
36 };
37 
38 #define CPUMF_LCCTL_ENABLE_SHIFT    16
39 #define CPUMF_LCCTL_ACTCTL_SHIFT     0
40 
41 static inline void ctr_set_enable(u64 *state, u64 ctrsets)
42 {
43 	*state |= ctrsets << CPUMF_LCCTL_ENABLE_SHIFT;
44 }
45 
46 static inline void ctr_set_disable(u64 *state, u64 ctrsets)
47 {
48 	*state &= ~(ctrsets << CPUMF_LCCTL_ENABLE_SHIFT);
49 }
50 
51 static inline void ctr_set_start(u64 *state, u64 ctrsets)
52 {
53 	*state |= ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT;
54 }
55 
56 static inline void ctr_set_stop(u64 *state, u64 ctrsets)
57 {
58 	*state &= ~(ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT);
59 }
60 
61 static inline int ctr_stcctm(enum cpumf_ctr_set set, u64 range, u64 *dest)
62 {
63 	switch (set) {
64 	case CPUMF_CTR_SET_BASIC:
65 		return stcctm(BASIC, range, dest);
66 	case CPUMF_CTR_SET_USER:
67 		return stcctm(PROBLEM_STATE, range, dest);
68 	case CPUMF_CTR_SET_CRYPTO:
69 		return stcctm(CRYPTO_ACTIVITY, range, dest);
70 	case CPUMF_CTR_SET_EXT:
71 		return stcctm(EXTENDED, range, dest);
72 	case CPUMF_CTR_SET_MT_DIAG:
73 		return stcctm(MT_DIAG_CLEARING, range, dest);
74 	case CPUMF_CTR_SET_MAX:
75 		return 3;
76 	}
77 	return 3;
78 }
79 
80 struct cpu_cf_events {
81 	refcount_t refcnt;		/* Reference count */
82 	atomic_t		ctr_set[CPUMF_CTR_SET_MAX];
83 	u64			state;		/* For perf_event_open SVC */
84 	u64			dev_state;	/* For /dev/hwctr */
85 	unsigned int		flags;
86 	size_t used;			/* Bytes used in data */
87 	size_t usedss;			/* Bytes used in start/stop */
88 	unsigned char start[PAGE_SIZE];	/* Counter set at event add */
89 	unsigned char stop[PAGE_SIZE];	/* Counter set at event delete */
90 	unsigned char data[PAGE_SIZE];	/* Counter set at /dev/hwctr */
91 	unsigned int sets;		/* # Counter set saved in memory */
92 };
93 
94 static unsigned int cfdiag_cpu_speed;	/* CPU speed for CF_DIAG trailer */
95 static debug_info_t *cf_dbg;
96 
97 /*
98  * The CPU Measurement query counter information instruction contains
99  * information which varies per machine generation, but is constant and
100  * does not change when running on a particular machine, such as counter
101  * first and second version number. This is needed to determine the size
102  * of counter sets. Extract this information at device driver initialization.
103  */
104 static struct cpumf_ctr_info	cpumf_ctr_info;
105 
106 struct cpu_cf_ptr {
107 	struct cpu_cf_events *cpucf;
108 };
109 
110 static struct cpu_cf_root {		/* Anchor to per CPU data */
111 	refcount_t refcnt;		/* Overall active events */
112 	struct cpu_cf_ptr __percpu *cfptr;
113 } cpu_cf_root;
114 
115 /*
116  * Serialize event initialization and event removal. Both are called from
117  * user space in task context with perf_event_open() and close()
118  * system calls.
119  *
120  * This mutex serializes functions cpum_cf_alloc_cpu() called at event
121  * initialization via cpumf_pmu_event_init() and function cpum_cf_free_cpu()
122  * called at event removal via call back function hw_perf_event_destroy()
123  * when the event is deleted. They are serialized to enforce correct
124  * bookkeeping of pointer and reference counts anchored by
125  * struct cpu_cf_root and the access to cpu_cf_root::refcnt and the
126  * per CPU pointers stored in cpu_cf_root::cfptr.
127  */
128 static DEFINE_MUTEX(pmc_reserve_mutex);
129 
130 /*
131  * Get pointer to per-cpu structure.
132  *
133  * Function get_cpu_cfhw() is called from
134  * - cfset_copy_all(): This function is protected by cpus_read_lock(), so
135  *   CPU hot plug remove can not happen. Event removal requires a close()
136  *   first.
137  *
138  * Function this_cpu_cfhw() is called from perf common code functions:
139  * - pmu_{en|dis}able(), pmu_{add|del}()and pmu_{start|stop}():
140  *   All functions execute with interrupts disabled on that particular CPU.
141  * - cfset_ioctl_{on|off}, cfset_cpu_read(): see comment cfset_copy_all().
142  *
143  * Therefore it is safe to access the CPU specific pointer to the event.
144  */
145 static struct cpu_cf_events *get_cpu_cfhw(int cpu)
146 {
147 	struct cpu_cf_ptr __percpu *p = cpu_cf_root.cfptr;
148 
149 	if (p) {
150 		struct cpu_cf_ptr *q = per_cpu_ptr(p, cpu);
151 
152 		return q->cpucf;
153 	}
154 	return NULL;
155 }
156 
157 static struct cpu_cf_events *this_cpu_cfhw(void)
158 {
159 	return get_cpu_cfhw(smp_processor_id());
160 }
161 
162 /* Disable counter sets on dedicated CPU */
163 static void cpum_cf_reset_cpu(void *flags)
164 {
165 	lcctl(0);
166 }
167 
168 /* Free per CPU data when the last event is removed. */
169 static void cpum_cf_free_root(void)
170 {
171 	if (!refcount_dec_and_test(&cpu_cf_root.refcnt))
172 		return;
173 	free_percpu(cpu_cf_root.cfptr);
174 	cpu_cf_root.cfptr = NULL;
175 	irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
176 	on_each_cpu(cpum_cf_reset_cpu, NULL, 1);
177 	debug_sprintf_event(cf_dbg, 4, "%s root.refcnt %u cfptr %d\n",
178 			    __func__, refcount_read(&cpu_cf_root.refcnt),
179 			    !cpu_cf_root.cfptr);
180 }
181 
182 /*
183  * On initialization of first event also allocate per CPU data dynamically.
184  * Start with an array of pointers, the array size is the maximum number of
185  * CPUs possible, which might be larger than the number of CPUs currently
186  * online.
187  */
188 static int cpum_cf_alloc_root(void)
189 {
190 	int rc = 0;
191 
192 	if (refcount_inc_not_zero(&cpu_cf_root.refcnt))
193 		return rc;
194 
195 	/* The memory is already zeroed. */
196 	cpu_cf_root.cfptr = alloc_percpu(struct cpu_cf_ptr);
197 	if (cpu_cf_root.cfptr) {
198 		refcount_set(&cpu_cf_root.refcnt, 1);
199 		on_each_cpu(cpum_cf_reset_cpu, NULL, 1);
200 		irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
201 	} else {
202 		rc = -ENOMEM;
203 	}
204 
205 	return rc;
206 }
207 
208 /* Free CPU counter data structure for a PMU */
209 static void cpum_cf_free_cpu(int cpu)
210 {
211 	struct cpu_cf_events *cpuhw;
212 	struct cpu_cf_ptr *p;
213 
214 	mutex_lock(&pmc_reserve_mutex);
215 	/*
216 	 * When invoked via CPU hotplug handler, there might be no events
217 	 * installed or that particular CPU might not have an
218 	 * event installed. This anchor pointer can be NULL!
219 	 */
220 	if (!cpu_cf_root.cfptr)
221 		goto out;
222 	p = per_cpu_ptr(cpu_cf_root.cfptr, cpu);
223 	cpuhw = p->cpucf;
224 	/*
225 	 * Might be zero when called from CPU hotplug handler and no event
226 	 * installed on that CPU, but on different CPUs.
227 	 */
228 	if (!cpuhw)
229 		goto out;
230 
231 	if (refcount_dec_and_test(&cpuhw->refcnt)) {
232 		kfree(cpuhw);
233 		p->cpucf = NULL;
234 	}
235 	cpum_cf_free_root();
236 out:
237 	mutex_unlock(&pmc_reserve_mutex);
238 }
239 
240 /* Allocate CPU counter data structure for a PMU. Called under mutex lock. */
241 static int cpum_cf_alloc_cpu(int cpu)
242 {
243 	struct cpu_cf_events *cpuhw;
244 	struct cpu_cf_ptr *p;
245 	int rc;
246 
247 	mutex_lock(&pmc_reserve_mutex);
248 	rc = cpum_cf_alloc_root();
249 	if (rc)
250 		goto unlock;
251 	p = per_cpu_ptr(cpu_cf_root.cfptr, cpu);
252 	cpuhw = p->cpucf;
253 
254 	if (!cpuhw) {
255 		cpuhw = kzalloc(sizeof(*cpuhw), GFP_KERNEL);
256 		if (cpuhw) {
257 			p->cpucf = cpuhw;
258 			refcount_set(&cpuhw->refcnt, 1);
259 		} else {
260 			rc = -ENOMEM;
261 		}
262 	} else {
263 		refcount_inc(&cpuhw->refcnt);
264 	}
265 	if (rc) {
266 		/*
267 		 * Error in allocation of event, decrement anchor. Since
268 		 * cpu_cf_event in not created, its destroy() function is not
269 		 * invoked. Adjust the reference counter for the anchor.
270 		 */
271 		cpum_cf_free_root();
272 	}
273 unlock:
274 	mutex_unlock(&pmc_reserve_mutex);
275 	return rc;
276 }
277 
278 /*
279  * Create/delete per CPU data structures for /dev/hwctr interface and events
280  * created by perf_event_open().
