xref: /linux/arch/s390/kernel/kprobes.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright IBM Corp. 2002, 2006
6  *
7  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8  */
9 
10 #include <linux/kprobes.h>
11 #include <linux/ptrace.h>
12 #include <linux/preempt.h>
13 #include <linux/stop_machine.h>
14 #include <linux/kdebug.h>
15 #include <linux/uaccess.h>
16 #include <linux/extable.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/hardirq.h>
20 #include <linux/ftrace.h>
21 #include <asm/set_memory.h>
22 #include <asm/sections.h>
23 #include <asm/dis.h>
24 
25 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
26 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
27 
28 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
29 
30 DEFINE_INSN_CACHE_OPS(s390_insn);
31 
32 static int insn_page_in_use;
33 static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
34 
35 static void *alloc_s390_insn_page(void)
36 {
37 	if (xchg(&insn_page_in_use, 1) == 1)
38 		return NULL;
39 	set_memory_x((unsigned long) &insn_page, 1);
40 	return &insn_page;
41 }
42 
43 static void free_s390_insn_page(void *page)
44 {
45 	set_memory_nx((unsigned long) page, 1);
46 	xchg(&insn_page_in_use, 0);
47 }
48 
49 struct kprobe_insn_cache kprobe_s390_insn_slots = {
50 	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
51 	.alloc = alloc_s390_insn_page,
52 	.free = free_s390_insn_page,
53 	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
54 	.insn_size = MAX_INSN_SIZE,
55 };
56 
57 static void copy_instruction(struct kprobe *p)
58 {
59 	s64 disp, new_disp;
60 	u64 addr, new_addr;
61 
62 	memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
63 	p->opcode = p->ainsn.insn[0];
64 	if (!probe_is_insn_relative_long(p->ainsn.insn))
65 		return;
66 	/*
67 	 * For pc-relative instructions in RIL-b or RIL-c format patch the
68 	 * RI2 displacement field. We have already made sure that the insn
69 	 * slot for the patched instruction is within the same 2GB area
70 	 * as the original instruction (either kernel image or module area).
71 	 * Therefore the new displacement will always fit.
72 	 */
73 	disp = *(s32 *)&p->ainsn.insn[1];
74 	addr = (u64)(unsigned long)p->addr;
75 	new_addr = (u64)(unsigned long)p->ainsn.insn;
76 	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
77 	*(s32 *)&p->ainsn.insn[1] = new_disp;
78 }
79 NOKPROBE_SYMBOL(copy_instruction);
80 
81 static inline int is_kernel_addr(void *addr)
82 {
83 	return addr < (void *)_end;
84 }
85 
86 static int s390_get_insn_slot(struct kprobe *p)
87 {
88 	/*
89 	 * Get an insn slot that is within the same 2GB area like the original
90 	 * instruction. That way instructions with a 32bit signed displacement
91 	 * field can be patched and executed within the insn slot.
92 	 */
93 	p->ainsn.insn = NULL;
94 	if (is_kernel_addr(p->addr))
95 		p->ainsn.insn = get_s390_insn_slot();
96 	else if (is_module_addr(p->addr))
97 		p->ainsn.insn = get_insn_slot();
98 	return p->ainsn.insn ? 0 : -ENOMEM;
99 }
100 NOKPROBE_SYMBOL(s390_get_insn_slot);
101 
102 static void s390_free_insn_slot(struct kprobe *p)
103 {
104 	if (!p->ainsn.insn)
105 		return;
106 	if (is_kernel_addr(p->addr))
107 		free_s390_insn_slot(p->ainsn.insn, 0);
108 	else
109 		free_insn_slot(p->ainsn.insn, 0);
110 	p->ainsn.insn = NULL;
111 }
112 NOKPROBE_SYMBOL(s390_free_insn_slot);
113 
114 int arch_prepare_kprobe(struct kprobe *p)
115 {
116 	if ((unsigned long) p->addr & 0x01)
117 		return -EINVAL;
118 	/* Make sure the probe isn't going on a difficult instruction */
119 	if (probe_is_prohibited_opcode(p->addr))
120 		return -EINVAL;
121 	if (s390_get_insn_slot(p))
122 		return -ENOMEM;
123 	copy_instruction(p);
124 	return 0;
125 }
126 NOKPROBE_SYMBOL(arch_prepare_kprobe);
127 
128 struct swap_insn_args {
129 	struct kprobe *p;
130 	unsigned int arm_kprobe : 1;
