xref: /linux/arch/s390/kernel/kprobes.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright IBM Corp. 2002, 2006
6  *
7  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8  */
9 
10 #include <linux/kprobes.h>
11 #include <linux/ptrace.h>
12 #include <linux/preempt.h>
13 #include <linux/stop_machine.h>
14 #include <linux/kdebug.h>
15 #include <linux/uaccess.h>
16 #include <linux/extable.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/hardirq.h>
20 #include <linux/ftrace.h>
21 #include <asm/set_memory.h>
22 #include <asm/sections.h>
23 #include <asm/dis.h>
24 
25 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
26 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
27 
28 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
29 
30 DEFINE_INSN_CACHE_OPS(dmainsn);
31 
32 static void *alloc_dmainsn_page(void)
33 {
34 	void *page;
35 
36 	page = (void *) __get_free_page(GFP_KERNEL | GFP_DMA);
37 	if (page)
38 		set_memory_x((unsigned long) page, 1);
39 	return page;
40 }
41 
42 static void free_dmainsn_page(void *page)
43 {
44 	set_memory_nx((unsigned long) page, 1);
45 	free_page((unsigned long)page);
46 }
47 
48 struct kprobe_insn_cache kprobe_dmainsn_slots = {
49 	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
50 	.alloc = alloc_dmainsn_page,
51 	.free = free_dmainsn_page,
52 	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
53 	.insn_size = MAX_INSN_SIZE,
54 };
55 
56 static void copy_instruction(struct kprobe *p)
57 {
58 	unsigned long ip = (unsigned long) p->addr;
59 	s64 disp, new_disp;
60 	u64 addr, new_addr;
61 
62 	if (ftrace_location(ip) == ip) {
63 		/*
64 		 * If kprobes patches the instruction that is morphed by
65 		 * ftrace make sure that kprobes always sees the branch
66 		 * "jg .+24" that skips the mcount block or the "brcl 0,0"
67 		 * in case of hotpatch.
68 		 */
69 		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
70 		p->ainsn.is_ftrace_insn = 1;
71 	} else
72 		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
73 	p->opcode = p->ainsn.insn[0];
74 	if (!probe_is_insn_relative_long(p->ainsn.insn))
75 		return;
76 	/*
77 	 * For pc-relative instructions in RIL-b or RIL-c format patch the
78 	 * RI2 displacement field. We have already made sure that the insn
79 	 * slot for the patched instruction is within the same 2GB area
80 	 * as the original instruction (either kernel image or module area).
81 	 * Therefore the new displacement will always fit.
82 	 */
83 	disp = *(s32 *)&p->ainsn.insn[1];
84 	addr = (u64)(unsigned long)p->addr;
85 	new_addr = (u64)(unsigned long)p->ainsn.insn;
86 	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
87 	*(s32 *)&p->ainsn.insn[1] = new_disp;
88 }
89 NOKPROBE_SYMBOL(copy_instruction);
90 
91 static inline int is_kernel_addr(void *addr)
92 {
93 	return addr < (void *)_end;
94 }
95 
96 static int s390_get_insn_slot(struct kprobe *p)
97 {
98 	/*
99 	 * Get an insn slot that is within the same 2GB area like the original
100 	 * instruction. That way instructions with a 32bit signed displacement
101 	 * field can be patched and executed within the insn slot.
