xref: /linux/arch/s390/kernel/kprobes.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22 
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <asm/cacheflush.h>
30 #include <asm/sections.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 
34 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
35 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
36 
37 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
38 
39 int __kprobes arch_prepare_kprobe(struct kprobe *p)
40 {
41 	/* Make sure the probe isn't going on a difficult instruction */
42 	if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
43 		return -EINVAL;
44 
45 	if ((unsigned long)p->addr & 0x01)
46 		return -EINVAL;
47 
48 	/* Use the get_insn_slot() facility for correctness */
49 	if (!(p->ainsn.insn = get_insn_slot()))
50 		return -ENOMEM;
51 
52 	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
53 
54 	get_instruction_type(&p->ainsn);
55 	p->opcode = *p->addr;
56 	return 0;
57 }
58 
59 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
60 {
61 	switch (*(__u8 *) instruction) {
62 	case 0x0c:	/* bassm */
63 	case 0x0b:	/* bsm	 */
64 	case 0x83:	/* diag  */
65 	case 0x44:	/* ex	 */
66 	case 0xac:	/* stnsm */
67 	case 0xad:	/* stosm */
68 		return -EINVAL;
69 	}
70 	switch (*(__u16 *) instruction) {
71 	case 0x0101:	/* pr	 */
72 	case 0xb25a:	/* bsa	 */
73 	case 0xb240:	/* bakr  */
74 	case 0xb258:	/* bsg	 */
75 	case 0xb218:	/* pc	 */
76 	case 0xb228:	/* pt	 */
77 	case 0xb98d:	/* epsw	 */
78 		return -EINVAL;
79 	}
80 	return 0;
81 }
82 
83 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
84 {
85 	/* default fixup method */
86 	ainsn->fixup = FIXUP_PSW_NORMAL;
87 
88 	/* save r1 operand */
89 	ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
90 
91 	/* save the instruction length (pop 5-5) in bytes */
92 	switch (*(__u8 *) (ainsn->insn) >> 6) {
93 	case 0:
94 		ainsn->ilen = 2;
95 		break;
96 	case 1:
97 	case 2:
98 		ainsn->ilen = 4;
99 		break;
100 	case 3:
101 		ainsn->ilen = 6;
102 		break;
103 	}
104 
105 	switch (*(__u8 *) ainsn->insn) {
106 	case 0x05:	/* balr	*/
107 	case 0x0d:	/* basr */
108 		ainsn->fixup = FIXUP_RETURN_REGISTER;
109 		/* if r2 = 0, no branch will be taken */
110 		if ((*ainsn->insn & 0x0f) == 0)
111 			ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
112 		break;
113 	case 0x06:	/* bctr	*/
114 	case 0x07:	/* bcr	*/
115 		ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
116 		break;
117 	case 0x45:	/* bal	*/
118 	case 0x4d:	/* bas	*/
119 		ainsn->fixup = FIXUP_RETURN_REGISTER;
120 		break;
121 	case 0x47:	/* bc	*/
122 	case 0x46:	/* bct	*/
123 	case 0x86:	/* bxh	*/
124 	case 0x87:	/* bxle	*/
125 		ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
126 		break;
127 	case 0x82:	/* lpsw	*/
128 		ainsn->fixup = FIXUP_NOT_REQUIRED;
129 		break;
130 	case 0xb2:	/* lpswe */
131 		if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
132 			ainsn->fixup = FIXUP_NOT_REQUIRED;
133 		}
134 		break;
135 	case 0xa7:	/* bras	*/
136 		if ((*ainsn->insn & 0x0f) == 0x05) {
137 			ainsn->fixup |= FIXUP_RETURN_REGISTER;
138 		}
139 		break;
140 	case 0xc0:
141 		if ((*ainsn->insn & 0x0f) == 0x00  /* larl  */
142 			|| (*ainsn->insn & 0x0f) == 0x05) /* brasl */
143 		ainsn->fixup |= FIXUP_RETURN_REGISTER;
144 		break;
145 	case 0xeb:
146 		if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 ||	/* bxhg  */
147 			*(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
148 			ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
149 		}
150 		break;
151 	case 0xe3:	/* bctg	*/
152 		if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
153 			ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
154 		}
155 		break;
156 	}
157 }
158 
159 static int __kprobes swap_instruction(void *aref)
160 {
161 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
162 	unsigned long status = kcb->kprobe_status;
163 	struct ins_replace_args *args = aref;
164 	int rc;
165 
166 	kcb->kprobe_status = KPROBE_SWAP_INST;
167 	rc = probe_kernel_write(args->ptr, &args->new, sizeof(args->new));
168 	kcb->kprobe_status = status;
169 	return rc;
170 }
171 
172 void __kprobes arch_arm_kprobe(struct kprobe *p)
173 {
174 	struct ins_replace_args args;
175 
176 	args.ptr = p->addr;
177 	args.old = p->opcode;
178 	args.new = BREAKPOINT_INSTRUCTION;
