xref: /linux/arch/s390/kernel/kprobes.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22 
23 #include <linux/config.h>
24 #include <linux/kprobes.h>
25 #include <linux/ptrace.h>
26 #include <linux/preempt.h>
27 #include <linux/stop_machine.h>
28 #include <asm/cacheflush.h>
29 #include <asm/kdebug.h>
30 #include <asm/sections.h>
31 #include <asm/uaccess.h>
32 #include <linux/module.h>
33 
34 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
35 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
36 
37 int __kprobes arch_prepare_kprobe(struct kprobe *p)
38 {
39 	/* Make sure the probe isn't going on a difficult instruction */
40 	if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
41 		return -EINVAL;
42 
43 	if ((unsigned long)p->addr & 0x01) {
44 		printk("Attempt to register kprobe at an unaligned address\n");
45 		return -EINVAL;
46 		}
47 
48 	/* Use the get_insn_slot() facility for correctness */
49 	if (!(p->ainsn.insn = get_insn_slot()))
50 		return -ENOMEM;
51 
52 	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
53 
54 	get_instruction_type(&p->ainsn);
55 	p->opcode = *p->addr;
56 	return 0;
57 }
58 
59 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
60 {
61 	switch (*(__u8 *) instruction) {
62 	case 0x0c:	/* bassm */
63 	case 0x0b:	/* bsm	 */
64 	case 0x83:	/* diag  */
65 	case 0x44:	/* ex	 */
66 		return -EINVAL;
67 	}
68 	switch (*(__u16 *) instruction) {
69 	case 0x0101:	/* pr	 */
70 	case 0xb25a:	/* bsa	 */
71 	case 0xb240:	/* bakr  */
72 	case 0xb258:	/* bsg	 */
73 	case 0xb218:	/* pc	 */
74 	case 0xb228:	/* pt	 */
75 		return -EINVAL;
76 	}
77 	return 0;
78 }
79 
80 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
81 {
82 	/* default fixup method */
83 	ainsn->fixup = FIXUP_PSW_NORMAL;
84 
85 	/* save r1 operand */
86 	ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
87 
88 	/* save the instruction length (pop 5-5) in bytes */
89 	switch (*(__u8 *) (ainsn->insn) >> 4) {
90 	case 0:
91 		ainsn->ilen = 2;
92 		break;
93 	case 1:
94 	case 2:
95 		ainsn->ilen = 4;
96 		break;
97 	case 3:
98 		ainsn->ilen = 6;
99 		break;
100 	}
101 
102 	switch (*(__u8 *) ainsn->insn) {
103 	case 0x05:	/* balr	*/
104 	case 0x0d:	/* basr */
105 		ainsn->fixup = FIXUP_RETURN_REGISTER;
106 		/* if r2 = 0, no branch will be taken */
107 		if ((*ainsn->insn & 0x0f) == 0)
108 			ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
109 		break;
110 	case 0x06:	/* bctr	*/
111 	case 0x07:	/* bcr	*/
112 		ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
113 		break;
114 	case 0x45:	/* bal	*/
115 	case 0x4d:	/* bas	*/
116 		ainsn->fixup = FIXUP_RETURN_REGISTER;
117 		break;
118 	case 0x47:	/* bc	*/
119 	case 0x46:	/* bct	*/
120 	case 0x86:	/* bxh	*/
121 	case 0x87:	/* bxle	*/
122 		ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
123 		break;
124 	case 0x82:	/* lpsw	*/
125 		ainsn->fixup = FIXUP_NOT_REQUIRED;
126 		break;
127 	case 0xb2:	/* lpswe */
128 		if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
129 			ainsn->fixup = FIXUP_NOT_REQUIRED;
130 		}
131 		break;
132 	case 0xa7:	/* bras	*/
133 		if ((*ainsn->insn & 0x0f) == 0x05) {
134 			ainsn->fixup |= FIXUP_RETURN_REGISTER;
135 		}
136 		break;
137 	case 0xc0:
138 		if ((*ainsn->insn & 0x0f) == 0x00  /* larl  */
139 			|| (*ainsn->insn & 0x0f) == 0x05) /* brasl */
140 		ainsn->fixup |= FIXUP_RETURN_REGISTER;
141 		break;
142 	case 0xeb:
143 		if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 ||	/* bxhg  */
144 			*(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
145 			ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
146 		}
147 		break;
148 	case 0xe3:	/* bctg	*/
149 		if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
150 			ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
151 		}
152 		break;
153 	}
154 }
155 
156 static int __kprobes swap_instruction(void *aref)
157 {
158 	struct ins_replace_args *args = aref;
159 	int err = -EFAULT;
160 
161 	asm volatile(
162 		"0: mvc  0(2,%2),0(%3)\n"
163 		"1: la   %0,0\n"
164 		"2:\n"
165 		EX_TABLE(0b,2b)
166 		: "+d" (err), "=m" (*args->ptr)
167 		: "a" (args->ptr), "a" (&args->new), "m" (args->new));
168 	return err;
169 }
170 
171 void __kprobes arch_arm_kprobe(struct kprobe *p)
172 {
