1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance event support for s390x - CPU-measurement Counter Facility 4 * 5 * Copyright IBM Corp. 2012, 2023 6 * Author(s): Hendrik Brueckner <brueckner@linux.ibm.com> 7 * Thomas Richter <tmricht@linux.ibm.com> 8 */ 9 #define KMSG_COMPONENT "cpum_cf" 10 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/percpu.h> 15 #include <linux/notifier.h> 16 #include <linux/init.h> 17 #include <linux/export.h> 18 #include <linux/miscdevice.h> 19 #include <linux/perf_event.h> 20 21 #include <asm/cpu_mf.h> 22 #include <asm/hwctrset.h> 23 #include <asm/debug.h> 24 25 enum cpumf_ctr_set { 26 CPUMF_CTR_SET_BASIC = 0, /* Basic Counter Set */ 27 CPUMF_CTR_SET_USER = 1, /* Problem-State Counter Set */ 28 CPUMF_CTR_SET_CRYPTO = 2, /* Crypto-Activity Counter Set */ 29 CPUMF_CTR_SET_EXT = 3, /* Extended Counter Set */ 30 CPUMF_CTR_SET_MT_DIAG = 4, /* MT-diagnostic Counter Set */ 31 32 /* Maximum number of counter sets */ 33 CPUMF_CTR_SET_MAX, 34 }; 35 36 #define CPUMF_LCCTL_ENABLE_SHIFT 16 37 #define CPUMF_LCCTL_ACTCTL_SHIFT 0 38 39 static inline void ctr_set_enable(u64 *state, u64 ctrsets) 40 { 41 *state |= ctrsets << CPUMF_LCCTL_ENABLE_SHIFT; 42 } 43 44 static inline void ctr_set_disable(u64 *state, u64 ctrsets) 45 { 46 *state &= ~(ctrsets << CPUMF_LCCTL_ENABLE_SHIFT); 47 } 48 49 static inline void ctr_set_start(u64 *state, u64 ctrsets) 50 { 51 *state |= ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT; 52 } 53 54 static inline void ctr_set_stop(u64 *state, u64 ctrsets) 55 { 56 *state &= ~(ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT); 57 } 58 59 static inline int ctr_stcctm(enum cpumf_ctr_set set, u64 range, u64 *dest) 60 { 61 switch (set) { 62 case CPUMF_CTR_SET_BASIC: 63 return stcctm(BASIC, range, dest); 64 case CPUMF_CTR_SET_USER: 65 return stcctm(PROBLEM_STATE, range, dest); 66 case CPUMF_CTR_SET_CRYPTO: 67 return stcctm(CRYPTO_ACTIVITY, range, dest); 68 case CPUMF_CTR_SET_EXT: 69 return stcctm(EXTENDED, range, dest); 70 case CPUMF_CTR_SET_MT_DIAG: 71 return stcctm(MT_DIAG_CLEARING, range, dest); 72 case CPUMF_CTR_SET_MAX: 73 return 3; 74 } 75 return 3; 76 } 77 78 struct cpu_cf_events { 79 refcount_t refcnt; /* Reference count */ 80 atomic_t ctr_set[CPUMF_CTR_SET_MAX]; 81 u64 state; /* For perf_event_open SVC */ 82 u64 dev_state; /* For /dev/hwctr */ 83 unsigned int flags; 84 size_t used; /* Bytes used in data */ 85 size_t usedss; /* Bytes used in start/stop */ 86 unsigned char start[PAGE_SIZE]; /* Counter set at event add */ 87 unsigned char stop[PAGE_SIZE]; /* Counter set at event delete */ 88 unsigned char data[PAGE_SIZE]; /* Counter set at /dev/hwctr */ 89 unsigned int sets; /* # Counter set saved in memory */ 90 }; 91 92 static unsigned int cfdiag_cpu_speed; /* CPU speed for CF_DIAG trailer */ 93 static debug_info_t *cf_dbg; 94 95 /* 96 * The CPU Measurement query counter information instruction contains 97 * information which varies per machine generation, but is constant and 98 * does not change when running on a particular machine, such as counter 99 * first and second version number. This is needed to determine the size 100 * of counter sets. Extract this information at device driver initialization. 101 */ 102 static struct cpumf_ctr_info cpumf_ctr_info; 103 104 struct cpu_cf_ptr { 105 struct cpu_cf_events *cpucf; 106 }; 107 108 static struct cpu_cf_root { /* Anchor to per CPU data */ 109 refcount_t refcnt; /* Overall active events */ 110 struct cpu_cf_ptr __percpu *cfptr; 111 } cpu_cf_root; 112 113 /* 114 * Serialize event initialization and event removal. Both are called from 115 * user space in task context with perf_event_open() and close() 116 * system calls. 117 * 118 * This mutex serializes functions cpum_cf_alloc_cpu() called at event 119 * initialization via cpumf_pmu_event_init() and function cpum_cf_free_cpu() 120 * called at event removal via call back function hw_perf_event_destroy() 121 * when the event is deleted. They are serialized to enforce correct 122 * bookkeeping of pointer and reference counts anchored by 123 * struct cpu_cf_root and the access to cpu_cf_root::refcnt and the 124 * per CPU pointers stored in cpu_cf_root::cfptr. 125 */ 126 static DEFINE_MUTEX(pmc_reserve_mutex); 127 128 /* 129 * Get pointer to per-cpu structure. 130 * 131 * Function get_cpu_cfhw() is called from 132 * - cfset_copy_all(): This function is protected by cpus_read_lock(), so 133 * CPU hot plug remove can not happen. Event removal requires a close() 134 * first. 135 * 136 * Function this_cpu_cfhw() is called from perf common code functions: 137 * - pmu_{en|dis}able(), pmu_{add|del}()and pmu_{start|stop}(): 138 * All functions execute with interrupts disabled on that particular CPU. 139 * - cfset_ioctl_{on|off}, cfset_cpu_read(): see comment cfset_copy_all(). 140 * 141 * Therefore it is safe to access the CPU specific pointer to the event. 142 */ 143 static struct cpu_cf_events *get_cpu_cfhw(int cpu) 144 { 145 struct cpu_cf_ptr __percpu *p = cpu_cf_root.cfptr; 146 147 if (p) { 148 struct cpu_cf_ptr *q = per_cpu_ptr(p, cpu); 149 150 return q->cpucf; 151 } 152 return NULL; 153 } 154 155 static struct cpu_cf_events *this_cpu_cfhw(void) 156 { 157 return get_cpu_cfhw(smp_processor_id()); 158 } 159 160 /* Disable counter sets on dedicated CPU */ 161 static void cpum_cf_reset_cpu(void *flags) 162 { 163 lcctl(0); 164 } 165 166 /* Free per CPU data when the last event is removed. */ 167 static void cpum_cf_free_root(void) 168 { 169 if (!refcount_dec_and_test(&cpu_cf_root.refcnt)) 170 return; 171 free_percpu(cpu_cf_root.cfptr); 172 cpu_cf_root.cfptr = NULL; 173 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT); 174 on_each_cpu(cpum_cf_reset_cpu, NULL, 1); 175 debug_sprintf_event(cf_dbg, 4, "%s root.refcnt %u cfptr %d\n", 176 __func__, refcount_read(&cpu_cf_root.refcnt), 177 !cpu_cf_root.cfptr); 178 } 179 180 /* 181 * On initialization of first event also allocate per CPU data dynamically. 182 * Start with an array of pointers, the array size is the maximum number of 183 * CPUs possible, which might be larger than the number of CPUs currently 184 * online. 185 */ 186 static int cpum_cf_alloc_root(void) 187 { 188 int rc = 0; 189 190 if (refcount_inc_not_zero(&cpu_cf_root.refcnt)) 191 return rc; 192 193 /* The memory is already zeroed. */ 194 cpu_cf_root.cfptr = alloc_percpu(struct cpu_cf_ptr); 195 if (cpu_cf_root.cfptr) { 196 refcount_set(&cpu_cf_root.refcnt, 1); 197 on_each_cpu(cpum_cf_reset_cpu, NULL, 1); 198 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT); 199 } else { 200 rc = -ENOMEM; 201 } 202 203 return rc; 204 } 205 206 /* Free CPU counter data structure for a PMU */ 207 static void cpum_cf_free_cpu(int cpu) 208 { 209 struct cpu_cf_events *cpuhw; 210 struct cpu_cf_ptr *p; 211 212 mutex_lock(&pmc_reserve_mutex); 213 /* 214 * When invoked via CPU hotplug handler, there might be no events 215 * installed or that particular CPU might not have an 216 * event installed. This anchor pointer can be NULL! 217 */ 218 if (!cpu_cf_root.cfptr) 219 goto out; 220 p = per_cpu_ptr(cpu_cf_root.cfptr, cpu); 221 cpuhw = p->cpucf; 222 /* 223 * Might be zero when called from CPU hotplug handler and no event 224 * installed on that CPU, but on different CPUs. 225 */ 226 if (!cpuhw) 227 goto out; 228 229 if (refcount_dec_and_test(&cpuhw->refcnt)) { 230 kfree(cpuhw); 231 p->cpucf = NULL; 232 } 233 cpum_cf_free_root(); 234 out: 235 mutex_unlock(&pmc_reserve_mutex); 236 } 237 238 /* Allocate CPU counter data structure for a PMU. Called under mutex lock. */ 239 static int cpum_cf_alloc_cpu(int cpu) 240 { 241 struct cpu_cf_events *cpuhw; 242 struct cpu_cf_ptr *p; 243 int rc; 244 245 mutex_lock(&pmc_reserve_mutex); 246 rc = cpum_cf_alloc_root(); 247 if (rc) 248 goto unlock; 249 p = per_cpu_ptr(cpu_cf_root.cfptr, cpu); 250 cpuhw = p->cpucf; 251 252 if (!cpuhw) { 253 cpuhw = kzalloc(sizeof(*cpuhw), GFP_KERNEL); 254 if (cpuhw) { 255 p->cpucf = cpuhw; 256 refcount_set(&cpuhw->refcnt, 1); 257 } else { 258 rc = -ENOMEM; 259 } 260 } else { 261 refcount_inc(&cpuhw->refcnt); 262 } 263 if (rc) { 264 /* 265 * Error in allocation of event, decrement anchor. Since 266 * cpu_cf_event in not created, its destroy() function is not 267 * invoked. Adjust the reference counter for the anchor. 