1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2006 19 * 20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> 21 */ 22 23 #include <linux/config.h> 24 #include <linux/kprobes.h> 25 #include <linux/ptrace.h> 26 #include <linux/preempt.h> 27 #include <linux/stop_machine.h> 28 #include <asm/cacheflush.h> 29 #include <asm/kdebug.h> 30 #include <asm/sections.h> 31 #include <asm/uaccess.h> 32 #include <linux/module.h> 33 34 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 35 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 36 37 int __kprobes arch_prepare_kprobe(struct kprobe *p) 38 { 39 /* Make sure the probe isn't going on a difficult instruction */ 40 if (is_prohibited_opcode((kprobe_opcode_t *) p->addr)) 41 return -EINVAL; 42 43 if ((unsigned long)p->addr & 0x01) { 44 printk("Attempt to register kprobe at an unaligned address\n"); 45 return -EINVAL; 46 } 47 48 /* Use the get_insn_slot() facility for correctness */ 49 if (!(p->ainsn.insn = get_insn_slot())) 50 return -ENOMEM; 51 52 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 53 54 get_instruction_type(&p->ainsn); 55 p->opcode = *p->addr; 56 return 0; 57 } 58 59 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction) 60 { 61 switch (*(__u8 *) instruction) { 62 case 0x0c: /* bassm */ 63 case 0x0b: /* bsm */ 64 case 0x83: /* diag */ 65 case 0x44: /* ex */ 66 return -EINVAL; 67 } 68 switch (*(__u16 *) instruction) { 69 case 0x0101: /* pr */ 70 case 0xb25a: /* bsa */ 71 case 0xb240: /* bakr */ 72 case 0xb258: /* bsg */ 73 case 0xb218: /* pc */ 74 case 0xb228: /* pt */ 75 return -EINVAL; 76 } 77 return 0; 78 } 79 80 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn) 81 { 82 /* default fixup method */ 83 ainsn->fixup = FIXUP_PSW_NORMAL; 84 85 /* save r1 operand */ 86 ainsn->reg = (*ainsn->insn & 0xf0) >> 4; 87 88 /* save the instruction length (pop 5-5) in bytes */ 89 switch (*(__u8 *) (ainsn->insn) >> 4) { 90 case 0: 91 ainsn->ilen = 2; 92 break; 93 case 1: 94 case 2: 95 ainsn->ilen = 4; 96 break; 97 case 3: 98 ainsn->ilen = 6; 99 break; 100 } 101 102 switch (*(__u8 *) ainsn->insn) { 103 case 0x05: /* balr */ 104 case 0x0d: /* basr */ 105 ainsn->fixup = FIXUP_RETURN_REGISTER; 106 /* if r2 = 0, no branch will be taken */ 107 if ((*ainsn->insn & 0x0f) == 0) 108 ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN; 109 break; 110 case 0x06: /* bctr */ 111 case 0x07: /* bcr */ 112 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 113 break; 114 case 0x45: /* bal */ 115 case 0x4d: /* bas */ 116 ainsn->fixup = FIXUP_RETURN_REGISTER; 117 break; 118 case 0x47: /* bc */ 119 case 0x46: /* bct */ 120 case 0x86: /* bxh */ 121 case 0x87: /* bxle */ 122 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 123 break; 124 case 0x82: /* lpsw */ 125 ainsn->fixup = FIXUP_NOT_REQUIRED; 126 break; 127 case 0xb2: /* lpswe */ 128 if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) { 129 ainsn->fixup = FIXUP_NOT_REQUIRED; 130 } 131 break; 132 case 0xa7: /* bras */ 133 if ((*ainsn->insn & 0x0f) == 0x05) { 134 ainsn->fixup |= FIXUP_RETURN_REGISTER; 135 } 136 break; 137 case 0xc0: 138 if ((*ainsn->insn & 0x0f) == 0x00 /* larl */ 139 || (*ainsn->insn & 0x0f) == 0x05) /* brasl */ 140 ainsn->fixup |= FIXUP_RETURN_REGISTER; 141 break; 142 case 0xeb: 143 if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 || /* bxhg */ 144 *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */ 145 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 146 } 147 break; 148 case 0xe3: /* bctg */ 149 if (*(((__u8 *) ainsn->insn) + 5) == 0x46) { 150 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 151 } 152 break; 153 } 154 } 155 156 static int __kprobes swap_instruction(void *aref) 157 { 158 struct