281  * If cpu is -1, track task on all available CPUs. This requires
282  * allocation of hardware data structures for all CPUs. This setup handles
283  * perf_event_open() with task context and /dev/hwctr interface.
284  * If cpu is non-zero install event on this CPU only. This setup handles
285  * perf_event_open() with CPU context.
286  */
287 static int cpum_cf_alloc(int cpu)
288 {
289 	cpumask_var_t mask;
290 	int rc;
291 
292 	if (cpu == -1) {
293 		if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
294 			return -ENOMEM;
295 		for_each_online_cpu(cpu) {
296 			rc = cpum_cf_alloc_cpu(cpu);
297 			if (rc) {
298 				for_each_cpu(cpu, mask)
299 					cpum_cf_free_cpu(cpu);
300 				break;
301 			}
302 			cpumask_set_cpu(cpu, mask);
303 		}
304 		free_cpumask_var(mask);
305 	} else {
306 		rc = cpum_cf_alloc_cpu(cpu);
307 	}
308 	return rc;
309 }
310 
311 static void cpum_cf_free(int cpu)
312 {
313 	if (cpu == -1) {
314 		for_each_online_cpu(cpu)
315 			cpum_cf_free_cpu(cpu);
316 	} else {
317 		cpum_cf_free_cpu(cpu);
318 	}
319 }
320 
321 #define	CF_DIAG_CTRSET_DEF		0xfeef	/* Counter set header mark */
322 						/* interval in seconds */
323 
324 /* Counter sets are stored as data stream in a page sized memory buffer and
325  * exported to user space via raw data attached to the event sample data.
326  * Each counter set starts with an eight byte header consisting of:
327  * - a two byte eye catcher (0xfeef)
328  * - a one byte counter set number
329  * - a two byte counter set size (indicates the number of counters in this set)
330  * - a three byte reserved value (must be zero) to make the header the same
331  *   size as a counter value.
332  * All counter values are eight byte in size.
333  *
334  * All counter sets are followed by a 64 byte trailer.
335  * The trailer consists of a:
336  * - flag field indicating valid fields when corresponding bit set
337  * - the counter facility first and second version number
338  * - the CPU speed if nonzero
339  * - the time stamp the counter sets have been collected
340  * - the time of day (TOD) base value
341  * - the machine type.
342  *
343  * The counter sets are saved when the process is prepared to be executed on a
344  * CPU and saved again when the process is going to be removed from a CPU.
345  * The difference of both counter sets are calculated and stored in the event
346  * sample data area.
347  */
348 struct cf_ctrset_entry {	/* CPU-M CF counter set entry (8 byte) */
349 	unsigned int def:16;	/* 0-15  Data Entry Format */
350 	unsigned int set:16;	/* 16-31 Counter set identifier */
351 	unsigned int ctr:16;	/* 32-47 Number of stored counters */
352 	unsigned int res1:16;	/* 48-63 Reserved */
353 };
354 
355 struct cf_trailer_entry {	/* CPU-M CF_DIAG trailer (64 byte) */
356 	/* 0 - 7 */
357 	union {
358 		struct {
359 			unsigned int clock_base:1;	/* TOD clock base set */
360 			unsigned int speed:1;		/* CPU speed set */
361 			/* Measurement alerts */
362 			unsigned int mtda:1;	/* Loss of MT ctr. data alert */
363 			unsigned int caca:1;	/* Counter auth. change alert */
364 			unsigned int lcda:1;	/* Loss of counter data alert */
365 		};
366 		unsigned long flags;	/* 0-63    All indicators */
367 	};
368 	/* 8 - 15 */
369 	unsigned int cfvn:16;			/* 64-79   Ctr First Version */
370 	unsigned int csvn:16;			/* 80-95   Ctr Second Version */
371 	unsigned int cpu_speed:32;		/* 96-127  CPU speed */
372 	/* 16 - 23 */
373 	unsigned long timestamp;		/* 128-191 Timestamp (TOD) */
374 	/* 24 - 55 */
375 	union {
376 		struct {
377 			unsigned long progusage1;
378 			unsigned long progusage2;
379 			unsigned long progusage3;
380 			unsigned long tod_base;
381 		};
382 		unsigned long progusage[4];
383 	};
384 	/* 56 - 63 */
385 	unsigned int mach_type:16;		/* Machine type */
386 	unsigned int res1:16;			/* Reserved */
387 	unsigned int res2:32;			/* Reserved */
388 };
389 
390 /* Create the trailer data at the end of a page. */
391 static void cfdiag_trailer(struct cf_trailer_entry *te)
392 {
393 	struct cpuid cpuid;
394 
395 	te->cfvn = cpumf_ctr_info.cfvn;		/* Counter version numbers */
396 	te->csvn = cpumf_ctr_info.csvn;
397 
398 	get_cpu_id(&cpuid);			/* Machine type */
399 	te->mach_type = cpuid.machine;
400 	te->cpu_speed = cfdiag_cpu_speed;
401 	if (te->cpu_speed)
402 		te->speed = 1;
403 	te->clock_base = 1;			/* Save clock base */
404 	te->tod_base = tod_clock_base.tod;
405 	te->timestamp = get_tod_clock_fast();
406 }
407 
408 /*
409  * The number of counters per counter set varies between machine generations,
410  * but is constant when running on a particular machine generation.
411  * Determine each counter set size at device driver initialization and
412  * retrieve it later.
413  */
414 static size_t cpumf_ctr_setsizes[CPUMF_CTR_SET_MAX];
415 static void cpum_cf_make_setsize(enum cpumf_ctr_set ctrset)
416 {
417 	size_t ctrset_size = 0;
418 
419 	switch (ctrset) {
420 	case CPUMF_CTR_SET_BASIC:
421 		if (cpumf_ctr_info.cfvn >= 1)
422 			ctrset_size = 6;
423 		break;
424 	case CPUMF_CTR_SET_USER:
425 		if (cpumf_ctr_info.cfvn == 1)
426 			ctrset_size = 6;
427 		else if (cpumf_ctr_info.cfvn >= 3)
428 			ctrset_size = 2;
429 		break;
430 	case CPUMF_CTR_SET_CRYPTO:
431 		if (cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5)
432 			ctrset_size = 16;
433 		else if (cpumf_ctr_info.csvn >= 6)
434 			ctrset_size = 20;
435 		break;
436 	case CPUMF_CTR_SET_EXT:
437 		if (cpumf_ctr_info.csvn == 1)
438 			ctrset_size = 32;
439 		else if (cpumf_ctr_info.csvn == 2)
440 			ctrset_size = 48;
441 		else if (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5)
442 			ctrset_size = 128;
443 		else if (cpumf_ctr_info.csvn >= 6 && cpumf_ctr_info.csvn <= 8)
444 			ctrset_size = 160;
445 		break;
446 	case CPUMF_CTR_SET_MT_DIAG:
447 		if (cpumf_ctr_info.csvn > 3)
448 			ctrset_size = 48;
449 		break;
450 	case CPUMF_CTR_SET_MAX:
451 		break;
452 	}
453 	cpumf_ctr_setsizes[ctrset] = ctrset_size;
454 }
455 
456 /*
457  * Return the maximum possible counter set size (in number of 8 byte counters)
458  * depending on type and model number.
459  */
460 static size_t cpum_cf_read_setsize(enum cpumf_ctr_set ctrset)
461 {
462 	return cpumf_ctr_setsizes[ctrset];
463 }
464 
465 /* Read a counter set. The counter set number determines the counter set and
466  * the CPUM-CF first and second version number determine the number of
467  * available counters in each counter set.
468  * Each counter set starts with header containing the counter set number and
469  * the number of eight byte counters.
470  *
471  * The functions returns the number of bytes occupied by this counter set
472  * including the header.
473  * If there is no counter in the counter set, this counter set is useless and
474  * zero is returned on this case.
475  *
476  * Note that the counter sets may not be enabled or active and the stcctm
477  * instruction might return error 3. Depending on error_ok value this is ok,
478  * for example when called from cpumf_pmu_start() call back function.
479  */
480 static size_t cfdiag_getctrset(struct cf_ctrset_entry *ctrdata, int ctrset,
481 			       size_t room, bool error_ok)
482 {
483 	size_t ctrset_size, need = 0;
484 	int rc = 3;				/* Assume write failure */
485 
486 	ctrdata->def = CF_DIAG_CTRSET_DEF;
487 	ctrdata->set = ctrset;
488 	ctrdata->res1 = 0;
489 	ctrset_size = cpum_cf_read_setsize(ctrset);
490 
491 	if (ctrset_size) {			/* Save data */
492 		need = ctrset_size * sizeof(u64) + sizeof(*ctrdata);
493 		if (need <= room) {
494 			rc = ctr_stcctm(ctrset, ctrset_size,
495 					(u64 *)(ctrdata + 1));
496 		}
497 		if (rc != 3 || error_ok)
498 			ctrdata->ctr = ctrset_size;
499 		else
500 			need = 0;
501 	}
502 
503 	return need;
504 }
505 
506 static const u64 cpumf_ctr_ctl[CPUMF_CTR_SET_MAX] = {
507 	[CPUMF_CTR_SET_BASIC]	= 0x02,
508 	[CPUMF_CTR_SET_USER]	= 0x04,
509 	[CPUMF_CTR_SET_CRYPTO]	= 0x08,
510 	[CPUMF_CTR_SET_EXT]	= 0x01,
511 	[CPUMF_CTR_SET_MT_DIAG] = 0x20,
512 };
513 
514 /* Read out all counter sets and save them in the provided data buffer.
515  * The last 64 byte host an artificial trailer entry.