268 */ 269 cpum_cf_free_root(); 270 } 271 unlock: 272 mutex_unlock(&pmc_reserve_mutex); 273 return rc; 274 } 275 276 /* 277 * Create/delete per CPU data structures for /dev/hwctr interface and events 278 * created by perf_event_open(). 279 * If cpu is -1, track task on all available CPUs. This requires 280 * allocation of hardware data structures for all CPUs. This setup handles 281 * perf_event_open() with task context and /dev/hwctr interface. 282 * If cpu is non-zero install event on this CPU only. This setup handles 283 * perf_event_open() with CPU context. 284 */ 285 static int cpum_cf_alloc(int cpu) 286 { 287 cpumask_var_t mask; 288 int rc; 289 290 if (cpu == -1) { 291 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 292 return -ENOMEM; 293 for_each_online_cpu(cpu) { 294 rc = cpum_cf_alloc_cpu(cpu); 295 if (rc) { 296 for_each_cpu(cpu, mask) 297 cpum_cf_free_cpu(cpu); 298 break; 299 } 300 cpumask_set_cpu(cpu, mask); 301 } 302 free_cpumask_var(mask); 303 } else { 304 rc = cpum_cf_alloc_cpu(cpu); 305 } 306 return rc; 307 } 308 309 static void cpum_cf_free(int cpu) 310 { 311 if (cpu == -1) { 312 for_each_online_cpu(cpu) 313 cpum_cf_free_cpu(cpu); 314 } else { 315 cpum_cf_free_cpu(cpu); 316 } 317 } 318 319 #define CF_DIAG_CTRSET_DEF 0xfeef /* Counter set header mark */ 320 /* interval in seconds */ 321 322 /* Counter sets are stored as data stream in a page sized memory buffer and 323 * exported to user space via raw data attached to the event sample data. 324 * Each counter set starts with an eight byte header consisting of: 325 * - a two byte eye catcher (0xfeef) 326 * - a one byte counter set number 327 * - a two byte counter set size (indicates the number of counters in this set) 328 * - a three byte reserved value (must be zero) to make the header the same 329 * size as a counter value. 330 * All counter values are eight byte in size. 331 * 332 * All counter sets are followed by a 64 byte trailer. 333 * The trailer consists of a: 334 * - flag field indicating valid fields when corresponding bit set 335 * - the counter facility first and second version number 336 * - the CPU speed if nonzero 337 * - the time stamp the counter sets have been collected 338 * - the time of day (TOD) base value 339 * - the machine type. 340 * 341 * The counter sets are saved when the process is prepared to be executed on a 342 * CPU and saved again when the process is going to be removed from a CPU. 343 * The difference of both counter sets are calculated and stored in the event 344 * sample data area. 345 */ 346 struct cf_ctrset_entry { /* CPU-M CF counter set entry (8 byte) */ 347 unsigned int def:16; /* 0-15 Data Entry Format */ 348 unsigned int set:16; /* 16-31 Counter set identifier */ 349 unsigned int ctr:16; /* 32-47 Number of stored counters */ 350 unsigned int res1:16; /* 48-63 Reserved */ 351 }; 352 353 struct cf_trailer_entry { /* CPU-M CF_DIAG trailer (64 byte) */ 354 /* 0 - 7 */ 355 union { 356 struct { 357 unsigned int clock_base:1; /* TOD clock base set */ 358 unsigned int speed:1; /* CPU speed set */ 359 /* Measurement alerts */ 360 unsigned int mtda:1; /* Loss of MT ctr. data alert */ 361 unsigned int caca:1; /* Counter auth. change alert */ 362 unsigned int lcda:1; /* Loss of counter data alert */ 363 }; 364 unsigned long flags; /* 0-63 All indicators */ 365 }; 366 /* 8 - 15 */ 367 unsigned int cfvn:16; /* 64-79 Ctr First Version */ 368 unsigned int csvn:16; /* 80-95 Ctr Second Version */ 369 unsigned int cpu_speed:32; /* 96-127 CPU speed */ 370 /* 16 - 23 */ 371 unsigned long timestamp; /* 128-191 Timestamp (TOD) */ 372 /* 24 - 55 */ 373 union { 374 struct { 375 unsigned long progusage1; 376 unsigned long progusage2; 377 unsigned long progusage3; 378 unsigned long tod_base; 379 }; 380 unsigned long progusage[4]; 381 }; 382 /* 56 - 63 */ 383 unsigned int mach_type:16; /* Machine type */ 384 unsigned int res1:16; /* Reserved */ 385 unsigned int res2:32; /* Reserved */ 386 }; 387 388 /* Create the trailer data at the end of a page. */ 389 static void cfdiag_trailer(struct cf_trailer_entry *te) 390 { 391 struct cpuid cpuid; 392 393 te->cfvn = cpumf_ctr_info.cfvn; /* Counter version numbers */ 394 te->csvn = cpumf_ctr_info.csvn; 395 396 get_cpu_id(&cpuid); /* Machine type */ 397 te->mach_type = cpuid.machine; 398 te->cpu_speed = cfdiag_cpu_speed; 399 if (te->cpu_speed) 400 te->speed = 1; 401 te->clock_base = 1; /* Save clock base */ 402 te->tod_base = tod_clock_base.tod; 403 te->timestamp = get_tod_clock_fast(); 404 } 405 406 /* 407 * The number of counters per counter set varies between machine generations, 408 * but is constant when running on a particular machine generation. 409 * Determine each counter set size at device driver initialization and 410 * retrieve it later. 411 */ 412 static size_t cpumf_ctr_setsizes[CPUMF_CTR_SET_MAX]; 413 static void cpum_cf_make_setsize(enum cpumf_ctr_set ctrset) 414 { 415 size_t ctrset_size = 0; 416 417 switch (ctrset) { 418 case CPUMF_CTR_SET_BASIC: 419 if (cpumf_ctr_info.cfvn >= 1) 420 ctrset_size = 6; 421 break; 422 case CPUMF_CTR_SET_USER: 423 if (cpumf_ctr_info.cfvn == 1) 424 ctrset_size = 6; 425 else if (cpumf_ctr_info.cfvn >= 3) 426 ctrset_size = 2; 427 break; 428 case CPUMF_CTR_SET_CRYPTO: 429 if (cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5) 430 ctrset_size = 16; 431 else if (cpumf_ctr_info.csvn >= 6) 432 ctrset_size = 20; 433 break; 434 case CPUMF_CTR_SET_EXT: 435 if (cpumf_ctr_info.csvn == 1) 436 ctrset_size = 32; 437 else if (cpumf_ctr_info.csvn == 2) 438 ctrset_size = 48; 439 else if (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5) 440 ctrset_size = 128; 441 else if (cpumf_ctr_info.csvn == 6 || cpumf_ctr_info.csvn == 7) 442 ctrset_size = 160; 443 break; 444 case CPUMF_CTR_SET_MT_DIAG: 445 if (cpumf_ctr_info.csvn > 3) 446 ctrset_size = 48; 447 break; 448 case CPUMF_CTR_SET_MAX: 449 break; 450 } 451 cpumf_ctr_setsizes[ctrset] = ctrset_size; 452 } 453 454 /* 455 * Return the maximum possible counter set size (in number of 8 byte counters) 456 * depending on type and model number. 457 */ 458 static size_t cpum_cf_read_setsize(enum cpumf_ctr_set ctrset) 459 { 460 return cpumf_ctr_setsizes[ctrset]; 461 } 462 463 /* Read a counter set. The counter set number determines the counter set and 464 * the CPUM-CF first and second version number determine the number of 465 * available counters in each counter set. 466 * Each counter set starts with header containing the counter set number and 467 * the number of eight byte counters. 468 * 469 * The functions returns the number of bytes occupied by this counter set 470 * including the header. 471 * If there is no counter in the counter set, this counter set is useless and 472 * zero is returned on this case. 473 * 474 * Note that the counter sets may not be enabled or active and the stcctm 475 * instruction might return error 3. Depending on error_ok value this is ok, 476 * for example when called from cpumf_pmu_start() call back function. 