ins_replace_args *args = aref; 159 int err = -EFAULT; 160 161 asm volatile( 162 "0: mvc 0(2,%2),0(%3)\n" 163 "1: la %0,0\n" 164 "2:\n" 165 EX_TABLE(0b,2b) 166 : "+d" (err), "=m" (*args->ptr) 167 : "a" (args->ptr), "a" (&args->new), "m" (args->new)); 168 return err; 169 } 170 171 void __kprobes arch_arm_kprobe(struct kprobe *p) 172 { 173 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 174 unsigned long status = kcb->kprobe_status; 175 struct ins_replace_args args; 176 177 args.ptr = p->addr; 178 args.old = p->opcode; 179 args.new = BREAKPOINT_INSTRUCTION; 180 181 kcb->kprobe_status = KPROBE_SWAP_INST; 182 stop_machine_run(swap_instruction, &args, NR_CPUS); 183 kcb->kprobe_status = status; 184 } 185 186 void __kprobes arch_disarm_kprobe(struct kprobe *p) 187 { 188 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 189 unsigned long status = kcb->kprobe_status; 190 struct ins_replace_args args; 191 192 args.ptr = p->addr; 193 args.old = BREAKPOINT_INSTRUCTION; 194 args.new = p->opcode; 195 196 kcb->kprobe_status = KPROBE_SWAP_INST; 197 stop_machine_run(swap_instruction, &args, NR_CPUS); 198 kcb->kprobe_status = status; 199 } 200 201 void __kprobes arch_remove_kprobe(struct kprobe *p) 202 { 203 mutex_lock(&kprobe_mutex); 204 free_insn_slot(p->ainsn.insn); 205 mutex_unlock(&kprobe_mutex); 206 } 207 208 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) 209 { 210 per_cr_bits kprobe_per_regs[1]; 211 212 memset(kprobe_per_regs, 0, sizeof(per_cr_bits)); 213 regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE; 214 215 /* Set up the per control reg info, will pass to lctl */ 216 kprobe_per_regs[0].em_instruction_fetch = 1; 217 kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn; 218 kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1; 219 220 /* Set the PER control regs, turns on single step for this address */ 221 __ctl_load(kprobe_per_regs, 9, 11); 222 regs->psw.mask |= PSW_MASK_PER; 223 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK); 224 } 225 226 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 227 { 228 kcb->prev_kprobe.kp = kprobe_running(); 229 kcb->prev_kprobe.status = kcb->kprobe_status; 230 kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask; 231 memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl, 232 sizeof(kcb->kprobe_saved_ctl)); 233 } 234 235 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 236 { 237 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; 238 kcb->kprobe_status = kcb->prev_kprobe.status; 239 kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask; 240 memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl, 241 sizeof(kcb->kprobe_saved_ctl)); 242 } 243 244 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 245 struct kprobe_ctlblk *kcb) 246 { 247 __get_cpu_var(current_kprobe) = p; 248 /* Save the interrupt and per flags */ 249 kcb->kprobe_saved_imask = regs->psw.mask & 250 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK); 251 /* Save the control regs that govern PER */ 252 __ctl_store(kcb->kprobe_saved_ctl, 9, 11); 253 } 254 255 /* Called with kretprobe_lock held */ 256 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp, 257 struct pt_regs *regs) 258 { 259 struct kretprobe_instance *ri; 260 261 if ((ri = get_free_rp_inst(rp)) != NULL) { 262 ri->rp = rp; 263 ri->task = current; 264 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14]; 265 266 /* Replace the return addr with trampoline addr */ 267 regs->gprs[14] = (unsigned long)&kretprobe_trampoline; 268 269 add_rp_inst(ri); 270 } else { 271 rp->nmissed++; 272 } 273 } 274 275 static int __kprobes kprobe_handler(struct pt_regs *regs) 276 { 277 struct kprobe *p; 278 int ret = 0; 279 unsigned long *addr = (unsigned