131 };
132 
133 static int swap_instruction(void *data)
134 {
135 	struct swap_insn_args *args = data;
136 	struct kprobe *p = args->p;
137 	u16 opc;
138 
139 	opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
140 	s390_kernel_write(p->addr, &opc, sizeof(opc));
141 	return 0;
142 }
143 NOKPROBE_SYMBOL(swap_instruction);
144 
145 void arch_arm_kprobe(struct kprobe *p)
146 {
147 	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
148 
149 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
150 }
151 NOKPROBE_SYMBOL(arch_arm_kprobe);
152 
153 void arch_disarm_kprobe(struct kprobe *p)
154 {
155 	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
156 
157 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
158 }
159 NOKPROBE_SYMBOL(arch_disarm_kprobe);
160 
161 void arch_remove_kprobe(struct kprobe *p)
162 {
163 	s390_free_insn_slot(p);
164 }
165 NOKPROBE_SYMBOL(arch_remove_kprobe);
166 
167 static void enable_singlestep(struct kprobe_ctlblk *kcb,
168 			      struct pt_regs *regs,
169 			      unsigned long ip)
170 {
171 	struct per_regs per_kprobe;
172 
173 	/* Set up the PER control registers %cr9-%cr11 */
174 	per_kprobe.control = PER_EVENT_IFETCH;
175 	per_kprobe.start = ip;
176 	per_kprobe.end = ip;
177 
178 	/* Save control regs and psw mask */
179 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
180 	kcb->kprobe_saved_imask = regs->psw.mask &
181 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
182 
183 	/* Set PER control regs, turns on single step for the given address */
184 	__ctl_load(per_kprobe, 9, 11);
185 	regs->psw.mask |= PSW_MASK_PER;
186 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
187 	regs->psw.addr = ip;
188 }
189 NOKPROBE_SYMBOL(enable_singlestep);
190 
191 static void disable_singlestep(struct kprobe_ctlblk *kcb,
192 			       struct pt_regs *regs,
193 			       unsigned long ip)
194 {
195 	/* Restore control regs and psw mask, set new psw address */
196 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
197 	regs->psw.mask &= ~PSW_MASK_PER;
198 	regs->psw.mask |= kcb->kprobe_saved_imask;
199 	regs->psw.addr = ip;
200 }
201 NOKPROBE_SYMBOL(disable_singlestep);
202 
203 /*
204  * Activate a kprobe by storing its pointer to current_kprobe. The
205  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
206  * two kprobes can be active, see KPROBE_REENTER.
207  */
208 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
209 {
210 	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
211 	kcb->prev_kprobe.status = kcb->kprobe_status;
212 	__this_cpu_write(current_kprobe, p);
213 }
214 NOKPROBE_SYMBOL(push_kprobe);
215 
216 /*
217  * Deactivate a kprobe by backing up to the previous state. If the
218  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
219  * for any other state prev_kprobe.kp will be NULL.
220  */
221 static void pop_kprobe(struct kprobe_ctlblk *kcb)
222 {
223 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
224 	kcb->kprobe_status = kcb->prev_kprobe.status;
225 }
226 NOKPROBE_SYMBOL(pop_kprobe);
227 
228 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
229 {
230 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
231 	ri->fp = NULL;
232 
233 	/* Replace the return addr with trampoline addr */
234 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
235 }
236 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
237 
238 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
239 {
240 	switch (kcb->kprobe_status) {
241 	case KPROBE_HIT_SSDONE:
242 	case KPROBE_HIT_ACTIVE:
243 		kprobes_inc_nmissed_count(p);
244 		break;
245 	case KPROBE_HIT_SS:
246 	case KPROBE_REENTER:
247 	default:
248 		/*
249 		 * A kprobe on the code path to single step an instruction
250 		 * is a BUG. The code path resides in the .kprobes.text
251 		 * section and is executed with interrupts disabled.