477 */ 478 static size_t cfdiag_getctrset(struct cf_ctrset_entry *ctrdata, int ctrset, 479 size_t room, bool error_ok) 480 { 481 size_t ctrset_size, need = 0; 482 int rc = 3; /* Assume write failure */ 483 484 ctrdata->def = CF_DIAG_CTRSET_DEF; 485 ctrdata->set = ctrset; 486 ctrdata->res1 = 0; 487 ctrset_size = cpum_cf_read_setsize(ctrset); 488 489 if (ctrset_size) { /* Save data */ 490 need = ctrset_size * sizeof(u64) + sizeof(*ctrdata); 491 if (need <= room) { 492 rc = ctr_stcctm(ctrset, ctrset_size, 493 (u64 *)(ctrdata + 1)); 494 } 495 if (rc != 3 || error_ok) 496 ctrdata->ctr = ctrset_size; 497 else 498 need = 0; 499 } 500 501 return need; 502 } 503 504 static const u64 cpumf_ctr_ctl[CPUMF_CTR_SET_MAX] = { 505 [CPUMF_CTR_SET_BASIC] = 0x02, 506 [CPUMF_CTR_SET_USER] = 0x04, 507 [CPUMF_CTR_SET_CRYPTO] = 0x08, 508 [CPUMF_CTR_SET_EXT] = 0x01, 509 [CPUMF_CTR_SET_MT_DIAG] = 0x20, 510 }; 511 512 /* Read out all counter sets and save them in the provided data buffer. 513 * The last 64 byte host an artificial trailer entry. 514 */ 515 static size_t cfdiag_getctr(void *data, size_t sz, unsigned long auth, 516 bool error_ok) 517 { 518 struct cf_trailer_entry *trailer; 519 size_t offset = 0, done; 520 int i; 521 522 memset(data, 0, sz); 523 sz -= sizeof(*trailer); /* Always room for trailer */ 524 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 525 struct cf_ctrset_entry *ctrdata = data + offset; 526 527 if (!(auth & cpumf_ctr_ctl[i])) 528 continue; /* Counter set not authorized */ 529 530 done = cfdiag_getctrset(ctrdata, i, sz - offset, error_ok); 531 offset += done; 532 } 533 trailer = data + offset; 534 cfdiag_trailer(trailer); 535 return offset + sizeof(*trailer); 536 } 537 538 /* Calculate the difference for each counter in a counter set. */ 539 static void cfdiag_diffctrset(u64 *pstart, u64 *pstop, int counters) 540 { 541 for (; --counters >= 0; ++pstart, ++pstop) 542 if (*pstop >= *pstart) 543 *pstop -= *pstart; 544 else 545 *pstop = *pstart - *pstop + 1; 546 } 547 548 /* Scan the counter sets and calculate the difference of each counter 549 * in each set. The result is the increment of each counter during the 550 * period the counter set has been activated. 551 * 552 * Return true on success. 553 */ 554 static int cfdiag_diffctr(struct cpu_cf_events *cpuhw, unsigned long auth) 555 { 556 struct cf_trailer_entry *trailer_start, *trailer_stop; 557 struct cf_ctrset_entry *ctrstart, *ctrstop; 558 size_t offset = 0; 559 int i; 560 561 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 562 ctrstart = (struct cf_ctrset_entry *)(cpuhw->start + offset); 563 ctrstop = (struct cf_ctrset_entry *)(cpuhw->stop + offset); 564 565 /* Counter set not authorized */ 566 if (!(auth & cpumf_ctr_ctl[i])) 567 continue; 568 /* Counter set size zero was not saved */ 569 if (!cpum_cf_read_setsize(i)) 570 continue; 571 572 if (memcmp(ctrstop, ctrstart, sizeof(*ctrstop))) { 573 pr_err_once("cpum_cf_diag counter set compare error " 574 "in set %i\n", ctrstart->set); 575 return 0; 576 } 577 if (ctrstart->def == CF_DIAG_CTRSET_DEF) { 578 cfdiag_diffctrset((u64 *)(ctrstart + 1), 579 (u64 *)(ctrstop + 1), ctrstart->ctr); 580 offset += ctrstart->ctr * sizeof(u64) + 581 sizeof(*ctrstart); 582 } 583 } 584 585 /* Save time_stamp from start of event in stop's trailer */ 586 trailer_start = (struct cf_trailer_entry *)(cpuhw->start + offset); 587 trailer_stop = (struct cf_trailer_entry *)(cpuhw->stop + offset); 588 trailer_stop->progusage[0] = trailer_start->timestamp; 589 590 return 1; 591 } 592 593 static enum cpumf_ctr_set get_counter_set(u64 event) 594 { 595 int set = CPUMF_CTR_SET_MAX; 596 597 if (event < 32) 598 set = CPUMF_CTR_SET_BASIC; 599 else if (event < 64) 600 set = CPUMF_CTR_SET_USER; 601 else if (event < 128) 602 set = CPUMF_CTR_SET_CRYPTO; 603 else if (event < 288) 604 set = CPUMF_CTR_SET_EXT; 605 else if (event >= 448 && event < 496) 606 set = CPUMF_CTR_SET_MT_DIAG; 607 608 return set; 609 } 610 611 static int validate_ctr_version(const u64 config, enum cpumf_ctr_set set) 612 { 613 u16 mtdiag_ctl; 614 int err = 0; 615 616 /* check required version for counter sets */ 617 switch (set) { 618 case CPUMF_CTR_SET_BASIC: 619 case CPUMF_CTR_SET_USER: 620 if (cpumf_ctr_info.cfvn < 1) 621 err = -EOPNOTSUPP; 622 break; 623 case CPUMF_CTR_SET_CRYPTO: 624 if ((cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5 && 625 config > 79) || (cpumf_ctr_info.csvn >= 6 && config > 83)) 626 err = -EOPNOTSUPP; 627 break; 628 case CPUMF_CTR_SET_EXT: 629 if (cpumf_ctr_info.csvn < 1) 630 err = -EOPNOTSUPP; 631 if ((cpumf_ctr_info.csvn == 1 && config > 159) || 632 (cpumf_ctr_info.csvn == 2 && config > 175) || 633 (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5 && 634 config > 255) || 635 (cpumf_ctr_info.csvn >= 6 && config > 287)) 636 err = -EOPNOTSUPP; 637 break; 638 case CPUMF_CTR_SET_MT_DIAG: 639 if (cpumf_ctr_info.csvn <= 3) 640 err = -EOPNOTSUPP; 641 /* 642 * MT-diagnostic counters are read-only. The counter set 643 * is automatically enabled and activated on all CPUs with 644 * multithreading (SMT). Deactivation of multithreading 645 * also disables the counter set. State changes are ignored 646 * by lcctl(). Because Linux controls SMT enablement through 647 * a kernel parameter only, the counter set is either disabled 648 * or enabled and active. 649 * 650 * Thus, the counters can only be used if SMT is on and the 651 * counter set is enabled and active. 652 */ 653 mtdiag_ctl = cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG]; 654 if (!((cpumf_ctr_info.auth_ctl & mtdiag_ctl) && 655 (cpumf_ctr_info.enable_ctl & mtdiag_ctl) && 656 (cpumf_ctr_info.act_ctl & mtdiag_ctl))) 657 err = -EOPNOTSUPP; 658 break; 659 case CPUMF_CTR_SET_MAX: 660 err = -EOPNOTSUPP; 661 } 662 663 return err; 664 } 665 666 /* 667 * Change the CPUMF state to active. 668 * Enable and activate the CPU-counter sets according 669 * to the per-cpu control state. 670 */ 671 static void cpumf_pmu_enable(struct pmu *pmu) 672 { 673 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 674 int err; 675 676 if (!cpuhw || (cpuhw->flags & PMU_F_ENABLED)) 677 return; 678 679 err = lcctl(cpuhw->state | cpuhw->dev_state); 680 if (err) 681 pr_err("Enabling the performance measuring unit failed with rc=%x\n", err); 682 else 683 cpuhw->flags |= PMU_F_ENABLED; 684 } 685 686 /* 687 * Change the CPUMF state to inactive. 688 * Disable and enable (inactive) the CPU-counter sets according 689 * to the per-cpu control state. 690 */ 691 static void cpumf_pmu_disable(struct pmu *pmu) 692 { 693 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 694 u64 inactive; 695 int err; 696 697 if (!cpuhw || !(cpuhw->flags & PMU_F_ENABLED)) 698 return; 699 700 inactive = cpuhw->state & ~((1 << CPUMF_LCCTL_ENABLE_SHIFT) - 1); 701 inactive |= cpuhw->dev_state; 702 err = lcctl(inactive); 703 if (err) 704 pr_err("Disabling the performance measuring unit failed with rc=%x\n", err); 705 else 706 cpuhw->flags &= ~PMU_F_ENABLED; 707 } 708 709 /* Release the PMU if event is the last perf event */ 710 static void hw_perf_event_destroy(struct perf_event *event) 711 { 712 cpum_cf_free(event->cpu); 713 } 714 715 /* CPUMF <-> perf event mappings for kernel+userspace (basic set) */ 716 static const int cpumf_generic_events_basic[] = { 717 [PERF_COUNT_HW_CPU_CYCLES] = 0, 718 [PERF_COUNT_HW_INSTRUCTIONS] = 1, 719 [PERF_COUNT_HW_CACHE_REFERENCES] = -1, 720 [PERF_COUNT_HW_CACHE_MISSES] = -1, 721 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1, 722 [PERF_COUNT_HW_BRANCH_MISSES] = -1, 723 [PERF_COUNT_HW_BUS_CYCLES] = -1, 724 }; 725 /* CPUMF <-> perf event mappings for userspace (problem-state set) */ 726 static const int cpumf_generic_events_user[] = { 727 [PERF_COUNT_HW_CPU_CYCLES] = 32, 728 [PERF_COUNT_HW_INSTRUCTIONS] = 33, 729 [PERF_COUNT_HW_CACHE_REFERENCES] = -1, 730 [PERF_COUNT_HW_CACHE_MISSES] = -1, 731 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1, 732 [PERF_COUNT_HW_BRANCH_MISSES] = -1, 733 [PERF_COUNT_HW_BUS_CYCLES] = -1, 734 }; 735 736 static int is_userspace_event(u64 ev) 737 { 738 return cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev || 739 cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev; 740 } 741 742 static int __hw_perf_event_init(struct perf_event *event, unsigned int type) 743 { 744 struct perf_event_attr *attr = &event->attr; 745 struct hw_perf_event *hwc = &event->hw; 746 enum cpumf_ctr_set set; 747 u64 ev; 748 749 switch (type) { 750 case PERF_TYPE_RAW: 751 /* Raw events are used to access counters directly, 752 * hence do not permit excludes */ 753 if (attr->exclude_kernel || attr->exclude_user || 754 attr->exclude_hv) 755 return -EOPNOTSUPP; 756 ev = attr->config; 757 break; 758 759 case PERF_TYPE_HARDWARE: 760 if (is_sampling_event(event)) /* No sampling support */ 761 return -ENOENT; 762 ev = attr->config; 763 if (!attr->exclude_user && attr->exclude_kernel) { 764 /* 765 * Count user space (problem-state) only 766 * Handle events 32 and 33 as 0:u and 1:u 767 */ 768 if (!is_userspace_event(ev)) { 769 if (ev >= ARRAY_SIZE(cpumf_generic_events_user)) 770 return -EOPNOTSUPP; 771 ev = cpumf_generic_events_user[ev]; 772 } 773 } else if (!attr->exclude_kernel && attr->exclude_user) { 774 /* No support for kernel space counters only */ 775 return -EOPNOTSUPP; 776 } else { 777 /* Count user and kernel space, incl. events 32 + 33 */ 778 if (!is_userspace_event(ev)) { 779 if (ev >= ARRAY_SIZE(cpumf_generic_events_basic)) 780 return -EOPNOTSUPP; 781 ev = cpumf_generic_events_basic[ev]; 782 } 783 } 784 break; 785 786 default: 787 return -ENOENT; 788 } 789 790 if (ev == -1) 791 return -ENOENT; 792 793 if (ev > PERF_CPUM_CF_MAX_CTR) 794 return -ENOENT; 795 796 /* Obtain the counter set to which the specified counter belongs */ 797 set = get_counter_set(ev); 798 switch (set) { 799 case CPUMF_CTR_SET_BASIC: 800 case CPUMF_CTR_SET_USER: 801 case CPUMF_CTR_SET_CRYPTO: 802 case CPUMF_CTR_SET_EXT: 803 case CPUMF_CTR_SET_MT_DIAG: 804 /* 805 * Use the hardware perf event structure to store the 806 * counter number in the 'config' member and the counter 807 * set number in the 'config_base' as bit mask. 808 * It is later used to enable/disable the counter(s). 809 */ 810 hwc->config = ev; 811 hwc->config_base = cpumf_ctr_ctl[set]; 812 break; 813 case CPUMF_CTR_SET_MAX: 814 /* The counter could not be associated to a counter set */ 815 return -EINVAL; 816 } 817 818 /* Initialize for using the CPU-measurement counter facility */ 819 if (cpum_cf_alloc(event->cpu)) 820 return -ENOMEM; 821 event->destroy = hw_perf_event_destroy; 822 823 /* 824 * Finally, validate version and authorization of the counter set. 825 * If the particular CPU counter set is not authorized, 826 * return with -ENOENT in order to fall back to other 827 * PMUs that might suffice the event request. 828 */ 829 if (!(hwc->config_base & cpumf_ctr_info.auth_ctl)) 830 return -ENOENT; 831 return validate_ctr_version(hwc->config, set); 832 } 833 834 /* Events CPU_CYLCES and INSTRUCTIONS can be submitted with two different 835 * attribute::type values: 836 * - PERF_TYPE_HARDWARE: 837 * - pmu->type: 838 * Handle both type of invocations identical. They address the same hardware. 839 * The result is different when event modifiers exclude_kernel and/or 840 * exclude_user are also set. 841 */ 842 static int cpumf_pmu_event_type(struct perf_event *event) 843 { 844 u64 ev = event->attr.config; 845 846 if (cpumf_generic_events_basic[PERF_COUNT_HW_CPU_CYCLES] == ev || 847 cpumf_generic_events_basic[PERF_COUNT_HW_INSTRUCTIONS] == ev || 848 cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev || 849 cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev) 850 return PERF_TYPE_HARDWARE; 851 return PERF_TYPE_RAW; 852 } 853 854 static int cpumf_pmu_event_init(struct perf_event *event) 855 { 856 unsigned int type = event->attr.type; 857 int err; 858 859 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_RAW) 860 err = __hw_perf_event_init(event, type); 861 else if (event->pmu->type == type) 862 /* Registered as unknown PMU */ 863 err = __hw_perf_event_init(event, cpumf_pmu_event_type(event)); 864 else 865 return -ENOENT; 866 867 if (unlikely(err) && event->destroy) 868 event->destroy(event); 869 870 return err; 871 } 872 873 static int hw_perf_event_reset(struct perf_event *event) 874 { 875 u64 prev, new; 876 int err; 877 878 do { 879 prev = local64_read(&event->hw.prev_count); 880 err = ecctr(event->hw.config, &new); 881 if (err) { 882 if (err != 3) 883 break; 884 /* The counter is not (yet) available. This 885 * might happen if the counter set to which 886 * this counter belongs is in the disabled 887 * state. 888 */ 889 new = 0; 890 } 891 } while (local64_cmpxchg(&event->hw.prev_count, prev, new) != prev); 892 893 return err; 894 } 895 896 static void hw_perf_event_update(struct perf_event *event) 897 { 898 u64 prev, new, delta; 899 int err; 900 901 do { 902 prev = local64_read(&event->hw.prev_count); 903 err = ecctr(event->hw.config, &new); 904 if (err) 905 return; 906 } while (local64_cmpxchg(&event->hw.prev_count, prev, new) != prev); 907 908 delta = (prev <= new) ? new - prev 909 : (-1ULL - prev) + new + 1; /* overflow */ 910 local64_add(delta, &event->count); 911 } 912 913 static void cpumf_pmu_read(struct perf_event *event) 914 { 915 if (event->hw.state & PERF_HES_STOPPED) 916 return; 917 918 hw_perf_event_update(event); 919 } 920 921 static void cpumf_pmu_start(struct perf_event *event, int flags) 922 { 923 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 924 struct hw_perf_event *hwc = &event->hw; 925 int i; 926 927 if (!(hwc->state & PERF_HES_STOPPED)) 928 return; 929 930 hwc->state = 0; 931 932 /* (Re-)enable and activate the counter set */ 933 ctr_set_enable(&cpuhw->state, hwc->config_base); 934 ctr_set_start(&cpuhw->state, hwc->config_base); 935 936 /* The counter set to which this counter belongs can be already active. 937 * Because all counters in a set are active, the event->hw.prev_count 938 * needs to be synchronized. At this point, the counter set can be in 939 * the inactive or disabled state. 940 */ 941 if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) { 942 cpuhw->usedss = cfdiag_getctr(cpuhw->start, 943 sizeof(cpuhw->start), 944 hwc->config_base, true); 945 } else { 946 hw_perf_event_reset(event); 947 } 948 949 /* Increment refcount for counter sets */ 950 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) 951 if ((hwc->config_base & cpumf_ctr_ctl[i])) 952 atomic_inc(&cpuhw->ctr_set[i]); 953 } 954 955 /* Create perf event sample with the counter sets as raw data. The sample 956 * is then pushed to the event subsystem and the function checks for 957 * possible event overflows. If an event overflow occurs, the PMU is 958 * stopped. 959 * 960 * Return non-zero if an event overflow occurred. 961 */ 962 static int cfdiag_push_sample(struct perf_event *event, 963 struct cpu_cf_events *cpuhw) 964 { 965 struct perf_sample_data data; 966 struct perf_raw_record raw; 967 struct pt_regs regs; 968 int overflow; 969 970 /* Setup perf sample */ 971 perf_sample_data_init(&data, 0, event->hw.last_period); 972 memset(®s, 0, sizeof(regs)); 973 memset(&raw, 0, sizeof(raw)); 974 975 if (event->attr.sample_type & PERF_SAMPLE_CPU) 976 data.cpu_entry.cpu = event->cpu; 977 if (event->attr.sample_type & PERF_SAMPLE_RAW) { 978 raw.frag.size = cpuhw->usedss; 979 raw.frag.data = cpuhw->stop; 980 perf_sample_save_raw_data(&data, &raw); 981 } 982 983 overflow = perf_event_overflow(event, &data, ®s); 984 if (overflow) 985 event->pmu->stop(event, 0); 986 987 perf_event_update_userpage(event); 988 return overflow; 989 } 990 991 static void cpumf_pmu_stop(struct perf_event *event, int flags) 992 { 993 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 994 struct hw_perf_event *hwc = &event->hw; 995 int i; 996 997 if (!(hwc->state & PERF_HES_STOPPED)) { 998 /* Decrement reference count for this counter set and if this 999 * is the last used counter in the set, clear activation 1000 * control and set the counter set state to inactive. 