173 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
174 	unsigned long status = kcb->kprobe_status;
175 	struct ins_replace_args args;
176 
177 	args.ptr = p->addr;
178 	args.old = p->opcode;
179 	args.new = BREAKPOINT_INSTRUCTION;
180 
181 	kcb->kprobe_status = KPROBE_SWAP_INST;
182 	stop_machine_run(swap_instruction, &args, NR_CPUS);
183 	kcb->kprobe_status = status;
184 }
185 
186 void __kprobes arch_disarm_kprobe(struct kprobe *p)
187 {
188 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
189 	unsigned long status = kcb->kprobe_status;
190 	struct ins_replace_args args;
191 
192 	args.ptr = p->addr;
193 	args.old = BREAKPOINT_INSTRUCTION;
194 	args.new = p->opcode;
195 
196 	kcb->kprobe_status = KPROBE_SWAP_INST;
197 	stop_machine_run(swap_instruction, &args, NR_CPUS);
198 	kcb->kprobe_status = status;
199 }
200 
201 void __kprobes arch_remove_kprobe(struct kprobe *p)
202 {
203 	mutex_lock(&kprobe_mutex);
204 	free_insn_slot(p->ainsn.insn);
205 	mutex_unlock(&kprobe_mutex);
206 }
207 
208 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
209 {
210 	per_cr_bits kprobe_per_regs[1];
211 
212 	memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
213 	regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
214 
215 	/* Set up the per control reg info, will pass to lctl */
216 	kprobe_per_regs[0].em_instruction_fetch = 1;
217 	kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
218 	kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
219 
220 	/* Set the PER control regs, turns on single step for this address */
221 	__ctl_load(kprobe_per_regs, 9, 11);
222 	regs->psw.mask |= PSW_MASK_PER;
223 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
224 }
225 
226 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
227 {
228 	kcb->prev_kprobe.kp = kprobe_running();
229 	kcb->prev_kprobe.status = kcb->kprobe_status;
230 	kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
231 	memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
232 					sizeof(kcb->kprobe_saved_ctl));
233 }
234 
235 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
236 {
237 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
238 	kcb->kprobe_status = kcb->prev_kprobe.status;
239 	kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
240 	memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
241 					sizeof(kcb->kprobe_saved_ctl));
242 }
243 
244 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
245 						struct kprobe_ctlblk *kcb)
246 {
247 	__get_cpu_var(current_kprobe) = p;
248 	/* Save the interrupt and per flags */
249 	kcb->kprobe_saved_imask = regs->psw.mask &
250 	    (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
251 	/* Save the control regs that govern PER */
252 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
253 }
254 
255 /* Called with kretprobe_lock held */
256 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
257 					struct pt_regs *regs)
258 {
259 	struct kretprobe_instance *ri;
260 
261 	if ((ri = get_free_rp_inst(rp)) != NULL) {
262 		ri->rp = rp;
263 		ri->task = current;
264 		ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
265 
266 		/* Replace the return addr with trampoline addr */
267 		regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
268 
269 		add_rp_inst(ri);
270 	} else {
271 		rp->nmissed++;
272 	}
273 }
274 
275 static int __kprobes kprobe_handler(struct pt_regs *regs)
276 {
277 	struct kprobe *p;
278 	int ret = 0;
279 	unsigned long *addr = (unsigned long *)
280 		((regs->psw.addr & PSW_ADDR_INSN) - 2);
281 	struct kprobe_ctlblk *kcb;
282 
283 	/*
284 	 * We don't want to be preempted for the entire
285 	 * duration of kprobe processing
286 	 */
287 	preempt_disable();
288 	kcb = get_kprobe_ctlblk();
289 
290 	/* Check we're not actually recursing */
291 	if (kprobe_running()) {
292 		p = get_kprobe(addr);
293 		if (p) {
294 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
295 			    *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
296 				regs->psw.mask &= ~PSW_MASK_PER;
297 				regs->psw.mask |= kcb->kprobe_saved_imask;
298 				goto no_kprobe;
299 			}
300 			/* We have reentered the kprobe_handler(), since
301 			 * another probe was hit while within the handler.