516  */
517 static size_t cfdiag_getctr(void *data, size_t sz, unsigned long auth,
518 			    bool error_ok)
519 {
520 	struct cf_trailer_entry *trailer;
521 	size_t offset = 0, done;
522 	int i;
523 
524 	memset(data, 0, sz);
525 	sz -= sizeof(*trailer);		/* Always room for trailer */
526 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
527 		struct cf_ctrset_entry *ctrdata = data + offset;
528 
529 		if (!(auth & cpumf_ctr_ctl[i]))
530 			continue;	/* Counter set not authorized */
531 
532 		done = cfdiag_getctrset(ctrdata, i, sz - offset, error_ok);
533 		offset += done;
534 	}
535 	trailer = data + offset;
536 	cfdiag_trailer(trailer);
537 	return offset + sizeof(*trailer);
538 }
539 
540 /* Calculate the difference for each counter in a counter set. */
541 static void cfdiag_diffctrset(u64 *pstart, u64 *pstop, int counters)
542 {
543 	for (; --counters >= 0; ++pstart, ++pstop)
544 		if (*pstop >= *pstart)
545 			*pstop -= *pstart;
546 		else
547 			*pstop = *pstart - *pstop + 1;
548 }
549 
550 /* Scan the counter sets and calculate the difference of each counter
551  * in each set. The result is the increment of each counter during the
552  * period the counter set has been activated.
553  *
554  * Return true on success.
555  */
556 static int cfdiag_diffctr(struct cpu_cf_events *cpuhw, unsigned long auth)
557 {
558 	struct cf_trailer_entry *trailer_start, *trailer_stop;
559 	struct cf_ctrset_entry *ctrstart, *ctrstop;
560 	size_t offset = 0;
561 	int i;
562 
563 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
564 		ctrstart = (struct cf_ctrset_entry *)(cpuhw->start + offset);
565 		ctrstop = (struct cf_ctrset_entry *)(cpuhw->stop + offset);
566 
567 		/* Counter set not authorized */
568 		if (!(auth & cpumf_ctr_ctl[i]))
569 			continue;
570 		/* Counter set size zero was not saved */
571 		if (!cpum_cf_read_setsize(i))
572 			continue;
573 
574 		if (memcmp(ctrstop, ctrstart, sizeof(*ctrstop))) {
575 			pr_err_once("cpum_cf_diag counter set compare error "
576 				    "in set %i\n", ctrstart->set);
577 			return 0;
578 		}
579 		if (ctrstart->def == CF_DIAG_CTRSET_DEF) {
580 			cfdiag_diffctrset((u64 *)(ctrstart + 1),
581 					  (u64 *)(ctrstop + 1), ctrstart->ctr);
582 			offset += ctrstart->ctr * sizeof(u64) +
583 							sizeof(*ctrstart);
584 		}
585 	}
586 
587 	/* Save time_stamp from start of event in stop's trailer */
588 	trailer_start = (struct cf_trailer_entry *)(cpuhw->start + offset);
589 	trailer_stop = (struct cf_trailer_entry *)(cpuhw->stop + offset);
590 	trailer_stop->progusage[0] = trailer_start->timestamp;
591 
592 	return 1;
593 }
594 
595 static enum cpumf_ctr_set get_counter_set(u64 event)
596 {
597 	int set = CPUMF_CTR_SET_MAX;
598 
599 	if (event < 32)
600 		set = CPUMF_CTR_SET_BASIC;
601 	else if (event < 64)
602 		set = CPUMF_CTR_SET_USER;
603 	else if (event < 128)
604 		set = CPUMF_CTR_SET_CRYPTO;
605 	else if (event < 288)
606 		set = CPUMF_CTR_SET_EXT;
607 	else if (event >= 448 && event < 496)
608 		set = CPUMF_CTR_SET_MT_DIAG;
609 
610 	return set;
611 }
612 
613 static int validate_ctr_version(const u64 config, enum cpumf_ctr_set set)
614 {
615 	u16 mtdiag_ctl;
616 	int err = 0;
617 
618 	/* check required version for counter sets */
619 	switch (set) {
620 	case CPUMF_CTR_SET_BASIC:
621 	case CPUMF_CTR_SET_USER:
622 		if (cpumf_ctr_info.cfvn < 1)
623 			err = -EOPNOTSUPP;
624 		break;
625 	case CPUMF_CTR_SET_CRYPTO:
626 		if ((cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5 &&
627 		     config > 79) || (cpumf_ctr_info.csvn >= 6 && config > 83))
628 			err = -EOPNOTSUPP;
629 		break;
630 	case CPUMF_CTR_SET_EXT:
631 		if (cpumf_ctr_info.csvn < 1)
632 			err = -EOPNOTSUPP;
633 		if ((cpumf_ctr_info.csvn == 1 && config > 159) ||
634 		    (cpumf_ctr_info.csvn == 2 && config > 175) ||
635 		    (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5 &&
636 		     config > 255) ||
637 		    (cpumf_ctr_info.csvn >= 6 && config > 287))
638 			err = -EOPNOTSUPP;
639 		break;
640 	case CPUMF_CTR_SET_MT_DIAG:
641 		if (cpumf_ctr_info.csvn <= 3)
642 			err = -EOPNOTSUPP;
643 		/*
644 		 * MT-diagnostic counters are read-only.  The counter set
645 		 * is automatically enabled and activated on all CPUs with
646 		 * multithreading (SMT).  Deactivation of multithreading
647 		 * also disables the counter set.  State changes are ignored
648 		 * by lcctl().	Because Linux controls SMT enablement through
649 		 * a kernel parameter only, the counter set is either disabled
650 		 * or enabled and active.
651 		 *
652 		 * Thus, the counters can only be used if SMT is on and the
653 		 * counter set is enabled and active.
654 		 */
655 		mtdiag_ctl = cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG];
656 		if (!((cpumf_ctr_info.auth_ctl & mtdiag_ctl) &&
657 		      (cpumf_ctr_info.enable_ctl & mtdiag_ctl) &&
658 		      (cpumf_ctr_info.act_ctl & mtdiag_ctl)))
659 			err = -EOPNOTSUPP;
660 		break;
661 	case CPUMF_CTR_SET_MAX:
662 		err = -EOPNOTSUPP;
663 	}
664 
665 	return err;
666 }
667 
668 /*
669  * Change the CPUMF state to active.
670  * Enable and activate the CPU-counter sets according
671  * to the per-cpu control state.
672  */
673 static void cpumf_pmu_enable(struct pmu *pmu)
674 {
675 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
676 	int err;
677 
678 	if (!cpuhw || (cpuhw->flags & PMU_F_ENABLED))
679 		return;
680 
681 	err = lcctl(cpuhw->state | cpuhw->dev_state);
682 	if (err)
683 		pr_err("Enabling the performance measuring unit failed with rc=%x\n", err);
684 	else
685 		cpuhw->flags |= PMU_F_ENABLED;
686 }
687 
688 /*
689  * Change the CPUMF state to inactive.
690  * Disable and enable (inactive) the CPU-counter sets according
691  * to the per-cpu control state.
692  */
693 static void cpumf_pmu_disable(struct pmu *pmu)
694 {
695 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
696 	u64 inactive;
697 	int err;
698 
699 	if (!cpuhw || !(cpuhw->flags & PMU_F_ENABLED))
700 		return;
701 
702 	inactive = cpuhw->state & ~((1 << CPUMF_LCCTL_ENABLE_SHIFT) - 1);
703 	inactive |= cpuhw->dev_state;
704 	err = lcctl(inactive);
705 	if (err)
706 		pr_err("Disabling the performance measuring unit failed with rc=%x\n", err);
707 	else
708 		cpuhw->flags &= ~PMU_F_ENABLED;
709 }
710 
711 /* Release the PMU if event is the last perf event */
712 static void hw_perf_event_destroy(struct perf_event *event)
713 {
714 	cpum_cf_free(event->cpu);
715 }
716 
717 /* CPUMF <-> perf event mappings for kernel+userspace (basic set) */
718 static const int cpumf_generic_events_basic[] = {
719 	[PERF_COUNT_HW_CPU_CYCLES]	    = 0,
720 	[PERF_COUNT_HW_INSTRUCTIONS]	    = 1,
721 	[PERF_COUNT_HW_CACHE_REFERENCES]    = -1,
722 	[PERF_COUNT_HW_CACHE_MISSES]	    = -1,
723 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1,
724 	[PERF_COUNT_HW_BRANCH_MISSES]	    = -1,
725 	[PERF_COUNT_HW_BUS_CYCLES]	    = -1,
726 };
727 /* CPUMF <-> perf event mappings for userspace (problem-state set) */
728 static const int cpumf_generic_events_user[] = {
729 	[PERF_COUNT_HW_CPU_CYCLES]	    = 32,
730 	[PERF_COUNT_HW_INSTRUCTIONS]	    = 33,
731 	[PERF_COUNT_HW_CACHE_REFERENCES]    = -1,
732 	[PERF_COUNT_HW_CACHE_MISSES]	    = -1,
733 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1,
734 	[PERF_COUNT_HW_BRANCH_MISSES]	    = -1,
735 	[PERF_COUNT_HW_BUS_CYCLES]	    = -1,
736 };
737 
738 static int is_userspace_event(u64 ev)
739 {
740 	return cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev ||
741 	       cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev;
742 }
743 
744 static int __hw_perf_event_init(struct perf_event *event, unsigned int type)
745 {
746 	struct perf_event_attr *attr = &event->attr;
747 	struct hw_perf_event *hwc = &event->hw;
748 	enum cpumf_ctr_set set;
749 	u64 ev;
750 
751 	switch (type) {
752 	case PERF_TYPE_RAW:
753 		/* Raw events are used to access counters directly,
754 		 * hence do not permit excludes */
755 		if (attr->exclude_kernel || attr->exclude_user ||
756 		    attr->exclude_hv)
757 			return -EOPNOTSUPP;
758 		ev = attr->config;
759 		break;
760 
761 	case PERF_TYPE_HARDWARE:
762 		ev = attr->config;
763 		if (!attr->exclude_user && attr->exclude_kernel) {
764 			/*
765 			 * Count user space (problem-state) only
766 			 * Handle events 32 and 33 as 0:u and 1:u
767 			 */
768 			if (!is_userspace_event(ev)) {
769 				if (ev >= ARRAY_SIZE(cpumf_generic_events_user))
770 					return -EOPNOTSUPP;
771 				ev = cpumf_generic_events_user[ev];
772 			}
773 		} else if (!attr->exclude_kernel && attr->exclude_user) {
774 			/* No support for kernel space counters only */
775 			return -EOPNOTSUPP;
776 		} else {
777 			/* Count user and kernel space, incl. events 32 + 33 */
778 			if (!is_userspace_event(ev)) {
779 				if (ev >= ARRAY_SIZE(cpumf_generic_events_basic))
780 					return -EOPNOTSUPP;
781 				ev = cpumf_generic_events_basic[ev];
782 			}
783 		}
784 		break;
785 
786 	default:
787 		return -ENOENT;
788 	}
789 
790 	if (ev == -1)
791 		return -ENOENT;
792 
793 	if (ev > PERF_CPUM_CF_MAX_CTR)
794 		return -ENOENT;
795 
796 	/* Obtain the counter set to which the specified counter belongs */
797 	set = get_counter_set(ev);
798 	switch (set) {
799 	case CPUMF_CTR_SET_BASIC:
800 	case CPUMF_CTR_SET_USER:
801 	case CPUMF_CTR_SET_CRYPTO:
802 	case CPUMF_CTR_SET_EXT:
803 	case CPUMF_CTR_SET_MT_DIAG:
804 		/*
805 		 * Use the hardware perf event structure to store the
806 		 * counter number in the 'config' member and the counter
807 		 * set number in the 'config_base' as bit mask.