1001 */ 1002 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 1003 if (!(hwc->config_base & cpumf_ctr_ctl[i])) 1004 continue; 1005 if (!atomic_dec_return(&cpuhw->ctr_set[i])) 1006 ctr_set_stop(&cpuhw->state, cpumf_ctr_ctl[i]); 1007 } 1008 hwc->state |= PERF_HES_STOPPED; 1009 } 1010 1011 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 1012 if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) { 1013 local64_inc(&event->count); 1014 cpuhw->usedss = cfdiag_getctr(cpuhw->stop, 1015 sizeof(cpuhw->stop), 1016 event->hw.config_base, 1017 false); 1018 if (cfdiag_diffctr(cpuhw, event->hw.config_base)) 1019 cfdiag_push_sample(event, cpuhw); 1020 } else { 1021 hw_perf_event_update(event); 1022 } 1023 hwc->state |= PERF_HES_UPTODATE; 1024 } 1025 } 1026 1027 static int cpumf_pmu_add(struct perf_event *event, int flags) 1028 { 1029 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1030 1031 ctr_set_enable(&cpuhw->state, event->hw.config_base); 1032 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1033 1034 if (flags & PERF_EF_START) 1035 cpumf_pmu_start(event, PERF_EF_RELOAD); 1036 1037 return 0; 1038 } 1039 1040 static void cpumf_pmu_del(struct perf_event *event, int flags) 1041 { 1042 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1043 int i; 1044 1045 cpumf_pmu_stop(event, PERF_EF_UPDATE); 1046 1047 /* Check if any counter in the counter set is still used. If not used, 1048 * change the counter set to the disabled state. This also clears the 1049 * content of all counters in the set. 1050 * 1051 * When a new perf event has been added but not yet started, this can 1052 * clear enable control and resets all counters in a set. Therefore, 1053 * cpumf_pmu_start() always has to reenable a counter set. 1054 */ 1055 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) 1056 if (!atomic_read(&cpuhw->ctr_set[i])) 1057 ctr_set_disable(&cpuhw->state, cpumf_ctr_ctl[i]); 1058 } 1059 1060 /* Performance monitoring unit for s390x */ 1061 static struct pmu cpumf_pmu = { 1062 .task_ctx_nr = perf_sw_context, 1063 .capabilities = PERF_PMU_CAP_NO_INTERRUPT, 1064 .pmu_enable = cpumf_pmu_enable, 1065 .pmu_disable = cpumf_pmu_disable, 1066 .event_init = cpumf_pmu_event_init, 1067 .add = cpumf_pmu_add, 1068 .del = cpumf_pmu_del, 1069 .start = cpumf_pmu_start, 1070 .stop = cpumf_pmu_stop, 1071 .read = cpumf_pmu_read, 1072 }; 1073 1074 static struct cfset_session { /* CPUs and counter set bit mask */ 1075 struct list_head head; /* Head of list of active processes */ 1076 } cfset_session = { 1077 .head = LIST_HEAD_INIT(cfset_session.head) 1078 }; 1079 1080 static refcount_t cfset_opencnt = REFCOUNT_INIT(0); /* Access count */ 1081 /* 1082 * Synchronize access to device /dev/hwc. This mutex protects against 1083 * concurrent access to functions cfset_open() and cfset_release(). 1084 * Same for CPU hotplug add and remove events triggering 1085 * cpum_cf_online_cpu() and cpum_cf_offline_cpu(). 1086 * It also serializes concurrent device ioctl access from multiple 1087 * processes accessing /dev/hwc. 1088 * 1089 * The mutex protects concurrent access to the /dev/hwctr session management 1090 * struct cfset_session and reference counting variable cfset_opencnt. 1091 */ 1092 static DEFINE_MUTEX(cfset_ctrset_mutex); 1093 1094 /* 1095 * CPU hotplug handles only /dev/hwctr device. 1096 * For perf_event_open() the CPU hotplug handling is done on kernel common 1097 * code: 1098 * - CPU add: Nothing is done since a file descriptor can not be created 1099 * and returned to the user. 1100 * - CPU delete: Handled by common code via pmu_disable(), pmu_stop() and 1101 * pmu_delete(). The event itself is removed when the file descriptor is 1102 * closed. 1103 */ 1104 static int cfset_online_cpu(unsigned int cpu); 1105 1106 static int cpum_cf_online_cpu(unsigned int cpu) 1107 { 1108 int rc = 0; 1109 1110 /* 1111 * Ignore notification for perf_event_open(). 1112 * Handle only /dev/hwctr device sessions. 1113 */ 1114 mutex_lock(&cfset_ctrset_mutex); 1115 if (refcount_read(&cfset_opencnt)) { 1116 rc = cpum_cf_alloc_cpu(cpu); 1117 if (!rc) 1118 cfset_online_cpu(cpu); 1119 } 1120 mutex_unlock(&cfset_ctrset_mutex); 1121 return rc; 1122 } 1123 1124 static int cfset_offline_cpu(unsigned int cpu); 1125 1126 static int cpum_cf_offline_cpu(unsigned int cpu) 1127 { 1128 /* 1129 * During task exit processing of grouped perf events triggered by CPU 1130 * hotplug processing, pmu_disable() is called as part of perf context 1131 * removal process. Therefore do not trigger event removal now for 1132 * perf_event_open() created events. Perf common code triggers event 1133 * destruction when the event file descriptor is closed. 1134 * 1135 * Handle only /dev/hwctr device sessions. 1136 */ 1137 mutex_lock(&cfset_ctrset_mutex); 1138 if (refcount_read(&cfset_opencnt)) { 1139 cfset_offline_cpu(cpu); 1140 cpum_cf_free_cpu(cpu); 1141 } 1142 mutex_unlock(&cfset_ctrset_mutex); 1143 return 0; 1144 } 1145 1146 /* Return true if store counter set multiple instruction is available */ 1147 static inline int stccm_avail(void) 1148 { 1149 return test_facility(142); 1150 } 1151 1152 /* CPU-measurement alerts for the counter facility */ 1153 static void cpumf_measurement_alert(struct ext_code ext_code, 1154 unsigned int alert, unsigned long unused) 1155 { 1156 struct cpu_cf_events *cpuhw; 1157 1158 if (!(alert & CPU_MF_INT_CF_MASK)) 1159 return; 1160 1161 inc_irq_stat(IRQEXT_CMC); 1162 1163 /* 1164 * Measurement alerts are shared and might happen when the PMU 1165 * is not reserved. Ignore these alerts in this case. 1166 */ 1167 cpuhw = this_cpu_cfhw(); 1168 if (!cpuhw) 1169 return; 1170 1171 /* counter authorization change alert */ 1172 if (alert & CPU_MF_INT_CF_CACA) 1173 qctri(&cpumf_ctr_info); 1174 1175 /* loss of counter data alert */ 1176 if (alert & CPU_MF_INT_CF_LCDA) 1177 pr_err("CPU[%i] Counter data was lost\n", smp_processor_id()); 1178 1179 /* loss of MT counter data alert */ 1180 if (alert & CPU_MF_INT_CF_MTDA) 1181 pr_warn("CPU[%i] MT counter data was lost\n", 1182 smp_processor_id()); 1183 } 1184 1185 static int cfset_init(void); 1186 static int __init cpumf_pmu_init(void) 1187 { 1188 int rc; 1189 1190 /* Extract counter measurement facility information */ 1191 if (!cpum_cf_avail() || qctri(&cpumf_ctr_info)) 1192 return -ENODEV; 1193 1194 /* Determine and store counter set sizes for later reference */ 1195 for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc) 1196 cpum_cf_make_setsize(rc); 1197 1198 /* 1199 * Clear bit 15 of cr0 to unauthorize problem-state to 1200 * extract measurement counters 1201 */ 1202 system_ctl_clear_bit(0, CR0_CPUMF_EXTRACTION_AUTH_BIT); 1203 1204 /* register handler for measurement-alert interruptions */ 1205 rc = register_external_irq(EXT_IRQ_MEASURE_ALERT, 1206 cpumf_measurement_alert); 1207 if (rc) { 1208 pr_err("Registering for CPU-measurement alerts failed with rc=%i\n", rc); 1209 return rc; 1210 } 1211 1212 /* Setup s390dbf facility */ 1213 cf_dbg = debug_register(KMSG_COMPONENT, 2, 1, 128); 1214 if (!cf_dbg) { 1215 pr_err("Registration of s390dbf(cpum_cf) failed\n"); 1216 rc = -ENOMEM; 1217 goto out1; 1218 } 1219 debug_register_view(cf_dbg, &debug_sprintf_view); 1220 1221 cpumf_pmu.attr_groups = cpumf_cf_event_group(); 1222 rc = perf_pmu_register(&cpumf_pmu, "cpum_cf", -1); 1223 if (rc) { 1224 pr_err("Registering the cpum_cf PMU failed with rc=%i\n", rc); 1225 goto out2; 1226 } else if (stccm_avail()) { /* Setup counter set device */ 1227 cfset_init(); 1228 } 1229 1230 rc = cpuhp_setup_state(CPUHP_AP_PERF_S390_CF_ONLINE, 1231 "perf/s390/cf:online", 1232 cpum_cf_online_cpu, cpum_cf_offline_cpu); 1233 return rc; 1234 1235 out2: 1236 debug_unregister_view(cf_dbg, &debug_sprintf_view); 1237 debug_unregister(cf_dbg); 1238 out1: 1239 unregister_external_irq(EXT_IRQ_MEASURE_ALERT, cpumf_measurement_alert); 1240 return rc; 1241 } 1242 1243 /* Support for the CPU Measurement Facility counter set extraction using 1244 * device /dev/hwctr. This allows user space programs to extract complete 1245 * counter set via normal file operations. 