302 			 * We here save the original kprobes variables and
303 			 * just single step on the instruction of the new probe
304 			 * without calling any user handlers.
305 			 */
306 			save_previous_kprobe(kcb);
307 			set_current_kprobe(p, regs, kcb);
308 			kprobes_inc_nmissed_count(p);
309 			prepare_singlestep(p, regs);
310 			kcb->kprobe_status = KPROBE_REENTER;
311 			return 1;
312 		} else {
313 			p = __get_cpu_var(current_kprobe);
314 			if (p->break_handler && p->break_handler(p, regs)) {
315 				goto ss_probe;
316 			}
317 		}
318 		goto no_kprobe;
319 	}
320 
321 	p = get_kprobe(addr);
322 	if (!p) {
323 		if (*addr != BREAKPOINT_INSTRUCTION) {
324 			/*
325 			 * The breakpoint instruction was removed right
326 			 * after we hit it.  Another cpu has removed
327 			 * either a probepoint or a debugger breakpoint
328 			 * at this address.  In either case, no further
329 			 * handling of this interrupt is appropriate.
330 			 *
331 			 */
332 			ret = 1;
333 		}
334 		/* Not one of ours: let kernel handle it */
335 		goto no_kprobe;
336 	}
337 
338 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
339 	set_current_kprobe(p, regs, kcb);
340 	if (p->pre_handler && p->pre_handler(p, regs))
341 		/* handler has already set things up, so skip ss setup */
342 		return 1;
343 
344 ss_probe:
345 	prepare_singlestep(p, regs);
346 	kcb->kprobe_status = KPROBE_HIT_SS;
347 	return 1;
348 
349 no_kprobe:
350 	preempt_enable_no_resched();
351 	return ret;
352 }
353 
354 /*
355  * Function return probe trampoline:
356  *	- init_kprobes() establishes a probepoint here
357  *	- When the probed function returns, this probe
358  *		causes the handlers to fire
359  */
360 void __kprobes kretprobe_trampoline_holder(void)
361 {
362 	asm volatile(".global kretprobe_trampoline\n"
363 		     "kretprobe_trampoline: bcr 0,0\n");
364 }
365 
366 /*
367  * Called when the probe at kretprobe trampoline is hit
368  */
369 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
370 {
371 	struct kretprobe_instance *ri = NULL;
372 	struct hlist_head *head;
373 	struct hlist_node *node, *tmp;
374 	unsigned long flags, orig_ret_address = 0;
375 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
376 
377 	spin_lock_irqsave(&kretprobe_lock, flags);
378 	head = kretprobe_inst_table_head(current);
379 
380 	/*
381 	 * It is possible to have multiple instances associated with a given
382 	 * task either because an multiple functions in the call path
383 	 * have a return probe installed on them, and/or more then one return
384 	 * return probe was registered for a target function.