808 		 * It is later used to enable/disable the counter(s).
809 		 */
810 		hwc->config = ev;
811 		hwc->config_base = cpumf_ctr_ctl[set];
812 		break;
813 	case CPUMF_CTR_SET_MAX:
814 		/* The counter could not be associated to a counter set */
815 		return -EINVAL;
816 	}
817 
818 	/* Initialize for using the CPU-measurement counter facility */
819 	if (cpum_cf_alloc(event->cpu))
820 		return -ENOMEM;
821 	event->destroy = hw_perf_event_destroy;
822 
823 	/*
824 	 * Finally, validate version and authorization of the counter set.
825 	 * If the particular CPU counter set is not authorized,
826 	 * return with -ENOENT in order to fall back to other
827 	 * PMUs that might suffice the event request.
828 	 */
829 	if (!(hwc->config_base & cpumf_ctr_info.auth_ctl))
830 		return -ENOENT;
831 	return validate_ctr_version(hwc->config, set);
832 }
833 
834 /* Events CPU_CYCLES and INSTRUCTIONS can be submitted with two different
835  * attribute::type values:
836  * - PERF_TYPE_HARDWARE:
837  * - pmu->type:
838  * Handle both type of invocations identical. They address the same hardware.
839  * The result is different when event modifiers exclude_kernel and/or
840  * exclude_user are also set.
841  */
842 static int cpumf_pmu_event_type(struct perf_event *event)
843 {
844 	u64 ev = event->attr.config;
845 
846 	if (cpumf_generic_events_basic[PERF_COUNT_HW_CPU_CYCLES] == ev ||
847 	    cpumf_generic_events_basic[PERF_COUNT_HW_INSTRUCTIONS] == ev ||
848 	    cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev ||
849 	    cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev)
850 		return PERF_TYPE_HARDWARE;
851 	return PERF_TYPE_RAW;
852 }
853 
854 static int cpumf_pmu_event_init(struct perf_event *event)
855 {
856 	unsigned int type = event->attr.type;
857 	int err = -ENOENT;
858 
859 	if (is_sampling_event(event))	/* No sampling support */
860 		return err;
861 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_RAW)
862 		err = __hw_perf_event_init(event, type);
863 	else if (event->pmu->type == type)
864 		/* Registered as unknown PMU */
865 		err = __hw_perf_event_init(event, cpumf_pmu_event_type(event));
866 
867 	return err;
868 }
869 
870 static int hw_perf_event_reset(struct perf_event *event)
871 {
872 	u64 prev, new;
873 	int err;
874 
875 	prev = local64_read(&event->hw.prev_count);
876 	do {
877 		err = ecctr(event->hw.config, &new);
878 		if (err) {
879 			if (err != 3)
880 				break;
881 			/* The counter is not (yet) available. This
882 			 * might happen if the counter set to which
883 			 * this counter belongs is in the disabled
884 			 * state.
885 			 */
886 			new = 0;
887 		}
888 	} while (!local64_try_cmpxchg(&event->hw.prev_count, &prev, new));
889 
890 	return err;
891 }
892 
893 static void hw_perf_event_update(struct perf_event *event)
894 {
895 	u64 prev, new, delta;
896 	int err;
897 
898 	prev = local64_read(&event->hw.prev_count);
899 	do {
900 		err = ecctr(event->hw.config, &new);
901 		if (err)
902 			return;
903 	} while (!local64_try_cmpxchg(&event->hw.prev_count, &prev, new));
904 
905 	delta = (prev <= new) ? new - prev
906 			      : (-1ULL - prev) + new + 1;	 /* overflow */
907 	local64_add(delta, &event->count);
908 }
909 
910 static void cpumf_pmu_read(struct perf_event *event)
911 {
912 	if (event->hw.state & PERF_HES_STOPPED)
913 		return;
914 
915 	hw_perf_event_update(event);
916 }
917 
918 static void cpumf_pmu_start(struct perf_event *event, int flags)
919 {
920 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
921 	struct hw_perf_event *hwc = &event->hw;
922 	int i;
923 
924 	if (!(hwc->state & PERF_HES_STOPPED))
925 		return;
926 
927 	hwc->state = 0;
928 
929 	/* (Re-)enable and activate the counter set */
930 	ctr_set_enable(&cpuhw->state, hwc->config_base);
931 	ctr_set_start(&cpuhw->state, hwc->config_base);
932 
933 	/* The counter set to which this counter belongs can be already active.
934 	 * Because all counters in a set are active, the event->hw.prev_count
935 	 * needs to be synchronized.  At this point, the counter set can be in
936 	 * the inactive or disabled state.
937 	 */
938 	if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) {
939 		cpuhw->usedss = cfdiag_getctr(cpuhw->start,
940 					      sizeof(cpuhw->start),
941 					      hwc->config_base, true);
942 	} else {
943 		hw_perf_event_reset(event);
944 	}
945 
946 	/* Increment refcount for counter sets */
947 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i)
948 		if ((hwc->config_base & cpumf_ctr_ctl[i]))
949 			atomic_inc(&cpuhw->ctr_set[i]);
950 }
951 
952 /* Create perf event sample with the counter sets as raw data.	The sample
953  * is then pushed to the event subsystem and the function checks for
954  * possible event overflows. If an event overflow occurs, the PMU is
955  * stopped.
956  *
957  * Return non-zero if an event overflow occurred.
958  */
959 static int cfdiag_push_sample(struct perf_event *event,
960 			      struct cpu_cf_events *cpuhw)
961 {
962 	struct perf_sample_data data;
963 	struct perf_raw_record raw;
964 	struct pt_regs regs;
965 	int overflow;
966 
967 	/* Setup perf sample */
968 	perf_sample_data_init(&data, 0, event->hw.last_period);
969 	memset(&regs, 0, sizeof(regs));
970 	memset(&raw, 0, sizeof(raw));
971 
972 	if (event->attr.sample_type & PERF_SAMPLE_CPU)
973 		data.cpu_entry.cpu = event->cpu;
974 	if (event->attr.sample_type & PERF_SAMPLE_RAW) {
975 		raw.frag.size = cpuhw->usedss;
976 		raw.frag.data = cpuhw->stop;
977 		perf_sample_save_raw_data(&data, event, &raw);
978 	}
979 
980 	overflow = perf_event_overflow(event, &data, &regs);
981 
982 	perf_event_update_userpage(event);
983 	return overflow;
984 }
985 
986 static void cpumf_pmu_stop(struct perf_event *event, int flags)
987 {
988 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
989 	struct hw_perf_event *hwc = &event->hw;
990 	int i;
991 
992 	if (!(hwc->state & PERF_HES_STOPPED)) {
993 		/* Decrement reference count for this counter set and if this
994 		 * is the last used counter in the set, clear activation
995 		 * control and set the counter set state to inactive.