1246 */ 1247 1248 struct cfset_call_on_cpu_parm { /* Parm struct for smp_call_on_cpu */ 1249 unsigned int sets; /* Counter set bit mask */ 1250 atomic_t cpus_ack; /* # CPUs successfully executed func */ 1251 }; 1252 1253 struct cfset_request { /* CPUs and counter set bit mask */ 1254 unsigned long ctrset; /* Bit mask of counter set to read */ 1255 cpumask_t mask; /* CPU mask to read from */ 1256 struct list_head node; /* Chain to cfset_session.head */ 1257 }; 1258 1259 static void cfset_session_init(void) 1260 { 1261 INIT_LIST_HEAD(&cfset_session.head); 1262 } 1263 1264 /* Remove current request from global bookkeeping. Maintain a counter set bit 1265 * mask on a per CPU basis. 1266 * Done in process context under mutex protection. 1267 */ 1268 static void cfset_session_del(struct cfset_request *p) 1269 { 1270 list_del(&p->node); 1271 } 1272 1273 /* Add current request to global bookkeeping. Maintain a counter set bit mask 1274 * on a per CPU basis. 1275 * Done in process context under mutex protection. 1276 */ 1277 static void cfset_session_add(struct cfset_request *p) 1278 { 1279 list_add(&p->node, &cfset_session.head); 1280 } 1281 1282 /* The /dev/hwctr device access uses PMU_F_IN_USE to mark the device access 1283 * path is currently used. 1284 * The cpu_cf_events::dev_state is used to denote counter sets in use by this 1285 * interface. It is always or'ed in. If this interface is not active, its 1286 * value is zero and no additional counter sets will be included. 1287 * 1288 * The cpu_cf_events::state is used by the perf_event_open SVC and remains 1289 * unchanged. 1290 * 1291 * perf_pmu_enable() and perf_pmu_enable() and its call backs 1292 * cpumf_pmu_enable() and cpumf_pmu_disable() are called by the 1293 * performance measurement subsystem to enable per process 1294 * CPU Measurement counter facility. 1295 * The XXX_enable() and XXX_disable functions are used to turn off 1296 * x86 performance monitoring interrupt (PMI) during scheduling. 1297 * s390 uses these calls to temporarily stop and resume the active CPU 1298 * counters sets during scheduling. 1299 * 1300 * We do allow concurrent access of perf_event_open() SVC and /dev/hwctr 1301 * device access. The perf_event_open() SVC interface makes a lot of effort 1302 * to only run the counters while the calling process is actively scheduled 1303 * to run. 1304 * When /dev/hwctr interface is also used at the same time, the counter sets 1305 * will keep running, even when the process is scheduled off a CPU. 1306 * However this is not a problem and does not lead to wrong counter values 1307 * for the perf_event_open() SVC. The current counter value will be recorded 1308 * during schedule-in. At schedule-out time the current counter value is 1309 * extracted again and the delta is calculated and added to the event. 1310 */ 1311 /* Stop all counter sets via ioctl interface */ 1312 static void cfset_ioctl_off(void *parm) 1313 { 1314 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1315 struct cfset_call_on_cpu_parm *p = parm; 1316 int rc; 1317 1318 /* Check if any counter set used by /dev/hwctr */ 1319 for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc) 1320 if ((p->sets & cpumf_ctr_ctl[rc])) { 1321 if (!atomic_dec_return(&cpuhw->ctr_set[rc])) { 1322 ctr_set_disable(&cpuhw->dev_state, 1323 cpumf_ctr_ctl[rc]); 1324 ctr_set_stop(&cpuhw->dev_state, 1325 cpumf_ctr_ctl[rc]); 1326 } 1327 } 1328 /* Keep perf_event_open counter sets */ 1329 rc = lcctl(cpuhw->dev_state | cpuhw->state); 1330 if (rc) 1331 pr_err("Counter set stop %#llx of /dev/%s failed rc=%i\n", 1332 cpuhw->state, S390_HWCTR_DEVICE, rc); 1333 if (!cpuhw->dev_state) 1334 cpuhw->flags &= ~PMU_F_IN_USE; 1335 } 1336 1337 /* Start counter sets on particular CPU */ 1338 static void cfset_ioctl_on(void *parm) 1339 { 1340 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1341 struct cfset_call_on_cpu_parm *p = parm; 1342 int rc; 1343 1344 cpuhw->flags |= PMU_F_IN_USE; 1345 ctr_set_enable(&cpuhw->dev_state, p->sets); 1346 ctr_set_start(&cpuhw->dev_state, p->sets); 1347 for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc) 1348 if ((p->sets & cpumf_ctr_ctl[rc])) 1349 atomic_inc(&cpuhw->ctr_set[rc]); 1350 rc = lcctl(cpuhw->dev_state | cpuhw->state); /* Start counter sets */ 1351 if (!rc) 1352 atomic_inc(&p->cpus_ack); 1353 else 1354 pr_err("Counter set start %#llx of /dev/%s failed rc=%i\n", 1355 cpuhw->dev_state | cpuhw->state, S390_HWCTR_DEVICE, rc); 1356 } 1357 1358 static void cfset_release_cpu(void *p) 1359 { 1360 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1361 int rc; 1362 1363 cpuhw->dev_state = 0; 1364 rc = lcctl(cpuhw->state); /* Keep perf_event_open counter sets */ 1365 if (rc) 1366 pr_err("Counter set release %#llx of /dev/%s failed rc=%i\n", 1367 cpuhw->state, S390_HWCTR_DEVICE, rc); 1368 } 1369 1370 /* This modifies the process CPU mask to adopt it to the currently online 1371 * CPUs. Offline CPUs can not be addresses. This call terminates the access 1372 * and is usually followed by close() or a new iotcl(..., START, ...) which 1373 * creates a new request structure. 1374 */ 1375 static void cfset_all_stop(struct cfset_request *req) 1376 { 1377 struct cfset_call_on_cpu_parm p = { 1378 .sets = req->ctrset, 1379 }; 1380 1381 cpumask_and(&req->mask, &req->mask, cpu_online_mask); 1382 on_each_cpu_mask(&req->mask, cfset_ioctl_off, &p, 1); 1383 } 1384 1385 /* Release function is also called when application gets terminated without 1386 * doing a proper ioctl(..., S390_HWCTR_STOP, ...) command. 1387 */ 1388 static int cfset_release(struct inode *inode, struct file *file) 1389 { 1390 mutex_lock(&cfset_ctrset_mutex); 1391 /* Open followed by close/exit has no private_data */ 1392 if (file->private_data) { 1393 cfset_all_stop(file->private_data); 1394 cfset_session_del(file->private_data); 1395 kfree(file->private_data); 1396 file->private_data = NULL; 1397 } 1398 if (refcount_dec_and_test(&cfset_opencnt)) { /* Last close */ 1399 on_each_cpu(cfset_release_cpu, NULL, 1); 1400 cpum_cf_free(-1); 1401 } 1402 mutex_unlock(&cfset_ctrset_mutex); 1403 return 0; 1404 } 1405 1406 /* 1407 * Open via /dev/hwctr device. Allocate all per CPU resources on the first 1408 * open of the device. The last close releases all per CPU resources. 1409 * Parallel perf_event_open system calls also use per CPU resources. 1410 * These invocations are handled via reference counting on the per CPU data 1411 * structures. 1412 */ 1413 static int cfset_open(struct inode *inode, struct file *file) 1414 { 1415 int rc = 0; 1416 1417 if (!perfmon_capable()) 1418 return -EPERM; 1419 file->private_data = NULL; 1420 1421 mutex_lock(&cfset_ctrset_mutex); 1422 if (!refcount_inc_not_zero(&cfset_opencnt)) { /* First open */ 1423 rc = cpum_cf_alloc(-1); 1424 if (!rc) { 1425 cfset_session_init(); 1426 refcount_set(&cfset_opencnt, 1); 1427 } 1428 } 1429 mutex_unlock(&cfset_ctrset_mutex); 1430 1431 /* nonseekable_open() never fails */ 1432 return rc ?: nonseekable_open(inode, file); 1433 } 1434 1435 static int cfset_all_start(struct cfset_request *req) 1436 { 1437 struct cfset_call_on_cpu_parm p = { 1438 .sets = req->ctrset, 1439 .cpus_ack = ATOMIC_INIT(0), 1440 }; 1441 cpumask_var_t mask; 1442 int rc = 0; 1443 1444 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1445 return -ENOMEM; 1446 cpumask_and(mask, &req->mask, cpu_online_mask); 1447 on_each_cpu_mask(mask, cfset_ioctl_on, &p, 1); 1448 if (atomic_read(&p.cpus_ack) != cpumask_weight(mask)) { 1449 on_each_cpu_mask(mask, cfset_ioctl_off, &p, 1); 1450 rc = -EIO; 1451 } 1452 free_cpumask_var(mask); 1453 return rc; 1454 } 1455 1456 /* Return the maximum required space for all possible CPUs in case one 1457 * CPU will be onlined during the START, READ, STOP cycles. 