385 	 *
386 	 * We can handle this because:
387 	 *     - instances are always inserted at the head of the list
388 	 *     - when multiple return probes are registered for the same
389 	 *	 function, the first instance's ret_addr will point to the
390 	 *	 real return address, and all the rest will point to
391 	 *	 kretprobe_trampoline
392 	 */
393 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
394 		if (ri->task != current)
395 			/* another task is sharing our hash bucket */
396 			continue;
397 
398 		if (ri->rp && ri->rp->handler)
399 			ri->rp->handler(ri, regs);
400 
401 		orig_ret_address = (unsigned long)ri->ret_addr;
402 		recycle_rp_inst(ri);
403 
404 		if (orig_ret_address != trampoline_address) {
405 			/*
406 			 * This is the real return address. Any other
407 			 * instances associated with this task are for
408 			 * other calls deeper on the call stack
409 			 */
410 			break;
411 		}
412 	}
413 	BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
414 	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
415 
416 	reset_current_kprobe();
417 	spin_unlock_irqrestore(&kretprobe_lock, flags);
418 	preempt_enable_no_resched();
419 
420 	/*
421 	 * By returning a non-zero value, we are telling
422 	 * kprobe_handler() that we don't want the post_handler
423 	 * to run (and have re-enabled preemption)
424 	 */
425 	return 1;
426 }
427 
428 /*
429  * Called after single-stepping.  p->addr is the address of the
430  * instruction whose first byte has been replaced by the "breakpoint"
431  * instruction.  To avoid the SMP problems that can occur when we
432  * temporarily put back the original opcode to single-step, we
433  * single-stepped a copy of the instruction.  The address of this
434  * copy is p->ainsn.insn.
435  */
436 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
437 {
438 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
439 
440 	regs->psw.addr &= PSW_ADDR_INSN;
441 
442 	if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
443 		regs->psw.addr = (unsigned long)p->addr +
444 				((unsigned long)regs->psw.addr -
445 				 (unsigned long)p->ainsn.insn);
446 
447 	if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
448 		if ((unsigned long)regs->psw.addr -
449 		    (unsigned long)p->ainsn.insn == p->ainsn.ilen)
450 			regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
451 
452 	if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
453 		regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
454 						(regs->gprs[p->ainsn.reg] -
455 						(unsigned long)p->ainsn.insn))
456 						| PSW_ADDR_AMODE;
457 
458 	regs->psw.addr |= PSW_ADDR_AMODE;
459 	/* turn off PER mode */
460 	regs->psw.mask &= ~PSW_MASK_PER;
461 	/* Restore the original per control regs */
462 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
463 	regs->psw.mask |= kcb->kprobe_saved_imask;
464 }
465 
466 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
467 {
468 	struct kprobe *cur = kprobe_running();
469 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
470 
471 	if (!cur)
472 		return 0;
473 
474 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
475 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
476 		cur->post_handler(cur, regs, 0);
477 	}
478 
479 	resume_execution(cur, regs);
480 
481 	/*Restore back the original saved kprobes variables and continue. */
482 	if (kcb->kprobe_status == KPROBE_REENTER) {
483 		restore_previous_kprobe(kcb);
484 		goto out;
485 	}
486 	reset_current_kprobe();
487 out:
488 	preempt_enable_no_resched();
489 
490 	/*
491 	 * if somebody else is singlestepping across a probe point, psw mask
492 	 * will have PER set, in which case, continue the remaining processing
493 	 * of do_single_step, as if this is not a probe hit.
494 	 */
495 	if (regs->psw.mask & PSW_MASK_PER) {
496 		return 0;
497 	}
498 
499 	return 1;
500 }
501 
502 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
503 {
504 	struct kprobe *cur = kprobe_running();
505 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
506 	const struct exception_table_entry *entry;
507 
508 	switch(kcb->kprobe_status) {
509 	case KPROBE_SWAP_INST:
510 		/* We are here because the instruction replacement failed */
511 		return 0;
512 	case KPROBE_HIT_SS:
513 	case KPROBE_REENTER:
514 		/*
515 		 * We are here because the instruction being single
516 		 * stepped caused a page fault. We reset the current
517 		 * kprobe and the nip points back to the probe address
518 		 * and allow the page fault handler to continue as a
519 		 * normal page fault.