996 		 */
997 		for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
998 			if (!(hwc->config_base & cpumf_ctr_ctl[i]))
999 				continue;
1000 			if (!atomic_dec_return(&cpuhw->ctr_set[i]))
1001 				ctr_set_stop(&cpuhw->state, cpumf_ctr_ctl[i]);
1002 		}
1003 		hwc->state |= PERF_HES_STOPPED;
1004 	}
1005 
1006 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1007 		if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) {
1008 			local64_inc(&event->count);
1009 			cpuhw->usedss = cfdiag_getctr(cpuhw->stop,
1010 						      sizeof(cpuhw->stop),
1011 						      event->hw.config_base,
1012 						      false);
1013 			if (cfdiag_diffctr(cpuhw, event->hw.config_base))
1014 				cfdiag_push_sample(event, cpuhw);
1015 		} else {
1016 			hw_perf_event_update(event);
1017 		}
1018 		hwc->state |= PERF_HES_UPTODATE;
1019 	}
1020 }
1021 
1022 static int cpumf_pmu_add(struct perf_event *event, int flags)
1023 {
1024 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1025 
1026 	ctr_set_enable(&cpuhw->state, event->hw.config_base);
1027 	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1028 
1029 	if (flags & PERF_EF_START)
1030 		cpumf_pmu_start(event, PERF_EF_RELOAD);
1031 
1032 	return 0;
1033 }
1034 
1035 static void cpumf_pmu_del(struct perf_event *event, int flags)
1036 {
1037 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1038 	int i;
1039 
1040 	cpumf_pmu_stop(event, PERF_EF_UPDATE);
1041 
1042 	/* Check if any counter in the counter set is still used.  If not used,
1043 	 * change the counter set to the disabled state.  This also clears the
1044 	 * content of all counters in the set.
1045 	 *
1046 	 * When a new perf event has been added but not yet started, this can
1047 	 * clear enable control and resets all counters in a set.  Therefore,
1048 	 * cpumf_pmu_start() always has to re-enable a counter set.
1049 	 */
1050 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i)
1051 		if (!atomic_read(&cpuhw->ctr_set[i]))
1052 			ctr_set_disable(&cpuhw->state, cpumf_ctr_ctl[i]);
1053 }
1054 
1055 /* Performance monitoring unit for s390x */
1056 static struct pmu cpumf_pmu = {
1057 	.task_ctx_nr  = perf_sw_context,
1058 	.capabilities = PERF_PMU_CAP_NO_INTERRUPT,
1059 	.pmu_enable   = cpumf_pmu_enable,
1060 	.pmu_disable  = cpumf_pmu_disable,
1061 	.event_init   = cpumf_pmu_event_init,
1062 	.add	      = cpumf_pmu_add,
1063 	.del	      = cpumf_pmu_del,
1064 	.start	      = cpumf_pmu_start,
1065 	.stop	      = cpumf_pmu_stop,
1066 	.read	      = cpumf_pmu_read,
1067 };
1068 
1069 static struct cfset_session {		/* CPUs and counter set bit mask */
1070 	struct list_head head;		/* Head of list of active processes */
1071 } cfset_session = {
1072 	.head = LIST_HEAD_INIT(cfset_session.head)
1073 };
1074 
1075 static refcount_t cfset_opencnt = REFCOUNT_INIT(0);	/* Access count */
1076 /*
1077  * Synchronize access to device /dev/hwc. This mutex protects against
1078  * concurrent access to functions cfset_open() and cfset_release().
1079  * Same for CPU hotplug add and remove events triggering
1080  * cpum_cf_online_cpu() and cpum_cf_offline_cpu().
1081  * It also serializes concurrent device ioctl access from multiple
1082  * processes accessing /dev/hwc.
1083  *
1084  * The mutex protects concurrent access to the /dev/hwctr session management
1085  * struct cfset_session and reference counting variable cfset_opencnt.
1086  */
1087 static DEFINE_MUTEX(cfset_ctrset_mutex);
1088 
1089 /*
1090  * CPU hotplug handles only /dev/hwctr device.
1091  * For perf_event_open() the CPU hotplug handling is done on kernel common
1092  * code:
1093  * - CPU add: Nothing is done since a file descriptor can not be created
1094  *   and returned to the user.
1095  * - CPU delete: Handled by common code via pmu_disable(), pmu_stop() and
1096  *   pmu_delete(). The event itself is removed when the file descriptor is
1097  *   closed.
1098  */
1099 static int cfset_online_cpu(unsigned int cpu);
1100 
1101 static int cpum_cf_online_cpu(unsigned int cpu)
1102 {
1103 	int rc = 0;
1104 
1105 	/*
1106 	 * Ignore notification for perf_event_open().
1107 	 * Handle only /dev/hwctr device sessions.
1108 	 */
1109 	mutex_lock(&cfset_ctrset_mutex);
1110 	if (refcount_read(&cfset_opencnt)) {
1111 		rc = cpum_cf_alloc_cpu(cpu);
1112 		if (!rc)
1113 			cfset_online_cpu(cpu);
1114 	}
1115 	mutex_unlock(&cfset_ctrset_mutex);
1116 	return rc;
1117 }
1118 
1119 static int cfset_offline_cpu(unsigned int cpu);
1120 
1121 static int cpum_cf_offline_cpu(unsigned int cpu)
1122 {
1123 	/*
1124 	 * During task exit processing of grouped perf events triggered by CPU
1125 	 * hotplug processing, pmu_disable() is called as part of perf context
1126 	 * removal process. Therefore do not trigger event removal now for
1127 	 * perf_event_open() created events. Perf common code triggers event
1128 	 * destruction when the event file descriptor is closed.
1129 	 *
1130 	 * Handle only /dev/hwctr device sessions.
1131 	 */
1132 	mutex_lock(&cfset_ctrset_mutex);
1133 	if (refcount_read(&cfset_opencnt)) {
1134 		cfset_offline_cpu(cpu);
1135 		cpum_cf_free_cpu(cpu);
1136 	}
1137 	mutex_unlock(&cfset_ctrset_mutex);
1138 	return 0;
1139 }
1140 
1141 /* Return true if store counter set multiple instruction is available */
1142 static inline int stccm_avail(void)
1143 {
1144 	return test_facility(142);
1145 }
1146 
1147 /* CPU-measurement alerts for the counter facility */
1148 static void cpumf_measurement_alert(struct ext_code ext_code,
1149 				    unsigned int alert, unsigned long unused)
1150 {
1151 	struct cpu_cf_events *cpuhw;
1152 
1153 	if (!(alert & CPU_MF_INT_CF_MASK))
1154 		return;
1155 
1156 	inc_irq_stat(IRQEXT_CMC);
1157 
1158 	/*
1159 	 * Measurement alerts are shared and might happen when the PMU
1160 	 * is not reserved.  Ignore these alerts in this case.
1161 	 */
1162 	cpuhw = this_cpu_cfhw();
1163 	if (!cpuhw)
1164 		return;
1165 
1166 	/* counter authorization change alert */
1167 	if (alert & CPU_MF_INT_CF_CACA)
1168 		qctri(&cpumf_ctr_info);
1169 
1170 	/* loss of counter data alert */
1171 	if (alert & CPU_MF_INT_CF_LCDA)
1172 		pr_err("CPU[%i] Counter data was lost\n", smp_processor_id());
1173 
1174 	/* loss of MT counter data alert */
1175 	if (alert & CPU_MF_INT_CF_MTDA)
1176 		pr_warn("CPU[%i] MT counter data was lost\n",
1177 			smp_processor_id());
1178 }
1179 
1180 static int cfset_init(void);
1181 static int __init cpumf_pmu_init(void)
1182 {
1183 	int rc;
1184 
1185 	/* Extract counter measurement facility information */
1186 	if (!cpum_cf_avail() || qctri(&cpumf_ctr_info))
1187 		return -ENODEV;
1188 
1189 	/* Determine and store counter set sizes for later reference */
1190 	for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc)
1191 		cpum_cf_make_setsize(rc);
1192 
1193 	/*
1194 	 * Clear bit 15 of cr0 to unauthorize problem-state to
1195 	 * extract measurement counters
1196 	 */
1197 	system_ctl_clear_bit(0, CR0_CPUMF_EXTRACTION_AUTH_BIT);
1198 
1199 	/* register handler for measurement-alert interruptions */
1200 	rc = register_external_irq(EXT_IRQ_MEASURE_ALERT,
1201 				   cpumf_measurement_alert);
1202 	if (rc) {
1203 		pr_err("Registering for CPU-measurement alerts failed with rc=%i\n", rc);
1204 		return rc;
1205 	}
1206 
1207 	/* Setup s390dbf facility */
1208 	cf_dbg = debug_register("cpum_cf", 2, 1, 128);
1209 	if (!cf_dbg) {
1210 		pr_err("Registration of s390dbf(cpum_cf) failed\n");
1211 		rc = -ENOMEM;
1212 		goto out1;
1213 	}
1214 	debug_register_view(cf_dbg, &debug_sprintf_view);
1215 
1216 	cpumf_pmu.attr_groups = cpumf_cf_event_group();
1217 	rc = perf_pmu_register(&cpumf_pmu, "cpum_cf", -1);
1218 	if (rc) {
1219 		pr_err("Registering the cpum_cf PMU failed with rc=%i\n", rc);
1220 		goto out2;
1221 	} else if (stccm_avail()) {	/* Setup counter set device */
1222 		cfset_init();
1223 	}
1224 
1225 	rc = cpuhp_setup_state(CPUHP_AP_PERF_S390_CF_ONLINE,
1226 			       "perf/s390/cf:online",
1227 			       cpum_cf_online_cpu, cpum_cf_offline_cpu);
1228 	return rc;
1229 
1230 out2:
1231 	debug_unregister_view(cf_dbg, &debug_sprintf_view);
1232 	debug_unregister(cf_dbg);
1233 out1:
1234 	unregister_external_irq(EXT_IRQ_MEASURE_ALERT, cpumf_measurement_alert);
1235 	return rc;
1236 }
1237 
1238 /* Support for the CPU Measurement Facility counter set extraction using
1239  * device /dev/hwctr. This allows user space programs to extract complete
1240  * counter set via normal file operations.