1458 * To find out the size of the counter sets, any one CPU will do. They 1459 * all have the same counter sets. 1460 */ 1461 static size_t cfset_needspace(unsigned int sets) 1462 { 1463 size_t bytes = 0; 1464 int i; 1465 1466 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 1467 if (!(sets & cpumf_ctr_ctl[i])) 1468 continue; 1469 bytes += cpum_cf_read_setsize(i) * sizeof(u64) + 1470 sizeof(((struct s390_ctrset_setdata *)0)->set) + 1471 sizeof(((struct s390_ctrset_setdata *)0)->no_cnts); 1472 } 1473 bytes = sizeof(((struct s390_ctrset_read *)0)->no_cpus) + nr_cpu_ids * 1474 (bytes + sizeof(((struct s390_ctrset_cpudata *)0)->cpu_nr) + 1475 sizeof(((struct s390_ctrset_cpudata *)0)->no_sets)); 1476 return bytes; 1477 } 1478 1479 static int cfset_all_copy(unsigned long arg, cpumask_t *mask) 1480 { 1481 struct s390_ctrset_read __user *ctrset_read; 1482 unsigned int cpu, cpus, rc = 0; 1483 void __user *uptr; 1484 1485 ctrset_read = (struct s390_ctrset_read __user *)arg; 1486 uptr = ctrset_read->data; 1487 for_each_cpu(cpu, mask) { 1488 struct cpu_cf_events *cpuhw = get_cpu_cfhw(cpu); 1489 struct s390_ctrset_cpudata __user *ctrset_cpudata; 1490 1491 ctrset_cpudata = uptr; 1492 rc = put_user(cpu, &ctrset_cpudata->cpu_nr); 1493 rc |= put_user(cpuhw->sets, &ctrset_cpudata->no_sets); 1494 rc |= copy_to_user(ctrset_cpudata->data, cpuhw->data, 1495 cpuhw->used); 1496 if (rc) { 1497 rc = -EFAULT; 1498 goto out; 1499 } 1500 uptr += sizeof(struct s390_ctrset_cpudata) + cpuhw->used; 1501 cond_resched(); 1502 } 1503 cpus = cpumask_weight(mask); 1504 if (put_user(cpus, &ctrset_read->no_cpus)) 1505 rc = -EFAULT; 1506 out: 1507 return rc; 1508 } 1509 1510 static size_t cfset_cpuset_read(struct s390_ctrset_setdata *p, int ctrset, 1511 int ctrset_size, size_t room) 1512 { 1513 size_t need = 0; 1514 int rc = -1; 1515 1516 need = sizeof(*p) + sizeof(u64) * ctrset_size; 1517 if (need <= room) { 1518 p->set = cpumf_ctr_ctl[ctrset]; 1519 p->no_cnts = ctrset_size; 1520 rc = ctr_stcctm(ctrset, ctrset_size, (u64 *)p->cv); 1521 if (rc == 3) /* Nothing stored */ 1522 need = 0; 1523 } 1524 return need; 1525 } 1526 1527 /* Read all counter sets. */ 1528 static void cfset_cpu_read(void *parm) 1529 { 1530 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1531 struct cfset_call_on_cpu_parm *p = parm; 1532 int set, set_size; 1533 size_t space; 1534 1535 /* No data saved yet */ 1536 cpuhw->used = 0; 1537 cpuhw->sets = 0; 1538 memset(cpuhw->data, 0, sizeof(cpuhw->data)); 1539 1540 /* Scan the counter sets */ 1541 for (set = CPUMF_CTR_SET_BASIC; set < CPUMF_CTR_SET_MAX; ++set) { 1542 struct s390_ctrset_setdata *sp = (void *)cpuhw->data + 1543 cpuhw->used; 1544 1545 if (!(p->sets & cpumf_ctr_ctl[set])) 1546 continue; /* Counter set not in list */ 1547 set_size = cpum_cf_read_setsize(set); 1548 space = sizeof(cpuhw->data) - cpuhw->used; 1549 space = cfset_cpuset_read(sp, set, set_size, space); 1550 if (space) { 1551 cpuhw->used += space; 1552 cpuhw->sets += 1; 1553 } 1554 } 1555 } 1556 1557 static int cfset_all_read(unsigned long arg, struct cfset_request *req) 1558 { 1559 struct cfset_call_on_cpu_parm p; 1560 cpumask_var_t mask; 1561 int rc; 1562 1563 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1564 return -ENOMEM; 1565 1566 p.sets = req->ctrset; 1567 cpumask_and(mask, &req->mask, cpu_online_mask); 1568 on_each_cpu_mask(mask, cfset_cpu_read, &p, 1); 1569 rc = cfset_all_copy(arg, mask); 1570 free_cpumask_var(mask); 1571 return rc; 1572 } 1573 1574 static long cfset_ioctl_read(unsigned long arg, struct cfset_request *req) 1575 { 1576 int ret = -ENODATA; 1577 1578 if (req && req->ctrset) 1579 ret = cfset_all_read(arg, req); 1580 return ret; 1581 } 1582 1583 static long cfset_ioctl_stop(struct file *file) 1584 { 1585 struct cfset_request *req = file->private_data; 1586 int ret = -ENXIO; 1587 1588 if (req) { 1589 cfset_all_stop(req); 1590 cfset_session_del(req); 1591 kfree(req); 1592 file->private_data = NULL; 1593 ret = 0; 1594 } 1595 return ret; 1596 } 1597 1598 static long cfset_ioctl_start(unsigned long arg, struct file *file) 1599 { 1600 struct s390_ctrset_start __user *ustart; 1601 struct s390_ctrset_start start; 1602 struct cfset_request *preq; 1603 void __user *umask; 1604 unsigned int len; 1605 int ret = 0; 1606 size_t need; 1607 1608 if (file->private_data) 1609 return -EBUSY; 1610 ustart = (struct s390_ctrset_start __user *)arg; 1611 if (copy_from_user(&start, ustart, sizeof(start))) 1612 return -EFAULT; 1613 if (start.version != S390_HWCTR_START_VERSION) 1614 return -EINVAL; 1615 if (start.counter_sets & ~(cpumf_ctr_ctl[CPUMF_CTR_SET_BASIC] | 1616 cpumf_ctr_ctl[CPUMF_CTR_SET_USER] | 1617 cpumf_ctr_ctl[CPUMF_CTR_SET_CRYPTO] | 1618 cpumf_ctr_ctl[CPUMF_CTR_SET_EXT] | 1619 cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG])) 1620 return -EINVAL; /* Invalid counter set */ 1621 if (!start.counter_sets) 1622 return -EINVAL; /* No counter set at all? */ 1623 1624 preq = kzalloc(sizeof(*preq), GFP_KERNEL); 1625 if (!preq) 1626 return -ENOMEM; 1627 cpumask_clear(&preq->mask); 1628 len = min_t(u64, start.cpumask_len, cpumask_size()); 1629 umask = (void __user *)start.cpumask; 1630 if (copy_from_user(&preq->mask, umask, len)) { 1631 kfree(preq); 1632 return -EFAULT; 1633 } 1634 if (cpumask_empty(&preq->mask)) { 1635 kfree(preq); 1636 return -EINVAL; 1637 } 1638 need = cfset_needspace(start.counter_sets); 1639 if (put_user(need, &ustart->data_bytes)) { 1640 kfree(preq); 1641 return -EFAULT; 1642 } 1643 preq->ctrset = start.counter_sets; 1644 ret = cfset_all_start(preq); 1645 if (!ret) { 1646 cfset_session_add(preq); 1647 file->private_data = preq; 1648 } else { 1649 kfree(preq); 1650 } 1651 return ret; 1652 } 1653 1654 /* Entry point to the /dev/hwctr device interface. 1655 * The ioctl system call supports three subcommands: 1656 * S390_HWCTR_START: Start the specified counter sets on a CPU list. The 1657 * counter set keeps running until explicitly stopped. Returns the number 1658 * of bytes needed to store the counter values. If another S390_HWCTR_START 1659 * ioctl subcommand is called without a previous S390_HWCTR_STOP stop 1660 * command on the same file descriptor, -EBUSY is returned. 1661 * S390_HWCTR_READ: Read the counter set values from specified CPU list given 1662 * with the S390_HWCTR_START command. 1663 * S390_HWCTR_STOP: Stops the counter sets on the CPU list given with the 1664 * previous S390_HWCTR_START subcommand. 1665 */ 1666 static long cfset_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1667 { 1668 int ret; 1669 1670 cpus_read_lock(); 1671 mutex_lock(&cfset_ctrset_mutex); 1672 switch (cmd) { 1673 case S390_HWCTR_START: 1674 ret = cfset_ioctl_start(arg, file); 1675 break; 1676 case S390_HWCTR_STOP: 1677 ret = cfset_ioctl_stop(file); 1678 break; 1679 case S390_HWCTR_READ: 1680 ret = cfset_ioctl_read(arg, file->private_data); 1681 break; 1682 default: 1683 ret = -ENOTTY; 1684 break; 1685 } 1686 mutex_unlock(&cfset_ctrset_mutex); 1687 cpus_read_unlock(); 1688 return ret; 1689 } 1690 1691 static const struct file_operations cfset_fops = { 1692 .owner = THIS_MODULE, 1693 .open = cfset_open, 1694 .release = cfset_release, 1695 .unlocked_ioctl = cfset_ioctl, 1696 .compat_ioctl = cfset_ioctl, 1697 .llseek = no_llseek 1698 }; 1699 1700 static struct miscdevice cfset_dev = { 1701 .name = S390_HWCTR_DEVICE, 1702 .minor = MISC_DYNAMIC_MINOR, 1703 .fops = &cfset_fops, 1704 .mode = 0666, 1705 }; 1706 1707 /* Hotplug add of a CPU. Scan through all active processes and add 1708 * that CPU to the list of CPUs supplied with ioctl(..., START, ...). 