252 		 */
253 		pr_err("Invalid kprobe detected.\n");
254 		dump_kprobe(p);
255 		BUG();
256 	}
257 }
258 NOKPROBE_SYMBOL(kprobe_reenter_check);
259 
260 static int kprobe_handler(struct pt_regs *regs)
261 {
262 	struct kprobe_ctlblk *kcb;
263 	struct kprobe *p;
264 
265 	/*
266 	 * We want to disable preemption for the entire duration of kprobe
267 	 * processing. That includes the calls to the pre/post handlers
268 	 * and single stepping the kprobe instruction.
269 	 */
270 	preempt_disable();
271 	kcb = get_kprobe_ctlblk();
272 	p = get_kprobe((void *)(regs->psw.addr - 2));
273 
274 	if (p) {
275 		if (kprobe_running()) {
276 			/*
277 			 * We have hit a kprobe while another is still
278 			 * active. This can happen in the pre and post
279 			 * handler. Single step the instruction of the
280 			 * new probe but do not call any handler function
281 			 * of this secondary kprobe.
282 			 * push_kprobe and pop_kprobe saves and restores
283 			 * the currently active kprobe.
284 			 */
285 			kprobe_reenter_check(kcb, p);
286 			push_kprobe(kcb, p);
287 			kcb->kprobe_status = KPROBE_REENTER;
288 		} else {
289 			/*
290 			 * If we have no pre-handler or it returned 0, we
291 			 * continue with single stepping. If we have a
292 			 * pre-handler and it returned non-zero, it prepped
293 			 * for changing execution path, so get out doing
294 			 * nothing more here.
295 			 */
296 			push_kprobe(kcb, p);
297 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
298 			if (p->pre_handler && p->pre_handler(p, regs)) {
299 				pop_kprobe(kcb);
300 				preempt_enable_no_resched();
301 				return 1;
302 			}
303 			kcb->kprobe_status = KPROBE_HIT_SS;
304 		}
305 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
306 		return 1;
307 	} /* else:
308 	   * No kprobe at this address and no active kprobe. The trap has
309 	   * not been caused by a kprobe breakpoint. The race of breakpoint
310 	   * vs. kprobe remove does not exist because on s390 as we use
311 	   * stop_machine to arm/disarm the breakpoints.
312 	   */
313 	preempt_enable_no_resched();
314 	return 0;
315 }
316 NOKPROBE_SYMBOL(kprobe_handler);
317 
318 /*
319  * Function return probe trampoline:
320  *	- init_kprobes() establishes a probepoint here
321  *	- When the probed function returns, this probe
322  *		causes the handlers to fire
323  */
324 static void __used kretprobe_trampoline_holder(void)
325 {
326 	asm volatile(".global kretprobe_trampoline\n"
327 		     "kretprobe_trampoline: bcr 0,0\n");
328 }
329 
330 /*
331  * Called when the probe at kretprobe trampoline is hit
332  */
333 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
334 {
335 	regs->psw.addr = __kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL);
336 	/*
337 	 * By returning a non-zero value, we are telling
338 	 * kprobe_handler() that we don't want the post_handler
339 	 * to run (and have re-enabled preemption)
340 	 */
341 	return 1;
342 }
343 NOKPROBE_SYMBOL(trampoline_probe_handler);
344 
345 /*
346  * Called after single-stepping.  p->addr is the address of the
347  * instruction whose first byte has been replaced by the "breakpoint"
348  * instruction.  To avoid the SMP problems that can occur when we
349  * temporarily put back the original opcode to single-step, we
350  * single-stepped a copy of the instruction.  The address of this
351  * copy is p->ainsn.insn.
352  */
353 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
354 {
355 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
356 	unsigned long ip = regs->psw.addr;
357 	int fixup = probe_get_fixup_type(p->ainsn.insn);
358 
359 	if (fixup & FIXUP_PSW_NORMAL)
360 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
361 
362 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
363 		int ilen = insn_length(p->ainsn.insn[0] >> 8);
364 		if (ip - (unsigned long) p->ainsn.insn == ilen)
365 			ip = (unsigned long) p->addr + ilen;
366 	}
367 
368 	if (fixup & FIXUP_RETURN_REGISTER) {
369 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
370 		regs->gprs[reg] += (unsigned long) p->addr -
371 				   (unsigned long) p->ainsn.insn;
372 	}
373 
374 	disable_singlestep(kcb, regs, ip);
375 }
376 NOKPROBE_SYMBOL(resume_execution);
377 
378 static int post_kprobe_handler(struct pt_regs *regs)
379 {
380 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
381 	struct kprobe *p = kprobe_running();
382 
383 	if (!p)
384 		return 0;
385 
386 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
387 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
388 		p->post_handler(p, regs, 0);
389 	}
390 
391 	resume_execution(p, regs);
392 	pop_kprobe(kcb);
393 	preempt_enable_no_resched();
394 
395 	/*
396 	 * if somebody else is singlestepping across a probe point, psw mask
397 	 * will have PER set, in which case, continue the remaining processing
398 	 * of do_single_step, as if this is not a probe hit.