520 		 */
521 		regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
522 		regs->psw.mask &= ~PSW_MASK_PER;
523 		regs->psw.mask |= kcb->kprobe_saved_imask;
524 		if (kcb->kprobe_status == KPROBE_REENTER)
525 			restore_previous_kprobe(kcb);
526 		else
527 			reset_current_kprobe();
528 		preempt_enable_no_resched();
529 		break;
530 	case KPROBE_HIT_ACTIVE:
531 	case KPROBE_HIT_SSDONE:
532 		/*
533 		 * We increment the nmissed count for accounting,
534 		 * we can also use npre/npostfault count for accouting
535 		 * these specific fault cases.
536 		 */
537 		kprobes_inc_nmissed_count(cur);
538 
539 		/*
540 		 * We come here because instructions in the pre/post
541 		 * handler caused the page_fault, this could happen
542 		 * if handler tries to access user space by
543 		 * copy_from_user(), get_user() etc. Let the
544 		 * user-specified handler try to fix it first.
545 		 */
546 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
547 			return 1;
548 
549 		/*
550 		 * In case the user-specified fault handler returned
551 		 * zero, try to fix up.
552 		 */
553 		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
554 		if (entry) {
555 			regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
556 			return 1;
557 		}
558 
559 		/*
560 		 * fixup_exception() could not handle it,
561 		 * Let do_page_fault() fix it.
562 		 */
563 		break;
564 	default:
565 		break;
566 	}
567 	return 0;
568 }
569 
570 /*
571  * Wrapper routine to for handling exceptions.
572  */
573 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
574 				       unsigned long val, void *data)
575 {
576 	struct die_args *args = (struct die_args *)data;
577 	int ret = NOTIFY_DONE;
578 
579 	switch (val) {
580 	case DIE_BPT:
581 		if (kprobe_handler(args->regs))
582 			ret = NOTIFY_STOP;
583 		break;
584 	case DIE_SSTEP:
585 		if (post_kprobe_handler(args->regs))
586 			ret = NOTIFY_STOP;
587 		break;
588 	case DIE_TRAP:
589 	case DIE_PAGE_FAULT:
590 		/* kprobe_running() needs smp_processor_id() */
591 		preempt_disable();
592 		if (kprobe_running() &&
593 		    kprobe_fault_handler(args->regs, args->trapnr))
594 			ret = NOTIFY_STOP;
595 		preempt_enable();
596 		break;
597 	default:
598 		break;
599 	}
600 	return ret;
601 }
602 
603 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
604 {
605 	struct jprobe *jp = container_of(p, struct jprobe, kp);
606 	unsigned long addr;
607 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
608 
609 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
610 
611 	/* setup return addr to the jprobe handler routine */
612 	regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
613 
614 	/* r14 is the function return address */
615 	kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
616 	/* r15 is the stack pointer */
617 	kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
618 	addr = (unsigned long)kcb->jprobe_saved_r15;
619 
620 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
621 	       MIN_STACK_SIZE(addr));
622 	return 1;
623 }
624 
625 void __kprobes jprobe_return(void)
626 {
627 	asm volatile(".word 0x0002");
628 }
629 
630 void __kprobes jprobe_return_end(void)
631 {
632 	asm volatile("bcr 0,0");
633 }
634 
635 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
636 {
637 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
638 	unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
639 
640 	/* Put the regs back */
641 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
642 	/* put the stack back */
643 	memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
644 	       MIN_STACK_SIZE(stack_addr));
645 	preempt_enable_no_resched();
646 	return 1;
647 }
648 
649 static struct kprobe trampoline_p = {
650 	.addr = (kprobe_opcode_t *) & kretprobe_trampoline,
651 	.pre_handler = trampoline_probe_handler
652 };
653 
654 int __init arch_init_kprobes(void)
655 {
656 	return register_kprobe(&trampoline_p);
657 }
658