long *) 280 ((regs->psw.addr & PSW_ADDR_INSN) - 2); 281 struct kprobe_ctlblk *kcb; 282 283 /* 284 * We don't want to be preempted for the entire 285 * duration of kprobe processing 286 */ 287 preempt_disable(); 288 kcb = get_kprobe_ctlblk(); 289 290 /* Check we're not actually recursing */ 291 if (kprobe_running()) { 292 p = get_kprobe(addr); 293 if (p) { 294 if (kcb->kprobe_status == KPROBE_HIT_SS && 295 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) { 296 regs->psw.mask &= ~PSW_MASK_PER; 297 regs->psw.mask |= kcb->kprobe_saved_imask; 298 goto no_kprobe; 299 } 300 /* We have reentered the kprobe_handler(), since 301 * another probe was hit while within the handler. 302 * We here save the original kprobes variables and 303 * just single step on the instruction of the new probe 304 * without calling any user handlers. 305 */ 306 save_previous_kprobe(kcb); 307 set_current_kprobe(p, regs, kcb); 308 kprobes_inc_nmissed_count(p); 309 prepare_singlestep(p, regs); 310 kcb->kprobe_status = KPROBE_REENTER; 311 return 1; 312 } else { 313 p = __get_cpu_var(current_kprobe); 314 if (p->break_handler && p->break_handler(p, regs)) { 315 goto ss_probe; 316 } 317 } 318 goto no_kprobe; 319 } 320 321 p = get_kprobe(addr); 322 if (!p) { 323 if (*addr != BREAKPOINT_INSTRUCTION) { 324 /* 325 * The breakpoint instruction was removed right 326 * after we hit it. Another cpu has removed 327 * either a probepoint or a debugger breakpoint 328 * at this address. In either case, no further 329 * handling of this interrupt is appropriate. 330 * 331 */ 332 ret = 1; 333 } 334 /* Not one of ours: let kernel handle it */ 335 goto no_kprobe; 336 } 337 338 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 339 set_current_kprobe(p, regs, kcb); 340 if (p->pre_handler && p->pre_handler(p, regs)) 341 /* handler has already set things up, so skip ss setup */ 342 return 1; 343 344 ss_probe: 345 prepare_singlestep(p, regs); 346 kcb->kprobe_status = KPROBE_HIT_SS; 347 return 1; 348 349 no_kprobe: 350 preempt_enable_no_resched(); 351 return ret; 352 } 353 354 /* 355 * Function return probe trampoline: 356 * - init_kprobes() establishes a probepoint here 357 * - When the probed function returns, this probe 358 * causes the handlers to fire 359 */ 360 void __kprobes kretprobe_trampoline_holder(void) 361 { 362 asm volatile(".global kretprobe_trampoline\n" 363 "kretprobe_trampoline: bcr 0,0\n"); 364 } 365 366 /* 367 * Called when the probe at kretprobe trampoline is hit 368 */ 369 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) 370 { 371 struct kretprobe_instance *ri = NULL; 372 struct hlist_head *head; 373 struct hlist_node *node, *tmp; 374 unsigned long flags, orig_ret_address = 0; 375 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 376 377 spin_lock_irqsave(&kretprobe_lock, flags); 378 head = kretprobe_inst_table_head(current); 379 380 /* 381 * It is possible to have multiple instances associated with a given 382 * task either because an multiple functions in the call path 383 * have a return probe installed on them, and/or more then one return 384 * return probe was registered for a target function. 385 * 386 * We can handle this because: 387 * - instances are always inserted at the head of the list 388 * - when multiple return probes are registered for the same 389 * function, the first instance's ret_addr will point to the 390 * real return address, and all the rest will point to 391 * kretprobe_trampoline 392 */ 393 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 394 if (ri->task != current) 395 /* another task is sharing our hash bucket */ 396 continue; 397 398 if (ri->rp && ri->rp->handler) 399 ri->rp->handler(ri, regs); 400 401 orig_ret_address = (unsigned