xref: /linux/arch/s390/kernel/kprobes.c (revision b454cc6636d254fbf6049b73e9560aee76fb04a3)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22 
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <asm/cacheflush.h>
28 #include <asm/kdebug.h>
29 #include <asm/sections.h>
30 #include <asm/uaccess.h>
31 #include <linux/module.h>
32 
33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
35 
36 int __kprobes arch_prepare_kprobe(struct kprobe *p)
37 {
38 	/* Make sure the probe isn't going on a difficult instruction */
39 	if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
40 		return -EINVAL;
41 
42 	if ((unsigned long)p->addr & 0x01) {
43 		printk("Attempt to register kprobe at an unaligned address\n");
44 		return -EINVAL;
45 		}
46 
47 	/* Use the get_insn_slot() facility for correctness */
48 	if (!(p->ainsn.insn = get_insn_slot()))
49 		return -ENOMEM;
50 
51 	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
52 
53 	get_instruction_type(&p->ainsn);
54 	p->opcode = *p->addr;
55 	return 0;
56 }
57 
58 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
59 {
60 	switch (*(__u8 *) instruction) {
61 	case 0x0c:	/* bassm */
62 	case 0x0b:	/* bsm	 */
63 	case 0x83:	/* diag  */
64 	case 0x44:	/* ex	 */
65 		return -EINVAL;
66 	}
67 	switch (*(__u16 *) instruction) {
68 	case 0x0101:	/* pr	 */
69 	case 0xb25a:	/* bsa	 */
70 	case 0xb240:	/* bakr  */
71 	case 0xb258:	/* bsg	 */
72 	case 0xb218:	/* pc	 */
73 	case 0xb228:	/* pt	 */
74 		return -EINVAL;
75 	}
76 	return 0;
77 }
78 
79 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
80 {
81 	/* default fixup method */
82 	ainsn->fixup = FIXUP_PSW_NORMAL;
83 
84 	/* save r1 operand */
85 	ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
86 
87 	/* save the instruction length (pop 5-5) in bytes */
88 	switch (*(__u8 *) (ainsn->insn) >> 4) {
89 	case 0:
90 		ainsn->ilen = 2;
91 		break;
92 	case 1:
93 	case 2:
94 		ainsn->ilen = 4;
95 		break;
96 	case 3:
97 		ainsn->ilen = 6;
98 		break;
99 	}
100 
101 	switch (*(__u8 *) ainsn->insn) {
102 	case 0x05:	/* balr	*/
103 	case 0x0d:	/* basr */
104 		ainsn->fixup = FIXUP_RETURN_REGISTER;
105 		/* if r2 = 0, no branch will be taken */
106 		if ((*ainsn->insn & 0x0f) == 0)
107 			ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
108 		break;
109 	case 0x06:	/* bctr	*/
110 	case 0x07:	/* bcr	*/
111 		ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
112 		break;
113 	case 0x45:	/* bal	*/
114 	case 0x4d:	/* bas	*/
115 		ainsn->fixup = FIXUP_RETURN_REGISTER;
116 		break;
117 	case 0x47:	/* bc	*/
118 	case 0x46:	/* bct	*/
119 	case 0x86:	/* bxh	*/
120 	case 0x87:	/* bxle	*/
121 		ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
122 		break;
123 	case 0x82:	/* lpsw	*/
124 		ainsn->fixup = FIXUP_NOT_REQUIRED;
125 		break;
126 	case 0xb2:	/* lpswe */
127 		if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
128 			ainsn->fixup = FIXUP_NOT_REQUIRED;
129 		}
130 		break;
131 	case 0xa7:	/* bras	*/
132 		if ((*ainsn->insn & 0x0f) == 0x05) {
133 			ainsn->fixup |= FIXUP_RETURN_REGISTER;
134 		}
135 		break;
136 	case 0xc0:
137 		if ((*ainsn->insn & 0x0f) == 0x00  /* larl  */
138 			|| (*ainsn->insn & 0x0f) == 0x05) /* brasl */
139 		ainsn->fixup |= FIXUP_RETURN_REGISTER;
140 		break;
141 	case 0xeb:
142 		if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 ||	/* bxhg  */
143 			*(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
144 			ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
145 		}
146 		break;
147 	case 0xe3:	/* bctg	*/
148 		if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
149 			ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
150 		}
151 		break;
152 	}
153 }
154 
155 static int __kprobes swap_instruction(void *aref)
156 {
157 	struct ins_replace_args *args = aref;
158 	u32 *addr;
159 	u32 instr;
160 	int err = -EFAULT;
161 
162 	/*
163 	 * Text segment is read-only, hence we use stura to bypass dynamic
164 	 * address translation to exchange the instruction. Since stura
165 	 * always operates on four bytes, but we only want to exchange two
166 	 * bytes do some calculations to get things right. In addition we
167 	 * shall not cross any page boundaries (vmalloc area!) when writing
168 	 * the new instruction.