179 	stop_machine(swap_instruction, &args, NULL);
180 }
181 
182 void __kprobes arch_disarm_kprobe(struct kprobe *p)
183 {
184 	struct ins_replace_args args;
185 
186 	args.ptr = p->addr;
187 	args.old = BREAKPOINT_INSTRUCTION;
188 	args.new = p->opcode;
189 	stop_machine(swap_instruction, &args, NULL);
190 }
191 
192 void __kprobes arch_remove_kprobe(struct kprobe *p)
193 {
194 	if (p->ainsn.insn) {
195 		free_insn_slot(p->ainsn.insn, 0);
196 		p->ainsn.insn = NULL;
197 	}
198 }
199 
200 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
201 {
202 	per_cr_bits kprobe_per_regs[1];
203 
204 	memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
205 	regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
206 
207 	/* Set up the per control reg info, will pass to lctl */
208 	kprobe_per_regs[0].em_instruction_fetch = 1;
209 	kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
210 	kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
211 
212 	/* Set the PER control regs, turns on single step for this address */
213 	__ctl_load(kprobe_per_regs, 9, 11);
214 	regs->psw.mask |= PSW_MASK_PER;
215 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
216 }
217 
218 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
219 {
220 	kcb->prev_kprobe.kp = kprobe_running();
221 	kcb->prev_kprobe.status = kcb->kprobe_status;
222 	kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
223 	memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
224 					sizeof(kcb->kprobe_saved_ctl));
225 }
226 
227 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
228 {
229 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
230 	kcb->kprobe_status = kcb->prev_kprobe.status;
231 	kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
232 	memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
233 					sizeof(kcb->kprobe_saved_ctl));
234 }
235 
236 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
237 						struct kprobe_ctlblk *kcb)
238 {
239 	__get_cpu_var(current_kprobe) = p;
240 	/* Save the interrupt and per flags */
241 	kcb->kprobe_saved_imask = regs->psw.mask &
242 	    (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
243 	/* Save the control regs that govern PER */
244 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
245 }
246 
247 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
248 					struct pt_regs *regs)
249 {
250 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
251 
252 	/* Replace the return addr with trampoline addr */
253 	regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
254 }
255 
256 static int __kprobes kprobe_handler(struct pt_regs *regs)
257 {
258 	struct kprobe *p;
259 	int ret = 0;
260 	unsigned long *addr = (unsigned long *)
261 		((regs->psw.addr & PSW_ADDR_INSN) - 2);
262 	struct kprobe_ctlblk *kcb;
263 
264 	/*
265 	 * We don't want to be preempted for the entire
266 	 * duration of kprobe processing
267 	 */
268 	preempt_disable();
269 	kcb = get_kprobe_ctlblk();
270 
271 	/* Check we're not actually recursing */
272 	if (kprobe_running()) {
273 		p = get_kprobe(addr);
274 		if (p) {
275 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
276 			    *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
277 				regs->psw.mask &= ~PSW_MASK_PER;
278 				regs->psw.mask |= kcb->kprobe_saved_imask;
279 				goto no_kprobe;
280 			}
281 			/* We have reentered the kprobe_handler(), since
282 			 * another probe was hit while within the handler.
283 			 * We here save the original kprobes variables and
284 			 * just single step on the instruction of the new probe
285 			 * without calling any user handlers.
286 			 */
287 			save_previous_kprobe(kcb);
288 			set_current_kprobe(p, regs, kcb);
289 			kprobes_inc_nmissed_count(p);
290 			prepare_singlestep(p, regs);
291 			kcb->kprobe_status = KPROBE_REENTER;
292 			return 1;
293 		} else {
294 			p = __get_cpu_var(current_kprobe);
295 			if (p->break_handler && p->break_handler(p, regs)) {
296 				goto ss_probe;
297 			}
298 		}
299 		goto no_kprobe;
300 	}
301 
302 	p = get_kprobe(addr);
303 	if (!p)
304 		/*
305 		 * No kprobe at this address. The fault has not been
306 		 * caused by a kprobe breakpoint. The race of breakpoint
307 		 * vs. kprobe remove does not exist because on s390 we
308 		 * use stop_machine to arm/disarm the breakpoints.