399 	 */
400 	if (regs->psw.mask & PSW_MASK_PER)
401 		return 0;
402 
403 	return 1;
404 }
405 NOKPROBE_SYMBOL(post_kprobe_handler);
406 
407 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
408 {
409 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
410 	struct kprobe *p = kprobe_running();
411 	const struct exception_table_entry *entry;
412 
413 	switch(kcb->kprobe_status) {
414 	case KPROBE_HIT_SS:
415 	case KPROBE_REENTER:
416 		/*
417 		 * We are here because the instruction being single
418 		 * stepped caused a page fault. We reset the current
419 		 * kprobe and the nip points back to the probe address
420 		 * and allow the page fault handler to continue as a
421 		 * normal page fault.
422 		 */
423 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
424 		pop_kprobe(kcb);
425 		preempt_enable_no_resched();
426 		break;
427 	case KPROBE_HIT_ACTIVE:
428 	case KPROBE_HIT_SSDONE:
429 		/*
430 		 * We increment the nmissed count for accounting,
431 		 * we can also use npre/npostfault count for accounting
432 		 * these specific fault cases.
433 		 */
434 		kprobes_inc_nmissed_count(p);
435 
436 		/*
437 		 * We come here because instructions in the pre/post
438 		 * handler caused the page_fault, this could happen
439 		 * if handler tries to access user space by
440 		 * copy_from_user(), get_user() etc. Let the
441 		 * user-specified handler try to fix it first.
442 		 */
443 		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
444 			return 1;
445 
446 		/*
447 		 * In case the user-specified fault handler returned
448 		 * zero, try to fix up.
449 		 */
450 		entry = s390_search_extables(regs->psw.addr);
451 		if (entry && ex_handle(entry, regs))
452 			return 1;
453 
454 		/*
455 		 * fixup_exception() could not handle it,
456 		 * Let do_page_fault() fix it.
457 		 */
458 		break;
459 	default:
460 		break;
461 	}
462 	return 0;
463 }
464 NOKPROBE_SYMBOL(kprobe_trap_handler);
465 
466 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
467 {
468 	int ret;
469 
470 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
471 		local_irq_disable();
472 	ret = kprobe_trap_handler(regs, trapnr);
473 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
474 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
475 	return ret;
476 }
477 NOKPROBE_SYMBOL(kprobe_fault_handler);
478 
479 /*
480  * Wrapper routine to for handling exceptions.
481  */
482 int kprobe_exceptions_notify(struct notifier_block *self,
483 			     unsigned long val, void *data)
484 {
485 	struct die_args *args = (struct die_args *) data;
486 	struct pt_regs *regs = args->regs;
487 	int ret = NOTIFY_DONE;
488 
489 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
490 		local_irq_disable();
491 
492 	switch (val) {
493 	case DIE_BPT:
494 		if (kprobe_handler(regs))
495 			ret = NOTIFY_STOP;
496 		break;
497 	case DIE_SSTEP:
498 		if (post_kprobe_handler(regs))
499 			ret = NOTIFY_STOP;
500 		break;
501 	case DIE_TRAP:
502 		if (!preemptible() && kprobe_running() &&
503 		    kprobe_trap_handler(regs, args->trapnr))
504 			ret = NOTIFY_STOP;
505 		break;
506 	default:
507 		break;
508 	}
509 
510 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
511 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
512 
513 	return ret;
514 }
515 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
516 
517 static struct kprobe trampoline = {
518 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
519 	.pre_handler = trampoline_probe_handler
520 };
521 
522 int __init arch_init_kprobes(void)
523 {
524 	return register_kprobe(&trampoline);
525 }
526 
527 int arch_trampoline_kprobe(struct kprobe *p)
528 {
529 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
530 }
531 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
532