102 	 */
103 	p->ainsn.insn = NULL;
104 	if (is_kernel_addr(p->addr))
105 		p->ainsn.insn = get_dmainsn_slot();
106 	else if (is_module_addr(p->addr))
107 		p->ainsn.insn = get_insn_slot();
108 	return p->ainsn.insn ? 0 : -ENOMEM;
109 }
110 NOKPROBE_SYMBOL(s390_get_insn_slot);
111 
112 static void s390_free_insn_slot(struct kprobe *p)
113 {
114 	if (!p->ainsn.insn)
115 		return;
116 	if (is_kernel_addr(p->addr))
117 		free_dmainsn_slot(p->ainsn.insn, 0);
118 	else
119 		free_insn_slot(p->ainsn.insn, 0);
120 	p->ainsn.insn = NULL;
121 }
122 NOKPROBE_SYMBOL(s390_free_insn_slot);
123 
124 int arch_prepare_kprobe(struct kprobe *p)
125 {
126 	if ((unsigned long) p->addr & 0x01)
127 		return -EINVAL;
128 	/* Make sure the probe isn't going on a difficult instruction */
129 	if (probe_is_prohibited_opcode(p->addr))
130 		return -EINVAL;
131 	if (s390_get_insn_slot(p))
132 		return -ENOMEM;
133 	copy_instruction(p);
134 	return 0;
135 }
136 NOKPROBE_SYMBOL(arch_prepare_kprobe);
137 
138 int arch_check_ftrace_location(struct kprobe *p)
139 {
140 	return 0;
141 }
142 
143 struct swap_insn_args {
144 	struct kprobe *p;
145 	unsigned int arm_kprobe : 1;
146 };
147 
148 static int swap_instruction(void *data)
149 {
150 	struct swap_insn_args *args = data;
151 	struct ftrace_insn new_insn, *insn;
152 	struct kprobe *p = args->p;
153 	size_t len;
154 
155 	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
156 	len = sizeof(new_insn.opc);
157 	if (!p->ainsn.is_ftrace_insn)
158 		goto skip_ftrace;
159 	len = sizeof(new_insn);
160 	insn = (struct ftrace_insn *) p->addr;
161 	if (args->arm_kprobe) {
162 		if (is_ftrace_nop(insn))
163 			new_insn.disp = KPROBE_ON_FTRACE_NOP;
164 		else
165 			new_insn.disp = KPROBE_ON_FTRACE_CALL;
166 	} else {
167 		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
168 		if (insn->disp == KPROBE_ON_FTRACE_NOP)
169 			ftrace_generate_nop_insn(&new_insn);
170 	}
171 skip_ftrace:
172 	s390_kernel_write(p->addr, &new_insn, len);
173 	return 0;
174 }
175 NOKPROBE_SYMBOL(swap_instruction);
176 
177 void arch_arm_kprobe(struct kprobe *p)
178 {
179 	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
180 
181 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
182 }
183 NOKPROBE_SYMBOL(arch_arm_kprobe);
184 
185 void arch_disarm_kprobe(struct kprobe *p)
186 {
187 	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
188 
189 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
190 }
191 NOKPROBE_SYMBOL(arch_disarm_kprobe);
192 
193 void arch_remove_kprobe(struct kprobe *p)
194 {
195 	s390_free_insn_slot(p);
196 }
197 NOKPROBE_SYMBOL(arch_remove_kprobe);
198 
199 static void enable_singlestep(struct kprobe_ctlblk *kcb,
200 			      struct pt_regs *regs,
201 			      unsigned long ip)
202 {
203 	struct per_regs per_kprobe;
204 
205 	/* Set up the PER control registers %cr9-%cr11 */
206 	per_kprobe.control = PER_EVENT_IFETCH;
207 	per_kprobe.start = ip;
208 	per_kprobe.end = ip;
209 
210 	/* Save control regs and psw mask */
211 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
212 	kcb->kprobe_saved_imask = regs->psw.mask &
213 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
214 
215 	/* Set PER control regs, turns on single step for the given address */
216 	__ctl_load(per_kprobe, 9, 11);
217 	regs->psw.mask |= PSW_MASK_PER;
218 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
219 	regs->psw.addr = ip;
220 }
221 NOKPROBE_SYMBOL(enable_singlestep);
222 
223 static void disable_singlestep(struct kprobe_ctlblk *kcb,
224 			       struct pt_regs *regs,
225 			       unsigned long ip)
226 {
227 	/* Restore control regs and psw mask, set new psw address */
228 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
229 	regs->psw.mask &= ~PSW_MASK_PER;
230 	regs->psw.mask |= kcb->kprobe_saved_imask;
231 	regs->psw.addr = ip;
232 }
233 NOKPROBE_SYMBOL(disable_singlestep);
234 
235 /*
236  * Activate a kprobe by storing its pointer to current_kprobe. The
237  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
238  * two kprobes can be active, see KPROBE_REENTER.
239  */
240 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
241 {
242 	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
243 	kcb->prev_kprobe.status = kcb->kprobe_status;
244 	__this_cpu_write(current_kprobe, p);
245 }
246 NOKPROBE_SYMBOL(push_kprobe);
247 
248 /*
249  * Deactivate a kprobe by backing up to the previous state. If the
250  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
251  * for any other state prev_kprobe.kp will be NULL.