309 		 */
310 		goto no_kprobe;
311 
312 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
313 	set_current_kprobe(p, regs, kcb);
314 	if (p->pre_handler && p->pre_handler(p, regs))
315 		/* handler has already set things up, so skip ss setup */
316 		return 1;
317 
318 ss_probe:
319 	prepare_singlestep(p, regs);
320 	kcb->kprobe_status = KPROBE_HIT_SS;
321 	return 1;
322 
323 no_kprobe:
324 	preempt_enable_no_resched();
325 	return ret;
326 }
327 
328 /*
329  * Function return probe trampoline:
330  *	- init_kprobes() establishes a probepoint here
331  *	- When the probed function returns, this probe
332  *		causes the handlers to fire
333  */
334 static void __used kretprobe_trampoline_holder(void)
335 {
336 	asm volatile(".global kretprobe_trampoline\n"
337 		     "kretprobe_trampoline: bcr 0,0\n");
338 }
339 
340 /*
341  * Called when the probe at kretprobe trampoline is hit
342  */
343 static int __kprobes trampoline_probe_handler(struct kprobe *p,
344 					      struct pt_regs *regs)
345 {
346 	struct kretprobe_instance *ri = NULL;
347 	struct hlist_head *head, empty_rp;
348 	struct hlist_node *node, *tmp;
349 	unsigned long flags, orig_ret_address = 0;
350 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
351 
352 	INIT_HLIST_HEAD(&empty_rp);
353 	kretprobe_hash_lock(current, &head, &flags);
354 
355 	/*
356 	 * It is possible to have multiple instances associated with a given
357 	 * task either because an multiple functions in the call path
358 	 * have a return probe installed on them, and/or more than one return
359 	 * return probe was registered for a target function.
360 	 *
361 	 * We can handle this because:
362 	 *     - instances are always inserted at the head of the list
363 	 *     - when multiple return probes are registered for the same
364 	 *	 function, the first instance's ret_addr will point to the
365 	 *	 real return address, and all the rest will point to
366 	 *	 kretprobe_trampoline
367 	 */
368 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
369 		if (ri->task != current)
370 			/* another task is sharing our hash bucket */
371 			continue;
372 
373 		if (ri->rp && ri->rp->handler)
374 			ri->rp->handler(ri, regs);
375 
376 		orig_ret_address = (unsigned long)ri->ret_addr;
377 		recycle_rp_inst(ri, &empty_rp);
378 
379 		if (orig_ret_address != trampoline_address) {
380 			/*
381 			 * This is the real return address. Any other
382 			 * instances associated with this task are for
383 			 * other calls deeper on the call stack
384 			 */
385 			break;
386 		}
387 	}
388 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
389 	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
390 
391 	reset_current_kprobe();
392 	kretprobe_hash_unlock(current, &flags);
393 	preempt_enable_no_resched();
394 
395 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
396 		hlist_del(&ri->hlist);
397 		kfree(ri);
398 	}
399 	/*
400 	 * By returning a non-zero value, we are telling
401 	 * kprobe_handler() that we don't want the post_handler
402 	 * to run (and have re-enabled preemption)
403 	 */
404 	return 1;
405 }
406 
407 /*
408  * Called after single-stepping.  p->addr is the address of the
409  * instruction whose first byte has been replaced by the "breakpoint"
410  * instruction.  To avoid the SMP problems that can occur when we
411  * temporarily put back the original opcode to single-step, we
412  * single-stepped a copy of the instruction.  The address of this
413  * copy is p->ainsn.insn.
414  */
415 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
416 {
417 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
418 
419 	regs->psw.addr &= PSW_ADDR_INSN;
420 
421 	if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
422 		regs->psw.addr = (unsigned long)p->addr +
423 				((unsigned long)regs->psw.addr -
424 				 (unsigned long)p->ainsn.insn);
425 
426 	if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
427 		if ((unsigned long)regs->psw.addr -
428 		    (unsigned long)p->ainsn.insn == p->ainsn.ilen)
429 			regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
430 
431 	if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
432 		regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
433 						(regs->gprs[p->ainsn.reg] -
434 						(unsigned long)p->ainsn.insn))
435 						| PSW_ADDR_AMODE;
436 
437 	regs->psw.addr |= PSW_ADDR_AMODE;
438 	/* turn off PER mode */
439 	regs->psw.mask &= ~PSW_MASK_PER;
440 	/* Restore the original per control regs */
441 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
442 	regs->psw.mask |= kcb->kprobe_saved_imask;
443 }
444 
445 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
446 {
447 	struct kprobe *cur = kprobe_running();
448 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
449 
450 	if (!cur)
451 		return 0;
452 
453 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
454 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
455 		cur->post_handler(cur, regs, 0);
456 	}
457 
458 	resume_execution(cur, regs);
459 
460 	/*Restore back the original saved kprobes variables and continue. */
461 	if (kcb->kprobe_status == KPROBE_REENTER) {
462 		restore_previous_kprobe(kcb);
463 		goto out;
464 	}
465 	reset_current_kprobe();
466 out:
467 	preempt_enable_no_resched();
468 
469 	/*
470 	 * if somebody else is singlestepping across a probe point, psw mask
471 	 * will have PER set, in which case, continue the remaining processing
472 	 * of do_single_step, as if this is not a probe hit.