1241  */
1242 
1243 struct cfset_call_on_cpu_parm {		/* Parm struct for smp_call_on_cpu */
1244 	unsigned int sets;		/* Counter set bit mask */
1245 	atomic_t cpus_ack;		/* # CPUs successfully executed func */
1246 };
1247 
1248 struct cfset_request {			/* CPUs and counter set bit mask */
1249 	unsigned long ctrset;		/* Bit mask of counter set to read */
1250 	cpumask_t mask;			/* CPU mask to read from */
1251 	struct list_head node;		/* Chain to cfset_session.head */
1252 };
1253 
1254 static void cfset_session_init(void)
1255 {
1256 	INIT_LIST_HEAD(&cfset_session.head);
1257 }
1258 
1259 /* Remove current request from global bookkeeping. Maintain a counter set bit
1260  * mask on a per CPU basis.
1261  * Done in process context under mutex protection.
1262  */
1263 static void cfset_session_del(struct cfset_request *p)
1264 {
1265 	list_del(&p->node);
1266 }
1267 
1268 /* Add current request to global bookkeeping. Maintain a counter set bit mask
1269  * on a per CPU basis.
1270  * Done in process context under mutex protection.
1271  */
1272 static void cfset_session_add(struct cfset_request *p)
1273 {
1274 	list_add(&p->node, &cfset_session.head);
1275 }
1276 
1277 /* The /dev/hwctr device access uses PMU_F_IN_USE to mark the device access
1278  * path is currently used.
1279  * The cpu_cf_events::dev_state is used to denote counter sets in use by this
1280  * interface. It is always or'ed in. If this interface is not active, its
1281  * value is zero and no additional counter sets will be included.
1282  *
1283  * The cpu_cf_events::state is used by the perf_event_open SVC and remains
1284  * unchanged.
1285  *
1286  * perf_pmu_enable() and perf_pmu_enable() and its call backs
1287  * cpumf_pmu_enable() and  cpumf_pmu_disable() are called by the
1288  * performance measurement subsystem to enable per process
1289  * CPU Measurement counter facility.
1290  * The XXX_enable() and XXX_disable functions are used to turn off
1291  * x86 performance monitoring interrupt (PMI) during scheduling.
1292  * s390 uses these calls to temporarily stop and resume the active CPU
1293  * counters sets during scheduling.
1294  *
1295  * We do allow concurrent access of perf_event_open() SVC and /dev/hwctr
1296  * device access.  The perf_event_open() SVC interface makes a lot of effort
1297  * to only run the counters while the calling process is actively scheduled
1298  * to run.
1299  * When /dev/hwctr interface is also used at the same time, the counter sets
1300  * will keep running, even when the process is scheduled off a CPU.
1301  * However this is not a problem and does not lead to wrong counter values
1302  * for the perf_event_open() SVC. The current counter value will be recorded
1303  * during schedule-in. At schedule-out time the current counter value is
1304  * extracted again and the delta is calculated and added to the event.
1305  */
1306 /* Stop all counter sets via ioctl interface */
1307 static void cfset_ioctl_off(void *parm)
1308 {
1309 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1310 	struct cfset_call_on_cpu_parm *p = parm;
1311 	int rc;
1312 
1313 	/* Check if any counter set used by /dev/hwctr */
1314 	for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc)
1315 		if ((p->sets & cpumf_ctr_ctl[rc])) {
1316 			if (!atomic_dec_return(&cpuhw->ctr_set[rc])) {
1317 				ctr_set_disable(&cpuhw->dev_state,
1318 						cpumf_ctr_ctl[rc]);
1319 				ctr_set_stop(&cpuhw->dev_state,
1320 					     cpumf_ctr_ctl[rc]);
1321 			}
1322 		}
1323 	/* Keep perf_event_open counter sets */
1324 	rc = lcctl(cpuhw->dev_state | cpuhw->state);
1325 	if (rc)
1326 		pr_err("Counter set stop %#llx of /dev/%s failed rc=%i\n",
1327 		       cpuhw->state, S390_HWCTR_DEVICE, rc);
1328 	if (!cpuhw->dev_state)
1329 		cpuhw->flags &= ~PMU_F_IN_USE;
1330 }
1331 
1332 /* Start counter sets on particular CPU */
1333 static void cfset_ioctl_on(void *parm)
1334 {
1335 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1336 	struct cfset_call_on_cpu_parm *p = parm;
1337 	int rc;
1338 
1339 	cpuhw->flags |= PMU_F_IN_USE;
1340 	ctr_set_enable(&cpuhw->dev_state, p->sets);
1341 	ctr_set_start(&cpuhw->dev_state, p->sets);
1342 	for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc)
1343 		if ((p->sets & cpumf_ctr_ctl[rc]))
1344 			atomic_inc(&cpuhw->ctr_set[rc]);
1345 	rc = lcctl(cpuhw->dev_state | cpuhw->state);	/* Start counter sets */
1346 	if (!rc)
1347 		atomic_inc(&p->cpus_ack);
1348 	else
1349 		pr_err("Counter set start %#llx of /dev/%s failed rc=%i\n",
1350 		       cpuhw->dev_state | cpuhw->state, S390_HWCTR_DEVICE, rc);
1351 }
1352 
1353 static void cfset_release_cpu(void *p)
1354 {
1355 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1356 	int rc;
1357 
1358 	cpuhw->dev_state = 0;
1359 	rc = lcctl(cpuhw->state);	/* Keep perf_event_open counter sets */
1360 	if (rc)
1361 		pr_err("Counter set release %#llx of /dev/%s failed rc=%i\n",
1362 		       cpuhw->state, S390_HWCTR_DEVICE, rc);
1363 }
1364 
1365 /* This modifies the process CPU mask to adopt it to the currently online
1366  * CPUs. Offline CPUs can not be addresses. This call terminates the access
1367  * and is usually followed by close() or a new iotcl(..., START, ...) which
1368  * creates a new request structure.
1369  */
1370 static void cfset_all_stop(struct cfset_request *req)
1371 {
1372 	struct cfset_call_on_cpu_parm p = {
1373 		.sets = req->ctrset,
1374 	};
1375 
1376 	cpumask_and(&req->mask, &req->mask, cpu_online_mask);
1377 	on_each_cpu_mask(&req->mask, cfset_ioctl_off, &p, 1);
1378 }
1379 
1380 /* Release function is also called when application gets terminated without
1381  * doing a proper ioctl(..., S390_HWCTR_STOP, ...) command.
1382  */
1383 static int cfset_release(struct inode *inode, struct file *file)
1384 {
1385 	mutex_lock(&cfset_ctrset_mutex);
1386 	/* Open followed by close/exit has no private_data */
1387 	if (file->private_data) {
1388 		cfset_all_stop(file->private_data);
1389 		cfset_session_del(file->private_data);
1390 		kfree(file->private_data);
1391 		file->private_data = NULL;
1392 	}
1393 	if (refcount_dec_and_test(&cfset_opencnt)) {	/* Last close */
1394 		on_each_cpu(cfset_release_cpu, NULL, 1);
1395 		cpum_cf_free(-1);
1396 	}
1397 	mutex_unlock(&cfset_ctrset_mutex);
1398 	return 0;
1399 }
1400 
1401 /*
1402  * Open via /dev/hwctr device. Allocate all per CPU resources on the first
1403  * open of the device. The last close releases all per CPU resources.
1404  * Parallel perf_event_open system calls also use per CPU resources.
1405  * These invocations are handled via reference counting on the per CPU data
1406  * structures.
1407  */
1408 static int cfset_open(struct inode *inode, struct file *file)
1409 {
1410 	int rc = 0;
1411 
1412 	if (!perfmon_capable())
1413 		return -EPERM;
1414 	file->private_data = NULL;
1415 
1416 	mutex_lock(&cfset_ctrset_mutex);
1417 	if (!refcount_inc_not_zero(&cfset_opencnt)) {	/* First open */
1418 		rc = cpum_cf_alloc(-1);
1419 		if (!rc) {
1420 			cfset_session_init();
1421 			refcount_set(&cfset_opencnt, 1);
1422 		}
1423 	}
1424 	mutex_unlock(&cfset_ctrset_mutex);
1425 
1426 	/* nonseekable_open() never fails */
1427 	return rc ?: nonseekable_open(inode, file);
1428 }
1429 
1430 static int cfset_all_start(struct cfset_request *req)
1431 {
1432 	struct cfset_call_on_cpu_parm p = {
1433 		.sets = req->ctrset,
1434 		.cpus_ack = ATOMIC_INIT(0),
1435 	};
1436 	cpumask_var_t mask;
1437 	int rc = 0;
1438 
1439 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1440 		return -ENOMEM;
1441 	cpumask_and(mask, &req->mask, cpu_online_mask);
1442 	on_each_cpu_mask(mask, cfset_ioctl_on, &p, 1);
1443 	if (atomic_read(&p.cpus_ack) != cpumask_weight(mask)) {
1444 		on_each_cpu_mask(mask, cfset_ioctl_off, &p, 1);
1445 		rc = -EIO;
1446 	}
1447 	free_cpumask_var(mask);
1448 	return rc;
1449 }
1450 
1451 /* Return the maximum required space for all possible CPUs in case one
1452  * CPU will be onlined during the START, READ, STOP cycles.
1453  * To find out the size of the counter sets, any one CPU will do. They
1454  * all have the same counter sets.