169 	 */
170 	addr = (u32 *)ALIGN((unsigned long)args->ptr, 4);
171 	if ((unsigned long)args->ptr & 2)
172 		instr = ((*addr) & 0xffff0000) | args->new;
173 	else
174 		instr = ((*addr) & 0x0000ffff) | args->new << 16;
175 
176 	asm volatile(
177 		"	lra	%1,0(%1)\n"
178 		"0:	stura	%2,%1\n"
179 		"1:	la	%0,0\n"
180 		"2:\n"
181 		EX_TABLE(0b,2b)
182 		: "+d" (err)
183 		: "a" (addr), "d" (instr)
184 		: "memory", "cc");
185 
186 	return err;
187 }
188 
189 void __kprobes arch_arm_kprobe(struct kprobe *p)
190 {
191 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
192 	unsigned long status = kcb->kprobe_status;
193 	struct ins_replace_args args;
194 
195 	args.ptr = p->addr;
196 	args.old = p->opcode;
197 	args.new = BREAKPOINT_INSTRUCTION;
198 
199 	kcb->kprobe_status = KPROBE_SWAP_INST;
200 	stop_machine_run(swap_instruction, &args, NR_CPUS);
201 	kcb->kprobe_status = status;
202 }
203 
204 void __kprobes arch_disarm_kprobe(struct kprobe *p)
205 {
206 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
207 	unsigned long status = kcb->kprobe_status;
208 	struct ins_replace_args args;
209 
210 	args.ptr = p->addr;
211 	args.old = BREAKPOINT_INSTRUCTION;
212 	args.new = p->opcode;
213 
214 	kcb->kprobe_status = KPROBE_SWAP_INST;
215 	stop_machine_run(swap_instruction, &args, NR_CPUS);
216 	kcb->kprobe_status = status;
217 }
218 
219 void __kprobes arch_remove_kprobe(struct kprobe *p)
220 {
221 	mutex_lock(&kprobe_mutex);
222 	free_insn_slot(p->ainsn.insn, 0);
223 	mutex_unlock(&kprobe_mutex);
224 }
225 
226 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
227 {
228 	per_cr_bits kprobe_per_regs[1];
229 
230 	memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
231 	regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
232 
233 	/* Set up the per control reg info, will pass to lctl */
234 	kprobe_per_regs[0].em_instruction_fetch = 1;
235 	kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
236 	kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
237 
238 	/* Set the PER control regs, turns on single step for this address */
239 	__ctl_load(kprobe_per_regs, 9, 11);
240 	regs->psw.mask |= PSW_MASK_PER;
241 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
242 }
243 
244 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
245 {
246 	kcb->prev_kprobe.kp = kprobe_running();
247 	kcb->prev_kprobe.status = kcb->kprobe_status;
248 	kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
249 	memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
250 					sizeof(kcb->kprobe_saved_ctl));
251 }
252 
253 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
254 {
255 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
256 	kcb->kprobe_status = kcb->prev_kprobe.status;
257 	kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
258 	memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