473 	 */
474 	if (regs->psw.mask & PSW_MASK_PER) {
475 		return 0;
476 	}
477 
478 	return 1;
479 }
480 
481 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
482 {
483 	struct kprobe *cur = kprobe_running();
484 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
485 	const struct exception_table_entry *entry;
486 
487 	switch(kcb->kprobe_status) {
488 	case KPROBE_SWAP_INST:
489 		/* We are here because the instruction replacement failed */
490 		return 0;
491 	case KPROBE_HIT_SS:
492 	case KPROBE_REENTER:
493 		/*
494 		 * We are here because the instruction being single
495 		 * stepped caused a page fault. We reset the current
496 		 * kprobe and the nip points back to the probe address
497 		 * and allow the page fault handler to continue as a
498 		 * normal page fault.
499 		 */
500 		regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
501 		regs->psw.mask &= ~PSW_MASK_PER;
502 		regs->psw.mask |= kcb->kprobe_saved_imask;
503 		if (kcb->kprobe_status == KPROBE_REENTER)
504 			restore_previous_kprobe(kcb);
505 		else
506 			reset_current_kprobe();
507 		preempt_enable_no_resched();
508 		break;
509 	case KPROBE_HIT_ACTIVE:
510 	case KPROBE_HIT_SSDONE:
511 		/*
512 		 * We increment the nmissed count for accounting,
513 		 * we can also use npre/npostfault count for accouting
514 		 * these specific fault cases.
515 		 */
516 		kprobes_inc_nmissed_count(cur);
517 
518 		/*
519 		 * We come here because instructions in the pre/post
520 		 * handler caused the page_fault, this could happen
521 		 * if handler tries to access user space by
522 		 * copy_from_user(), get_user() etc. Let the
523 		 * user-specified handler try to fix it first.
524 		 */
525 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
526 			return 1;
527 
528 		/*
529 		 * In case the user-specified fault handler returned
530 		 * zero, try to fix up.
531 		 */
532 		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
533 		if (entry) {
534 			regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
535 			return 1;
536 		}
537 
538 		/*
539 		 * fixup_exception() could not handle it,
540 		 * Let do_page_fault() fix it.
541 		 */
542 		break;
543 	default:
544 		break;
545 	}
546 	return 0;
547 }
548 
549 /*
550  * Wrapper routine to for handling exceptions.
551  */
552 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
553 				       unsigned long val, void *data)
554 {
555 	struct die_args *args = (struct die_args *)data;
556 	int ret = NOTIFY_DONE;
557 
558 	switch (val) {
559 	case DIE_BPT:
560 		if (kprobe_handler(args->regs))
561 			ret = NOTIFY_STOP;
562 		break;
563 	case DIE_SSTEP:
564 		if (post_kprobe_handler(args->regs))
565 			ret = NOTIFY_STOP;
566 		break;
567 	case DIE_TRAP:
568 		/* kprobe_running() needs smp_processor_id() */
569 		preempt_disable();
570 		if (kprobe_running() &&
571 		    kprobe_fault_handler(args->regs, args->trapnr))
572 			ret = NOTIFY_STOP;
573 		preempt_enable();
574 		break;
575 	default:
576 		break;
577 	}
578 	return ret;
579 }
580 
581 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
582 {
583 	struct jprobe *jp = container_of(p, struct jprobe, kp);
584 	unsigned long addr;
585 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
586 
587 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
588 
589 	/* setup return addr to the jprobe handler routine */
590 	regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
591 
592 	/* r14 is the function return address */
593 	kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
594 	/* r15 is the stack pointer */
595 	kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
596 	addr = (unsigned long)kcb->jprobe_saved_r15;
597 
598 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
599 	       MIN_STACK_SIZE(addr));
600 	return 1;
601 }
602 
603 void __kprobes jprobe_return(void)
604 {
605 	asm volatile(".word 0x0002");
606 }
607 
608 void __kprobes jprobe_return_end(void)
609 {
610 	asm volatile("bcr 0,0");
611 }
612 
613 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
614 {
615 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
616 	unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
617 
618 	/* Put the regs back */
619 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
620 	/* put the stack back */
621 	memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
622 	       MIN_STACK_SIZE(stack_addr));
623 	preempt_enable_no_resched();
624 	return 1;
625 }
626 
627 static struct kprobe trampoline_p = {
628 	.addr = (kprobe_opcode_t *) & kretprobe_trampoline,
629 	.pre_handler = trampoline_probe_handler
630 };
631 
632 int __init arch_init_kprobes(void)
633 {
634 	return register_kprobe(&trampoline_p);
635 }
636 
637 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
638 {
639 	if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline)
640 		return 1;
641 	return 0;
642 }
643