1455  */
1456 static size_t cfset_needspace(unsigned int sets)
1457 {
1458 	size_t bytes = 0;
1459 	int i;
1460 
1461 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
1462 		if (!(sets & cpumf_ctr_ctl[i]))
1463 			continue;
1464 		bytes += cpum_cf_read_setsize(i) * sizeof(u64) +
1465 			 sizeof(((struct s390_ctrset_setdata *)0)->set) +
1466 			 sizeof(((struct s390_ctrset_setdata *)0)->no_cnts);
1467 	}
1468 	bytes = sizeof(((struct s390_ctrset_read *)0)->no_cpus) + nr_cpu_ids *
1469 		(bytes + sizeof(((struct s390_ctrset_cpudata *)0)->cpu_nr) +
1470 		     sizeof(((struct s390_ctrset_cpudata *)0)->no_sets));
1471 	return bytes;
1472 }
1473 
1474 static int cfset_all_copy(unsigned long arg, cpumask_t *mask)
1475 {
1476 	struct s390_ctrset_read __user *ctrset_read;
1477 	unsigned int cpu, cpus, rc = 0;
1478 	void __user *uptr;
1479 
1480 	ctrset_read = (struct s390_ctrset_read __user *)arg;
1481 	uptr = ctrset_read->data;
1482 	for_each_cpu(cpu, mask) {
1483 		struct cpu_cf_events *cpuhw = get_cpu_cfhw(cpu);
1484 		struct s390_ctrset_cpudata __user *ctrset_cpudata;
1485 
1486 		ctrset_cpudata = uptr;
1487 		rc  = put_user(cpu, &ctrset_cpudata->cpu_nr);
1488 		rc |= put_user(cpuhw->sets, &ctrset_cpudata->no_sets);
1489 		rc |= copy_to_user(ctrset_cpudata->data, cpuhw->data,
1490 				   cpuhw->used);
1491 		if (rc) {
1492 			rc = -EFAULT;
1493 			goto out;
1494 		}
1495 		uptr += sizeof(struct s390_ctrset_cpudata) + cpuhw->used;
1496 		cond_resched();
1497 	}
1498 	cpus = cpumask_weight(mask);
1499 	if (put_user(cpus, &ctrset_read->no_cpus))
1500 		rc = -EFAULT;
1501 out:
1502 	return rc;
1503 }
1504 
1505 static size_t cfset_cpuset_read(struct s390_ctrset_setdata *p, int ctrset,
1506 				int ctrset_size, size_t room)
1507 {
1508 	size_t need = 0;
1509 	int rc = -1;
1510 
1511 	need = sizeof(*p) + sizeof(u64) * ctrset_size;
1512 	if (need <= room) {
1513 		p->set = cpumf_ctr_ctl[ctrset];
1514 		p->no_cnts = ctrset_size;
1515 		rc = ctr_stcctm(ctrset, ctrset_size, (u64 *)p->cv);
1516 		if (rc == 3)		/* Nothing stored */
1517 			need = 0;
1518 	}
1519 	return need;
1520 }
1521 
1522 /* Read all counter sets. */
1523 static void cfset_cpu_read(void *parm)
1524 {
1525 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1526 	struct cfset_call_on_cpu_parm *p = parm;
1527 	int set, set_size;
1528 	size_t space;
1529 
1530 	/* No data saved yet */
1531 	cpuhw->used = 0;
1532 	cpuhw->sets = 0;
1533 	memset(cpuhw->data, 0, sizeof(cpuhw->data));
1534 
1535 	/* Scan the counter sets */
1536 	for (set = CPUMF_CTR_SET_BASIC; set < CPUMF_CTR_SET_MAX; ++set) {
1537 		struct s390_ctrset_setdata *sp = (void *)cpuhw->data +
1538 						 cpuhw->used;
1539 
1540 		if (!(p->sets & cpumf_ctr_ctl[set]))
1541 			continue;	/* Counter set not in list */
1542 		set_size = cpum_cf_read_setsize(set);
1543 		space = sizeof(cpuhw->data) - cpuhw->used;
1544 		space = cfset_cpuset_read(sp, set, set_size, space);
1545 		if (space) {
1546 			cpuhw->used += space;
1547 			cpuhw->sets += 1;
1548 		}
1549 	}
1550 }
1551 
1552 static int cfset_all_read(unsigned long arg, struct cfset_request *req)
1553 {
1554 	struct cfset_call_on_cpu_parm p;
1555 	cpumask_var_t mask;
1556 	int rc;
1557 
1558 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1559 		return -ENOMEM;
1560 
1561 	p.sets = req->ctrset;
1562 	cpumask_and(mask, &req->mask, cpu_online_mask);
1563 	on_each_cpu_mask(mask, cfset_cpu_read, &p, 1);
1564 	rc = cfset_all_copy(arg, mask);
1565 	free_cpumask_var(mask);
1566 	return rc;
1567 }
1568 
1569 static long cfset_ioctl_read(unsigned long arg, struct cfset_request *req)
1570 {
1571 	int ret = -ENODATA;
1572 
1573 	if (req && req->ctrset)
1574 		ret = cfset_all_read(arg, req);
1575 	return ret;
1576 }
1577 
1578 static long cfset_ioctl_stop(struct file *file)
1579 {
1580 	struct cfset_request *req = file->private_data;
1581 	int ret = -ENXIO;
1582 
1583 	if (req) {
1584 		cfset_all_stop(req);
1585 		cfset_session_del(req);
1586 		kfree(req);
1587 		file->private_data = NULL;
1588 		ret = 0;
1589 	}
1590 	return ret;
1591 }
1592 
1593 static long cfset_ioctl_start(unsigned long arg, struct file *file)
1594 {
1595 	struct s390_ctrset_start __user *ustart;
1596 	struct s390_ctrset_start start;
1597 	struct cfset_request *preq;
1598 	void __user *umask;
1599 	unsigned int len;
1600 	int ret = 0;
1601 	size_t need;
1602 
1603 	if (file->private_data)
1604 		return -EBUSY;
1605 	ustart = (struct s390_ctrset_start __user *)arg;
1606 	if (copy_from_user(&start, ustart, sizeof(start)))
1607 		return -EFAULT;
1608 	if (start.version != S390_HWCTR_START_VERSION)
1609 		return -EINVAL;
1610 	if (start.counter_sets & ~(cpumf_ctr_ctl[CPUMF_CTR_SET_BASIC] |
1611 				   cpumf_ctr_ctl[CPUMF_CTR_SET_USER] |
1612 				   cpumf_ctr_ctl[CPUMF_CTR_SET_CRYPTO] |
1613 				   cpumf_ctr_ctl[CPUMF_CTR_SET_EXT] |
1614 				   cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG]))
1615 		return -EINVAL;		/* Invalid counter set */
1616 	if (!start.counter_sets)
1617 		return -EINVAL;		/* No counter set at all? */
1618 
1619 	preq = kzalloc(sizeof(*preq), GFP_KERNEL);
1620 	if (!preq)
1621 		return -ENOMEM;
1622 	cpumask_clear(&preq->mask);
1623 	len = min_t(u64, start.cpumask_len, cpumask_size());
1624 	umask = (void __user *)start.cpumask;
1625 	if (copy_from_user(&preq->mask, umask, len)) {
1626 		kfree(preq);
1627 		return -EFAULT;
1628 	}
1629 	if (cpumask_empty(&preq->mask)) {
1630 		kfree(preq);
1631 		return -EINVAL;
1632 	}
1633 	need = cfset_needspace(start.counter_sets);
1634 	if (put_user(need, &ustart->data_bytes)) {
1635 		kfree(preq);
1636 		return -EFAULT;
1637 	}
1638 	preq->ctrset = start.counter_sets;
1639 	ret = cfset_all_start(preq);
1640 	if (!ret) {
1641 		cfset_session_add(preq);
1642 		file->private_data = preq;
1643 	} else {
1644 		kfree(preq);
1645 	}
1646 	return ret;
1647 }
1648 
1649 /* Entry point to the /dev/hwctr device interface.
1650  * The ioctl system call supports three subcommands:
1651  * S390_HWCTR_START: Start the specified counter sets on a CPU list. The
1652  *    counter set keeps running until explicitly stopped. Returns the number
1653  *    of bytes needed to store the counter values. If another S390_HWCTR_START
1654  *    ioctl subcommand is called without a previous S390_HWCTR_STOP stop
1655  *    command on the same file descriptor, -EBUSY is returned.
1656  * S390_HWCTR_READ: Read the counter set values from specified CPU list given
1657  *    with the S390_HWCTR_START command.
1658  * S390_HWCTR_STOP: Stops the counter sets on the CPU list given with the
1659  *    previous S390_HWCTR_START subcommand.
1660  */
1661 static long cfset_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1662 {
1663 	int ret;
1664 
1665 	cpus_read_lock();
1666 	mutex_lock(&cfset_ctrset_mutex);
1667 	switch (cmd) {
1668 	case S390_HWCTR_START:
1669 		ret = cfset_ioctl_start(arg, file);
1670 		break;
1671 	case S390_HWCTR_STOP:
1672 		ret = cfset_ioctl_stop(file);
1673 		break;
1674 	case S390_HWCTR_READ:
1675 		ret = cfset_ioctl_read(arg, file->private_data);
1676 		break;
1677 	default:
1678 		ret = -ENOTTY;
1679 		break;
1680 	}
1681 	mutex_unlock(&cfset_ctrset_mutex);
1682 	cpus_read_unlock();
1683 	return ret;
1684 }
1685 
1686 static const struct file_operations cfset_fops = {
1687 	.owner = THIS_MODULE,
1688 	.open = cfset_open,
1689 	.release = cfset_release,
1690 	.unlocked_ioctl	= cfset_ioctl,
1691 };
1692 
1693 static struct miscdevice cfset_dev = {
1694 	.name	= S390_HWCTR_DEVICE,
1695 	.minor	= MISC_DYNAMIC_MINOR,
1696 	.fops	= &cfset_fops,
1697 	.mode	= 0666,
1698 };
1699 
1700 /* Hotplug add of a CPU. Scan through all active processes and add
1701  * that CPU to the list of CPUs supplied with ioctl(..., START, ...).