259 					sizeof(kcb->kprobe_saved_ctl));
260 }
261 
262 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
263 						struct kprobe_ctlblk *kcb)
264 {
265 	__get_cpu_var(current_kprobe) = p;
266 	/* Save the interrupt and per flags */
267 	kcb->kprobe_saved_imask = regs->psw.mask &
268 	    (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
269 	/* Save the control regs that govern PER */
270 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
271 }
272 
273 /* Called with kretprobe_lock held */
274 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
275 					struct pt_regs *regs)
276 {
277 	struct kretprobe_instance *ri;
278 
279 	if ((ri = get_free_rp_inst(rp)) != NULL) {
280 		ri->rp = rp;
281 		ri->task = current;
282 		ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
283 
284 		/* Replace the return addr with trampoline addr */
285 		regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
286 
287 		add_rp_inst(ri);
288 	} else {
289 		rp->nmissed++;
290 	}
291 }
292 
293 static int __kprobes kprobe_handler(struct pt_regs *regs)
294 {
295 	struct kprobe *p;
296 	int ret = 0;
297 	unsigned long *addr = (unsigned long *)
298 		((regs->psw.addr & PSW_ADDR_INSN) - 2);
299 	struct kprobe_ctlblk *kcb;
300 
301 	/*
302 	 * We don't want to be preempted for the entire
303 	 * duration of kprobe processing
304 	 */
305 	preempt_disable();
306 	kcb = get_kprobe_ctlblk();
307 
308 	/* Check we're not actually recursing */
309 	if (kprobe_running()) {
310 		p = get_kprobe(addr);
311 		if (p) {
312 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
313 			    *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
314 				regs->psw.mask &= ~PSW_MASK_PER;
315 				regs->psw.mask |= kcb->kprobe_saved_imask;
316 				goto no_kprobe;
317 			}
318 			/* We have reentered the kprobe_handler(), since
319 			 * another probe was hit while within the handler.
320 			 * We here save the original kprobes variables and
321 			 * just single step on the instruction of the new probe
322 			 * without calling any user handlers.
323 			 */
324 			save_previous_kprobe(kcb);
325 			set_current_kprobe(p, regs, kcb);
326 			kprobes_inc_nmissed_count(p);
327 			prepare_singlestep(p, regs);
328 			kcb->kprobe_status = KPROBE_REENTER;
329 			return 1;
330 		} else {
331 			p = __get_cpu_var(current_kprobe);
332 			if (p->break_handler && p->break_handler(p, regs)) {
333 				goto ss_probe;
334 			}
335 		}
336 		goto no_kprobe;
337 	}
338 
339 	p = get_kprobe(addr);
340 	if (!p) {
341 		if (*addr != BREAKPOINT_INSTRUCTION) {
342 			/*
343 			 * The breakpoint instruction was removed right
344 			 * after we hit it.  Another cpu has removed
345 			 * either a probepoint or a debugger breakpoint
346 			 * at this address.  In either case, no further
347 			 * handling of this interrupt is appropriate.