252  */
253 static void pop_kprobe(struct kprobe_ctlblk *kcb)
254 {
255 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
256 	kcb->kprobe_status = kcb->prev_kprobe.status;
257 }
258 NOKPROBE_SYMBOL(pop_kprobe);
259 
260 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
261 {
262 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
263 
264 	/* Replace the return addr with trampoline addr */
265 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
266 }
267 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
268 
269 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
270 {
271 	switch (kcb->kprobe_status) {
272 	case KPROBE_HIT_SSDONE:
273 	case KPROBE_HIT_ACTIVE:
274 		kprobes_inc_nmissed_count(p);
275 		break;
276 	case KPROBE_HIT_SS:
277 	case KPROBE_REENTER:
278 	default:
279 		/*
280 		 * A kprobe on the code path to single step an instruction
281 		 * is a BUG. The code path resides in the .kprobes.text
282 		 * section and is executed with interrupts disabled.
283 		 */
284 		pr_err("Invalid kprobe detected.\n");
285 		dump_kprobe(p);
286 		BUG();
287 	}
288 }
289 NOKPROBE_SYMBOL(kprobe_reenter_check);
290 
291 static int kprobe_handler(struct pt_regs *regs)
292 {
293 	struct kprobe_ctlblk *kcb;
294 	struct kprobe *p;
295 
296 	/*
297 	 * We want to disable preemption for the entire duration of kprobe
298 	 * processing. That includes the calls to the pre/post handlers
299 	 * and single stepping the kprobe instruction.
300 	 */
301 	preempt_disable();
302 	kcb = get_kprobe_ctlblk();
303 	p = get_kprobe((void *)(regs->psw.addr - 2));
304 
305 	if (p) {
306 		if (kprobe_running()) {
307 			/*
308 			 * We have hit a kprobe while another is still
309 			 * active. This can happen in the pre and post
310 			 * handler. Single step the instruction of the
311 			 * new probe but do not call any handler function
312 			 * of this secondary kprobe.
313 			 * push_kprobe and pop_kprobe saves and restores
314 			 * the currently active kprobe.
315 			 */
316 			kprobe_reenter_check(kcb, p);
317 			push_kprobe(kcb, p);
318 			kcb->kprobe_status = KPROBE_REENTER;
319 		} else {
320 			/*
321 			 * If we have no pre-handler or it returned 0, we
322 			 * continue with single stepping. If we have a
323 			 * pre-handler and it returned non-zero, it prepped
324 			 * for changing execution path, so get out doing
325 			 * nothing more here.
326 			 */
327 			push_kprobe(kcb, p);
328 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
329 			if (p->pre_handler && p->pre_handler(p, regs)) {
330 				pop_kprobe(kcb);
331 				preempt_enable_no_resched();
332 				return 1;
333 			}
334 			kcb->kprobe_status = KPROBE_HIT_SS;
335 		}
336 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
337 		return 1;
338 	} /* else:
339 	   * No kprobe at this address and no active kprobe. The trap has
340 	   * not been caused by a kprobe breakpoint. The race of breakpoint
341 	   * vs. kprobe remove does not exist because on s390 as we use
342 	   * stop_machine to arm/disarm the breakpoints.
343 	   */
344 	preempt_enable_no_resched();
345 	return 0;
346 }
347 NOKPROBE_SYMBOL(kprobe_handler);
348 
349 /*
350  * Function return probe trampoline:
351  *	- init_kprobes() establishes a probepoint here
352  *	- When the probed function returns, this probe
353  *		causes the handlers to fire
354  */
355 static void __used kretprobe_trampoline_holder(void)
356 {
357 	asm volatile(".global kretprobe_trampoline\n"
358 		     "kretprobe_trampoline: bcr 0,0\n");
359 }
360 
361 /*
362  * Called when the probe at kretprobe trampoline is hit
363  */
364 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
365 {
366 	struct kretprobe_instance *ri;
367 	struct hlist_head *head, empty_rp;
368 	struct hlist_node *tmp;
369 	unsigned long flags, orig_ret_address;
370 	unsigned long trampoline_address;
371 	kprobe_opcode_t *correct_ret_addr;
372 
373 	INIT_HLIST_HEAD(&empty_rp);
374 	kretprobe_hash_lock(current, &head, &flags);
375 
376 	/*
377 	 * It is possible to have multiple instances associated with a given
378 	 * task either because an multiple functions in the call path
379 	 * have a return probe installed on them, and/or more than one return
380 	 * return probe was registered for a target function.