long)ri->ret_addr; 402 recycle_rp_inst(ri); 403 404 if (orig_ret_address != trampoline_address) { 405 /* 406 * This is the real return address. Any other 407 * instances associated with this task are for 408 * other calls deeper on the call stack 409 */ 410 break; 411 } 412 } 413 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address)); 414 regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE; 415 416 reset_current_kprobe(); 417 spin_unlock_irqrestore(&kretprobe_lock, flags); 418 preempt_enable_no_resched(); 419 420 /* 421 * By returning a non-zero value, we are telling 422 * kprobe_handler() that we don't want the post_handler 423 * to run (and have re-enabled preemption) 424 */ 425 return 1; 426 } 427 428 /* 429 * Called after single-stepping. p->addr is the address of the 430 * instruction whose first byte has been replaced by the "breakpoint" 431 * instruction. To avoid the SMP problems that can occur when we 432 * temporarily put back the original opcode to single-step, we 433 * single-stepped a copy of the instruction. The address of this 434 * copy is p->ainsn.insn. 435 */ 436 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) 437 { 438 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 439 440 regs->psw.addr &= PSW_ADDR_INSN; 441 442 if (p->ainsn.fixup & FIXUP_PSW_NORMAL) 443 regs->psw.addr = (unsigned long)p->addr + 444 ((unsigned long)regs->psw.addr - 445 (unsigned long)p->ainsn.insn); 446 447 if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN) 448 if ((unsigned long)regs->psw.addr - 449 (unsigned long)p->ainsn.insn == p->ainsn.ilen) 450 regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen; 451 452 if (p->ainsn.fixup & FIXUP_RETURN_REGISTER) 453 regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr + 454 (regs->gprs[p->ainsn.reg] - 455 (unsigned long)p->ainsn.insn)) 456 | PSW_ADDR_AMODE; 457 458 regs->psw.addr |= PSW_ADDR_AMODE; 459 /* turn off PER mode */ 460 regs->psw.mask &= ~PSW_MASK_PER; 461 /* Restore the original per control regs */ 462 __ctl_load(kcb->kprobe_saved_ctl, 9, 11); 463 regs->psw.mask |= kcb->kprobe_saved_imask; 464 } 465 466 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 467 { 468 struct kprobe *cur = kprobe_running(); 469 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 470 471 if (!cur) 472 return 0; 473 474 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 475 kcb->kprobe_status = KPROBE_HIT_SSDONE; 476 cur->post_handler(cur, regs, 0); 477 } 478 479 resume_execution(cur, regs); 480 481 /*Restore back the original saved kprobes variables and continue. */ 482 if (kcb->kprobe_status == KPROBE_REENTER) { 483 restore_previous_kprobe(kcb); 484 goto out; 485 } 486 reset_current_kprobe(); 487 out: 488 preempt_enable_no_resched(); 489 490 /* 491 * if somebody else is singlestepping across a probe point, psw mask 492 * will have PER set, in which case, continue the remaining processing 493 * of do_single_step, as if this is not a probe hit. 494 */ 495 if (regs->psw.mask & PSW_MASK_PER) { 496 return 0; 497 } 498 499 return 1; 500 } 501 502 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 503 { 504 struct kprobe *cur = kprobe_running(); 505 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 506 const struct exception_table_entry *entry; 507 508 switch(kcb->kprobe_status) { 509 case KPROBE_SWAP_INST: 510 /* We are here because the instruction replacement failed */ 511 return 0; 512 case KPROBE_HIT_SS: 513 case KPROBE_REENTER: 514 /* 515 * We are here because the instruction being single 516 * stepped caused a page fault. We reset the current 517 * kprobe and the nip points back to the probe address 518 * and allow the page fault handler to continue as a 519 * normal page fault. 