1702  */
1703 static int cfset_online_cpu(unsigned int cpu)
1704 {
1705 	struct cfset_call_on_cpu_parm p;
1706 	struct cfset_request *rp;
1707 
1708 	if (!list_empty(&cfset_session.head)) {
1709 		list_for_each_entry(rp, &cfset_session.head, node) {
1710 			p.sets = rp->ctrset;
1711 			cfset_ioctl_on(&p);
1712 			cpumask_set_cpu(cpu, &rp->mask);
1713 		}
1714 	}
1715 	return 0;
1716 }
1717 
1718 /* Hotplug remove of a CPU. Scan through all active processes and clear
1719  * that CPU from the list of CPUs supplied with ioctl(..., START, ...).
1720  * Adjust reference counts.
1721  */
1722 static int cfset_offline_cpu(unsigned int cpu)
1723 {
1724 	struct cfset_call_on_cpu_parm p;
1725 	struct cfset_request *rp;
1726 
1727 	if (!list_empty(&cfset_session.head)) {
1728 		list_for_each_entry(rp, &cfset_session.head, node) {
1729 			p.sets = rp->ctrset;
1730 			cfset_ioctl_off(&p);
1731 			cpumask_clear_cpu(cpu, &rp->mask);
1732 		}
1733 	}
1734 	return 0;
1735 }
1736 
1737 static void cfdiag_read(struct perf_event *event)
1738 {
1739 }
1740 
1741 static int get_authctrsets(void)
1742 {
1743 	unsigned long auth = 0;
1744 	enum cpumf_ctr_set i;
1745 
1746 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
1747 		if (cpumf_ctr_info.auth_ctl & cpumf_ctr_ctl[i])
1748 			auth |= cpumf_ctr_ctl[i];
1749 	}
1750 	return auth;
1751 }
1752 
1753 /* Setup the event. Test for authorized counter sets and only include counter
1754  * sets which are authorized at the time of the setup. Including unauthorized
1755  * counter sets result in specification exception (and panic).
1756  */
1757 static int cfdiag_event_init2(struct perf_event *event)
1758 {
1759 	struct perf_event_attr *attr = &event->attr;
1760 	int err = 0;
1761 
1762 	/* Set sample_period to indicate sampling */
1763 	event->hw.config = attr->config;
1764 	event->hw.sample_period = attr->sample_period;
1765 	local64_set(&event->hw.period_left, event->hw.sample_period);
1766 	local64_set(&event->count, 0);
1767 	event->hw.last_period = event->hw.sample_period;
1768 
1769 	/* Add all authorized counter sets to config_base. The
1770 	 * the hardware init function is either called per-cpu or just once
1771 	 * for all CPUS (event->cpu == -1).  This depends on the whether
1772 	 * counting is started for all CPUs or on a per workload base where
1773 	 * the perf event moves from one CPU to another CPU.
1774 	 * Checking the authorization on any CPU is fine as the hardware
1775 	 * applies the same authorization settings to all CPUs.
1776 	 */
1777 	event->hw.config_base = get_authctrsets();
1778 
1779 	/* No authorized counter sets, nothing to count/sample */
1780 	if (!event->hw.config_base)
1781 		err = -EINVAL;
1782 
1783 	return err;
1784 }
1785 
1786 static int cfdiag_event_init(struct perf_event *event)
1787 {
1788 	struct perf_event_attr *attr = &event->attr;
1789 	int err = -ENOENT;
1790 
1791 	if (event->attr.config != PERF_EVENT_CPUM_CF_DIAG ||
1792 	    event->attr.type != event->pmu->type)
1793 		goto out;
1794 
1795 	/* Raw events are used to access counters directly,
1796 	 * hence do not permit excludes.
1797 	 * This event is useless without PERF_SAMPLE_RAW to return counter set
1798 	 * values as raw data.
1799 	 */
1800 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv ||
1801 	    !(attr->sample_type & (PERF_SAMPLE_CPU | PERF_SAMPLE_RAW))) {
1802 		err = -EOPNOTSUPP;
1803 		goto out;
1804 	}
1805 
1806 	/* Initialize for using the CPU-measurement counter facility */
1807 	if (cpum_cf_alloc(event->cpu))
1808 		return -ENOMEM;
1809 	event->destroy = hw_perf_event_destroy;
1810 
1811 	err = cfdiag_event_init2(event);
1812 out:
1813 	return err;
1814 }
1815 
1816 /* Create cf_diag/events/CF_DIAG event sysfs file. This counter is used
1817  * to collect the complete counter sets for a scheduled process. Target
1818  * are complete counter sets attached as raw data to the artificial event.
1819  * This results in complete counter sets available when a process is
1820  * scheduled. Contains the delta of every counter while the process was
1821  * running.
1822  */
1823 CPUMF_EVENT_ATTR(CF_DIAG, CF_DIAG, PERF_EVENT_CPUM_CF_DIAG);
1824 
1825 static struct attribute *cfdiag_events_attr[] = {
1826 	CPUMF_EVENT_PTR(CF_DIAG, CF_DIAG),
1827 	NULL,
1828 };
1829 
1830 PMU_FORMAT_ATTR(event, "config:0-63");
1831 
1832 static struct attribute *cfdiag_format_attr[] = {
1833 	&format_attr_event.attr,
1834 	NULL,
1835 };
1836 
1837 static struct attribute_group cfdiag_events_group = {
1838 	.name = "events",
1839 	.attrs = cfdiag_events_attr,
1840 };
1841 static struct attribute_group cfdiag_format_group = {
1842 	.name = "format",
1843 	.attrs = cfdiag_format_attr,
1844 };
1845 static const struct attribute_group *cfdiag_attr_groups[] = {
1846 	&cfdiag_events_group,
1847 	&cfdiag_format_group,
1848 	NULL,
1849 };
1850 
1851 /* Performance monitoring unit for event CF_DIAG. Since this event
1852  * is also started and stopped via the perf_event_open() system call, use
1853  * the same event enable/disable call back functions. They do not
1854  * have a pointer to the perf_event structure as first parameter.
1855  *
1856  * The functions XXX_add, XXX_del, XXX_start and XXX_stop are also common.
1857  * Reuse them and distinguish the event (always first parameter) via
1858  * 'config' member.
1859  */
1860 static struct pmu cf_diag = {
1861 	.task_ctx_nr  = perf_sw_context,
1862 	.event_init   = cfdiag_event_init,
1863 	.pmu_enable   = cpumf_pmu_enable,
1864 	.pmu_disable  = cpumf_pmu_disable,
1865 	.add	      = cpumf_pmu_add,
1866 	.del	      = cpumf_pmu_del,
1867 	.start	      = cpumf_pmu_start,
1868 	.stop	      = cpumf_pmu_stop,
1869 	.read	      = cfdiag_read,
1870 
1871 	.attr_groups  = cfdiag_attr_groups
1872 };
1873 
1874 /* Calculate memory needed to store all counter sets together with header and
1875  * trailer data. This is independent of the counter set authorization which
1876  * can vary depending on the configuration.
1877  */
1878 static size_t cfdiag_maxsize(struct cpumf_ctr_info *info)
1879 {
1880 	size_t max_size = sizeof(struct cf_trailer_entry);
1881 	enum cpumf_ctr_set i;
1882 
1883 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
1884 		size_t size = cpum_cf_read_setsize(i);
1885 
1886 		if (size)
1887 			max_size += size * sizeof(u64) +
1888 				    sizeof(struct cf_ctrset_entry);
1889 	}
1890 	return max_size;
1891 }
1892 
1893 /* Get the CPU speed, try sampling facility first and CPU attributes second. */
1894 static void cfdiag_get_cpu_speed(void)
1895 {
1896 	unsigned long mhz;
1897 
1898 	if (cpum_sf_avail()) {			/* Sampling facility first */
1899 		struct hws_qsi_info_block si;
1900 
1901 		memset(&si, 0, sizeof(si));
1902 		if (!qsi(&si)) {
1903 			cfdiag_cpu_speed = si.cpu_speed;
1904 			return;
1905 		}
1906 	}
1907 
1908 	/* Fallback: CPU speed extract static part. Used in case
1909 	 * CPU Measurement Sampling Facility is turned off.
1910 	 */
1911 	mhz = __ecag(ECAG_CPU_ATTRIBUTE, 0);
1912 	if (mhz != -1UL)
1913 		cfdiag_cpu_speed = mhz & 0xffffffff;
1914 }
1915 
1916 static int cfset_init(void)
1917 {
1918 	size_t need;
1919 	int rc;
1920 
1921 	cfdiag_get_cpu_speed();
1922 	/* Make sure the counter set data fits into predefined buffer. */
1923 	need = cfdiag_maxsize(&cpumf_ctr_info);
1924 	if (need > sizeof(((struct cpu_cf_events *)0)->start)) {
1925 		pr_err("Insufficient memory for PMU(cpum_cf_diag) need=%zu\n",
1926 		       need);
1927 		return -ENOMEM;
1928 	}
1929 
1930 	rc = misc_register(&cfset_dev);
1931 	if (rc) {
1932 		pr_err("Registration of /dev/%s failed rc=%i\n",
1933 		       cfset_dev.name, rc);
1934 		goto out;
1935 	}
1936 
1937 	rc = perf_pmu_register(&cf_diag, "cpum_cf_diag", -1);
1938 	if (rc) {
1939 		misc_deregister(&cfset_dev);
1940 		pr_err("Registration of PMU(cpum_cf_diag) failed with rc=%i\n",
1941 		       rc);
1942 	}
1943 out:
1944 	return rc;
1945 }
1946 
1947 device_initcall(cpumf_pmu_init);
1948