381 	 *
382 	 * We can handle this because:
383 	 *     - instances are always inserted at the head of the list
384 	 *     - when multiple return probes are registered for the same
385 	 *	 function, the first instance's ret_addr will point to the
386 	 *	 real return address, and all the rest will point to
387 	 *	 kretprobe_trampoline
388 	 */
389 	ri = NULL;
390 	orig_ret_address = 0;
391 	correct_ret_addr = NULL;
392 	trampoline_address = (unsigned long) &kretprobe_trampoline;
393 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
394 		if (ri->task != current)
395 			/* another task is sharing our hash bucket */
396 			continue;
397 
398 		orig_ret_address = (unsigned long) ri->ret_addr;
399 
400 		if (orig_ret_address != trampoline_address)
401 			/*
402 			 * This is the real return address. Any other
403 			 * instances associated with this task are for
404 			 * other calls deeper on the call stack
405 			 */
406 			break;
407 	}
408 
409 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
410 
411 	correct_ret_addr = ri->ret_addr;
412 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
413 		if (ri->task != current)
414 			/* another task is sharing our hash bucket */
415 			continue;
416 
417 		orig_ret_address = (unsigned long) ri->ret_addr;
418 
419 		if (ri->rp && ri->rp->handler) {
420 			ri->ret_addr = correct_ret_addr;
421 			ri->rp->handler(ri, regs);
422 		}
423 
424 		recycle_rp_inst(ri, &empty_rp);
425 
426 		if (orig_ret_address != trampoline_address)
427 			/*
428 			 * This is the real return address. Any other
429 			 * instances associated with this task are for
430 			 * other calls deeper on the call stack
431 			 */
432 			break;
433 	}
434 
435 	regs->psw.addr = orig_ret_address;
436 
437 	kretprobe_hash_unlock(current, &flags);
438 
439 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
440 		hlist_del(&ri->hlist);
441 		kfree(ri);
442 	}
443 	/*
444 	 * By returning a non-zero value, we are telling
445 	 * kprobe_handler() that we don't want the post_handler
446 	 * to run (and have re-enabled preemption)
447 	 */
448 	return 1;
449 }
450 NOKPROBE_SYMBOL(trampoline_probe_handler);
451 
452 /*
453  * Called after single-stepping.  p->addr is the address of the
454  * instruction whose first byte has been replaced by the "breakpoint"
455  * instruction.  To avoid the SMP problems that can occur when we
456  * temporarily put back the original opcode to single-step, we
457  * single-stepped a copy of the instruction.  The address of this
458  * copy is p->ainsn.insn.
459  */
460 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
461 {
462 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
463 	unsigned long ip = regs->psw.addr;
464 	int fixup = probe_get_fixup_type(p->ainsn.insn);
465 
466 	/* Check if the kprobes location is an enabled ftrace caller */
467 	if (p->ainsn.is_ftrace_insn) {
468 		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
469 		struct ftrace_insn call_insn;
470 
471 		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
472 		/*
473 		 * A kprobe on an enabled ftrace call site actually single
474 		 * stepped an unconditional branch (ftrace nop equivalent).
475 		 * Now we need to fixup things and pretend that a brasl r0,...
476 		 * was executed instead.
477 		 */
478 		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
479 			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
480 			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
481 		}
482 	}
483 
484 	if (fixup & FIXUP_PSW_NORMAL)
485 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
486 
487 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
488 		int ilen = insn_length(p->ainsn.insn[0] >> 8);
489 		if (ip - (unsigned long) p->ainsn.insn == ilen)
490 			ip = (unsigned long) p->addr + ilen;
491 	}
492 
493 	if (fixup & FIXUP_RETURN_REGISTER) {
494 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
495 		regs->gprs[reg] += (unsigned long) p->addr -
496 				   (unsigned long) p->ainsn.insn;
497 	}
498 
499 	disable_singlestep(kcb, regs, ip);
500 }
501 NOKPROBE_SYMBOL(resume_execution);
502 
503 static int post_kprobe_handler(struct pt_regs *regs)
504 {
505 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
506 	struct kprobe *p = kprobe_running();
507 
508 	if (!p)
509 		return 0;
510 
511 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
512 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
513 		p->post_handler(p, regs, 0);
514 	}
515 
516 	resume_execution(p, regs);
517 	pop_kprobe(kcb);
518 	preempt_enable_no_resched();
519 
520 	/*
521 	 * if somebody else is singlestepping across a probe point, psw mask
522 	 * will have PER set, in which case, continue the remaining processing
523 	 * of do_single_step, as if this is not a probe hit.