520 */ 521 regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE; 522 regs->psw.mask &= ~PSW_MASK_PER; 523 regs->psw.mask |= kcb->kprobe_saved_imask; 524 if (kcb->kprobe_status == KPROBE_REENTER) 525 restore_previous_kprobe(kcb); 526 else 527 reset_current_kprobe(); 528 preempt_enable_no_resched(); 529 break; 530 case KPROBE_HIT_ACTIVE: 531 case KPROBE_HIT_SSDONE: 532 /* 533 * We increment the nmissed count for accounting, 534 * we can also use npre/npostfault count for accouting 535 * these specific fault cases. 536 */ 537 kprobes_inc_nmissed_count(cur); 538 539 /* 540 * We come here because instructions in the pre/post 541 * handler caused the page_fault, this could happen 542 * if handler tries to access user space by 543 * copy_from_user(), get_user() etc. Let the 544 * user-specified handler try to fix it first. 545 */ 546 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 547 return 1; 548 549 /* 550 * In case the user-specified fault handler returned 551 * zero, try to fix up. 552 */ 553 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN); 554 if (entry) { 555 regs->psw.addr = entry->fixup | PSW_ADDR_AMODE; 556 return 1; 557 } 558 559 /* 560 * fixup_exception() could not handle it, 561 * Let do_page_fault() fix it. 562 */ 563 break; 564 default: 565 break; 566 } 567 return 0; 568 } 569 570 /* 571 * Wrapper routine to for handling exceptions. 572 */ 573 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 574 unsigned long val, void *data) 575 { 576 struct die_args *args = (struct die_args *)data; 577 int ret = NOTIFY_DONE; 578 579 switch (val) { 580 case DIE_BPT: 581 if (kprobe_handler(args->regs)) 582 ret = NOTIFY_STOP; 583 break; 584 case DIE_SSTEP: 585 if (post_kprobe_handler(args->regs)) 586 ret = NOTIFY_STOP; 587 break; 588 case DIE_TRAP: 589 case DIE_PAGE_FAULT: 590 /* kprobe_running() needs smp_processor_id() */ 591 preempt_disable(); 592 if (kprobe_running() && 593 kprobe_fault_handler(args->regs, args->trapnr)) 594 ret = NOTIFY_STOP; 595 preempt_enable(); 596 break; 597 default: 598 break; 599 } 600 return ret; 601 } 602 603 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 604 { 605 struct jprobe *jp = container_of(p, struct jprobe, kp); 606 unsigned long addr; 607 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 608 609 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 610 611 /* setup return addr to the jprobe handler routine */ 612 regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE; 613 614 /* r14 is the function return address */ 615 kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14]; 616 /* r15 is the stack pointer */ 617 kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15]; 618 addr = (unsigned long)kcb->jprobe_saved_r15; 619 620 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr, 621 MIN_STACK_SIZE(addr)); 622 return 1; 623 } 624 625 void __kprobes jprobe_return(void) 626 { 627 asm volatile(".word 0x0002"); 628 } 629 630 void __kprobes jprobe_return_end(void) 631 { 632 asm volatile("bcr 0,0"); 633 } 634 635 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 636 { 637 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 638 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15); 639 640 /* Put the regs back */ 641 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 642 /* put the stack back */ 643 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack, 644 MIN_STACK_SIZE(stack_addr)); 645 preempt_enable_no_resched(); 646 return 1; 647 } 648 649 static struct kprobe trampoline_p = { 650 .addr = (kprobe_opcode_t *) & kretprobe_trampoline, 651 .pre_handler = trampoline_probe_handler 652 }; 653 654 int __init arch_init_kprobes(void) 655 { 656 return register_kprobe(&trampoline_p); 657 } 658