1709 */ 1710 static int cfset_online_cpu(unsigned int cpu) 1711 { 1712 struct cfset_call_on_cpu_parm p; 1713 struct cfset_request *rp; 1714 1715 if (!list_empty(&cfset_session.head)) { 1716 list_for_each_entry(rp, &cfset_session.head, node) { 1717 p.sets = rp->ctrset; 1718 cfset_ioctl_on(&p); 1719 cpumask_set_cpu(cpu, &rp->mask); 1720 } 1721 } 1722 return 0; 1723 } 1724 1725 /* Hotplug remove of a CPU. Scan through all active processes and clear 1726 * that CPU from the list of CPUs supplied with ioctl(..., START, ...). 1727 * Adjust reference counts. 1728 */ 1729 static int cfset_offline_cpu(unsigned int cpu) 1730 { 1731 struct cfset_call_on_cpu_parm p; 1732 struct cfset_request *rp; 1733 1734 if (!list_empty(&cfset_session.head)) { 1735 list_for_each_entry(rp, &cfset_session.head, node) { 1736 p.sets = rp->ctrset; 1737 cfset_ioctl_off(&p); 1738 cpumask_clear_cpu(cpu, &rp->mask); 1739 } 1740 } 1741 return 0; 1742 } 1743 1744 static void cfdiag_read(struct perf_event *event) 1745 { 1746 } 1747 1748 static int get_authctrsets(void) 1749 { 1750 unsigned long auth = 0; 1751 enum cpumf_ctr_set i; 1752 1753 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 1754 if (cpumf_ctr_info.auth_ctl & cpumf_ctr_ctl[i]) 1755 auth |= cpumf_ctr_ctl[i]; 1756 } 1757 return auth; 1758 } 1759 1760 /* Setup the event. Test for authorized counter sets and only include counter 1761 * sets which are authorized at the time of the setup. Including unauthorized 1762 * counter sets result in specification exception (and panic). 1763 */ 1764 static int cfdiag_event_init2(struct perf_event *event) 1765 { 1766 struct perf_event_attr *attr = &event->attr; 1767 int err = 0; 1768 1769 /* Set sample_period to indicate sampling */ 1770 event->hw.config = attr->config; 1771 event->hw.sample_period = attr->sample_period; 1772 local64_set(&event->hw.period_left, event->hw.sample_period); 1773 local64_set(&event->count, 0); 1774 event->hw.last_period = event->hw.sample_period; 1775 1776 /* Add all authorized counter sets to config_base. The 1777 * the hardware init function is either called per-cpu or just once 1778 * for all CPUS (event->cpu == -1). This depends on the whether 1779 * counting is started for all CPUs or on a per workload base where 1780 * the perf event moves from one CPU to another CPU. 1781 * Checking the authorization on any CPU is fine as the hardware 1782 * applies the same authorization settings to all CPUs. 1783 */ 1784 event->hw.config_base = get_authctrsets(); 1785 1786 /* No authorized counter sets, nothing to count/sample */ 1787 if (!event->hw.config_base) 1788 err = -EINVAL; 1789 1790 return err; 1791 } 1792 1793 static int cfdiag_event_init(struct perf_event *event) 1794 { 1795 struct perf_event_attr *attr = &event->attr; 1796 int err = -ENOENT; 1797 1798 if (event->attr.config != PERF_EVENT_CPUM_CF_DIAG || 1799 event->attr.type != event->pmu->type) 1800 goto out; 1801 1802 /* Raw events are used to access counters directly, 1803 * hence do not permit excludes. 1804 * This event is useless without PERF_SAMPLE_RAW to return counter set 1805 * values as raw data. 1806 */ 1807 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv || 1808 !(attr->sample_type & (PERF_SAMPLE_CPU | PERF_SAMPLE_RAW))) { 1809 err = -EOPNOTSUPP; 1810 goto out; 1811 } 1812 1813 /* Initialize for using the CPU-measurement counter facility */ 1814 if (cpum_cf_alloc(event->cpu)) 1815 return -ENOMEM; 1816 event->destroy = hw_perf_event_destroy; 1817 1818 err = cfdiag_event_init2(event); 1819 if (unlikely(err)) 1820 event->destroy(event); 1821 out: 1822 return err; 1823 } 1824 1825 /* Create cf_diag/events/CF_DIAG event sysfs file. This counter is used 1826 * to collect the complete counter sets for a scheduled process. Target 1827 * are complete counter sets attached as raw data to the artificial event. 1828 * This results in complete counter sets available when a process is 1829 * scheduled. Contains the delta of every counter while the process was 1830 * running. 1831 */ 1832 CPUMF_EVENT_ATTR(CF_DIAG, CF_DIAG, PERF_EVENT_CPUM_CF_DIAG); 1833 1834 static struct attribute *cfdiag_events_attr[] = { 1835 CPUMF_EVENT_PTR(CF_DIAG, CF_DIAG), 1836 NULL, 1837 }; 1838 1839 PMU_FORMAT_ATTR(event, "config:0-63"); 1840 1841 static struct attribute *cfdiag_format_attr[] = { 1842 &format_attr_event.attr, 1843 NULL, 1844 }; 1845 1846 static struct attribute_group cfdiag_events_group = { 1847 .name = "events", 1848 .attrs = cfdiag_events_attr, 1849 }; 1850 static struct attribute_group cfdiag_format_group = { 1851 .name = "format", 1852 .attrs = cfdiag_format_attr, 1853 }; 1854 static const struct attribute_group *cfdiag_attr_groups[] = { 1855 &cfdiag_events_group, 1856 &cfdiag_format_group, 1857 NULL, 1858 }; 1859 1860 /* Performance monitoring unit for event CF_DIAG. Since this event 1861 * is also started and stopped via the perf_event_open() system call, use 1862 * the same event enable/disable call back functions. They do not 1863 * have a pointer to the perf_event strcture as first parameter. 1864 * 1865 * The functions XXX_add, XXX_del, XXX_start and XXX_stop are also common. 1866 * Reuse them and distinguish the event (always first parameter) via 1867 * 'config' member. 1868 */ 1869 static struct pmu cf_diag = { 1870 .task_ctx_nr = perf_sw_context, 1871 .event_init = cfdiag_event_init, 1872 .pmu_enable = cpumf_pmu_enable, 1873 .pmu_disable = cpumf_pmu_disable, 1874 .add = cpumf_pmu_add, 1875 .del = cpumf_pmu_del, 1876 .start = cpumf_pmu_start, 1877 .stop = cpumf_pmu_stop, 1878 .read = cfdiag_read, 1879 1880 .attr_groups = cfdiag_attr_groups 1881 }; 1882 1883 /* Calculate memory needed to store all counter sets together with header and 1884 * trailer data. This is independent of the counter set authorization which 1885 * can vary depending on the configuration. 1886 */ 1887 static size_t cfdiag_maxsize(struct cpumf_ctr_info *info) 1888 { 1889 size_t max_size = sizeof(struct cf_trailer_entry); 1890 enum cpumf_ctr_set i; 1891 1892 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 1893 size_t size = cpum_cf_read_setsize(i); 1894 1895 if (size) 1896 max_size += size * sizeof(u64) + 1897 sizeof(struct cf_ctrset_entry); 1898 } 1899 return max_size; 1900 } 1901 1902 /* Get the CPU speed, try sampling facility first and CPU attributes second. */ 1903 static void cfdiag_get_cpu_speed(void) 1904 { 1905 unsigned long mhz; 1906 1907 if (cpum_sf_avail()) { /* Sampling facility first */ 1908 struct hws_qsi_info_block si; 1909 1910 memset(&si, 0, sizeof(si)); 1911 if (!qsi(&si)) { 1912 cfdiag_cpu_speed = si.cpu_speed; 1913 return; 1914 } 1915 } 1916 1917 /* Fallback: CPU speed extract static part. Used in case 1918 * CPU Measurement Sampling Facility is turned off. 1919 */ 1920 mhz = __ecag(ECAG_CPU_ATTRIBUTE, 0); 1921 if (mhz != -1UL) 1922 cfdiag_cpu_speed = mhz & 0xffffffff; 1923 } 1924 1925 static int cfset_init(void) 1926 { 1927 size_t need; 1928 int rc; 1929 1930 cfdiag_get_cpu_speed(); 1931 /* Make sure the counter set data fits into predefined buffer. */ 1932 need = cfdiag_maxsize(&cpumf_ctr_info); 1933 if (need > sizeof(((struct cpu_cf_events *)0)->start)) { 1934 pr_err("Insufficient memory for PMU(cpum_cf_diag) need=%zu\n", 1935 need); 1936 return -ENOMEM; 1937 } 1938 1939 rc = misc_register(&cfset_dev); 1940 if (rc) { 1941 pr_err("Registration of /dev/%s failed rc=%i\n", 1942 cfset_dev.name, rc); 1943 goto out; 1944 } 1945 1946 rc = perf_pmu_register(&cf_diag, "cpum_cf_diag", -1); 1947 if (rc) { 1948 misc_deregister(&cfset_dev); 1949 pr_err("Registration of PMU(cpum_cf_diag) failed with rc=%i\n", 1950 rc); 1951 } 1952 out: 1953 return rc; 1954 } 1955 1956 device_initcall(cpumf_pmu_init); 1957