524 	 */
525 	if (regs->psw.mask & PSW_MASK_PER)
526 		return 0;
527 
528 	return 1;
529 }
530 NOKPROBE_SYMBOL(post_kprobe_handler);
531 
532 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
533 {
534 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
535 	struct kprobe *p = kprobe_running();
536 	const struct exception_table_entry *entry;
537 
538 	switch(kcb->kprobe_status) {
539 	case KPROBE_HIT_SS:
540 	case KPROBE_REENTER:
541 		/*
542 		 * We are here because the instruction being single
543 		 * stepped caused a page fault. We reset the current
544 		 * kprobe and the nip points back to the probe address
545 		 * and allow the page fault handler to continue as a
546 		 * normal page fault.
547 		 */
548 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
549 		pop_kprobe(kcb);
550 		preempt_enable_no_resched();
551 		break;
552 	case KPROBE_HIT_ACTIVE:
553 	case KPROBE_HIT_SSDONE:
554 		/*
555 		 * We increment the nmissed count for accounting,
556 		 * we can also use npre/npostfault count for accounting
557 		 * these specific fault cases.
558 		 */
559 		kprobes_inc_nmissed_count(p);
560 
561 		/*
562 		 * We come here because instructions in the pre/post
563 		 * handler caused the page_fault, this could happen
564 		 * if handler tries to access user space by
565 		 * copy_from_user(), get_user() etc. Let the
566 		 * user-specified handler try to fix it first.
567 		 */
568 		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
569 			return 1;
570 
571 		/*
572 		 * In case the user-specified fault handler returned
573 		 * zero, try to fix up.
574 		 */
575 		entry = search_exception_tables(regs->psw.addr);
576 		if (entry) {
577 			regs->psw.addr = extable_fixup(entry);
578 			return 1;
579 		}
580 
581 		/*
582 		 * fixup_exception() could not handle it,
583 		 * Let do_page_fault() fix it.
584 		 */
585 		break;
586 	default:
587 		break;
588 	}
589 	return 0;
590 }
591 NOKPROBE_SYMBOL(kprobe_trap_handler);
592 
593 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
594 {
595 	int ret;
596 
597 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
598 		local_irq_disable();
599 	ret = kprobe_trap_handler(regs, trapnr);
600 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
601 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
602 	return ret;
603 }
604 NOKPROBE_SYMBOL(kprobe_fault_handler);
605 
606 /*
607  * Wrapper routine to for handling exceptions.
608  */
609 int kprobe_exceptions_notify(struct notifier_block *self,
610 			     unsigned long val, void *data)
611 {
612 	struct die_args *args = (struct die_args *) data;
613 	struct pt_regs *regs = args->regs;
614 	int ret = NOTIFY_DONE;
615 
616 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
617 		local_irq_disable();
618 
619 	switch (val) {
620 	case DIE_BPT:
621 		if (kprobe_handler(regs))
622 			ret = NOTIFY_STOP;
623 		break;
624 	case DIE_SSTEP:
625 		if (post_kprobe_handler(regs))
626 			ret = NOTIFY_STOP;
627 		break;
628 	case DIE_TRAP:
629 		if (!preemptible() && kprobe_running() &&
630 		    kprobe_trap_handler(regs, args->trapnr))
631 			ret = NOTIFY_STOP;
632 		break;
633 	default:
634 		break;
635 	}
636 
637 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
638 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
639 
640 	return ret;
641 }
642 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
643 
644 static struct kprobe trampoline = {
645 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
646 	.pre_handler = trampoline_probe_handler
647 };
648 
649 int __init arch_init_kprobes(void)
650 {
651 	return register_kprobe(&trampoline);
652 }
653 
654 int arch_trampoline_kprobe(struct kprobe *p)
655 {
656 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
657 }
658 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
659