348 			 *
349 			 */
350 			ret = 1;
351 		}
352 		/* Not one of ours: let kernel handle it */
353 		goto no_kprobe;
354 	}
355 
356 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
357 	set_current_kprobe(p, regs, kcb);
358 	if (p->pre_handler && p->pre_handler(p, regs))
359 		/* handler has already set things up, so skip ss setup */
360 		return 1;
361 
362 ss_probe:
363 	prepare_singlestep(p, regs);
364 	kcb->kprobe_status = KPROBE_HIT_SS;
365 	return 1;
366 
367 no_kprobe:
368 	preempt_enable_no_resched();
369 	return ret;
370 }
371 
372 /*
373  * Function return probe trampoline:
374  *	- init_kprobes() establishes a probepoint here
375  *	- When the probed function returns, this probe
376  *		causes the handlers to fire
377  */
378 void kretprobe_trampoline_holder(void)
379 {
380 	asm volatile(".global kretprobe_trampoline\n"
381 		     "kretprobe_trampoline: bcr 0,0\n");
382 }
383 
384 /*
385  * Called when the probe at kretprobe trampoline is hit
386  */
387 static int __kprobes trampoline_probe_handler(struct kprobe *p,
388 					      struct pt_regs *regs)
389 {
390 	struct kretprobe_instance *ri = NULL;
391 	struct hlist_head *head, empty_rp;
392 	struct hlist_node *node, *tmp;
393 	unsigned long flags, orig_ret_address = 0;
394 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
395 
396 	INIT_HLIST_HEAD(&empty_rp);
397 	spin_lock_irqsave(&kretprobe_lock, flags);
398 	head = kretprobe_inst_table_head(current);
399 
400 	/*
401 	 * It is possible to have multiple instances associated with a given
402 	 * task either because an multiple functions in the call path
403 	 * have a return probe installed on them, and/or more then one return
404 	 * return probe was registered for a target function.
405 	 *
406 	 * We can handle this because:
407 	 *     - instances are always inserted at the head of the list
408 	 *     - when multiple return probes are registered for the same
409 	 *	 function, the first instance's ret_addr will point to the
410 	 *	 real return address, and all the rest will point to
411 	 *	 kretprobe_trampoline
412 	 */
413 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
414 		if (ri->task != current)
415 			/* another task is sharing our hash bucket */
416 			continue;
417 
418 		if (ri->rp && ri->rp->handler)
419 			ri->rp->handler(ri, regs);
420 
421 		orig_ret_address = (unsigned long)ri->ret_addr;
422 		recycle_rp_inst(ri, &empty_rp);
423 
424 		if (orig_ret_address != trampoline_address) {
425 			/*
426 			 * This is the real return address. Any other
427 			 * instances associated with this task are for
428 			 * other calls deeper on the call stack
429 			 */
430 			break;
431 		}
432 	}
433 	BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
434 	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
435 
436 	reset_current_kprobe();
437 	spin_unlock_irqrestore(&kretprobe_lock, flags);
438 	preempt_enable_no_resched();
439 
440 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
441 		hlist_del(&ri->hlist);
442 		kfree(ri);
443 	}
444 	/*
445 	 * By returning a non-zero value, we are telling
446 	 * kprobe_handler() that we don't want the post_handler
447 	 * to run (and have re-enabled preemption)
448 	 */
449 	return 1;
450 }
451 
452 /*
453  * Called after single-stepping.  p->addr is the address of the
454  * instruction whose first byte has been replaced by the "breakpoint"
455  * instruction.  To avoid the SMP problems that can occur when we
456  * temporarily put back the original opcode to single-step, we
457  * single-stepped a copy of the instruction.  The address of this
458  * copy is p->ainsn.insn.
459  */
460 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
461 {
462 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
463 
464 	regs->psw.addr &= PSW_ADDR_INSN;
465 
466 	if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
467 		regs->psw.addr = (unsigned long)p->addr +
468 				((unsigned long)regs->psw.addr -
469 				 (unsigned long)p->ainsn.insn);
470 
471 	if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
472 		if ((unsigned long)regs->psw.addr -
473 		    (unsigned long)p->ainsn.insn == p->ainsn.ilen)
474 			regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
475 
476 	if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
477 		regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
478 						(regs->gprs[p->ainsn.reg] -
479 						(unsigned long)p->ainsn.insn))
480 						| PSW_ADDR_AMODE;
481 
482 	regs->psw.addr |= PSW_ADDR_AMODE;
483 	/* turn off PER mode */
484 	regs->psw.mask &= ~PSW_MASK_PER;
485 	/* Restore the original per control regs */
486 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
487 	regs->psw.mask |= kcb->kprobe_saved_imask;
488 }
489 
490 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
491 {
492 	struct kprobe *cur = kprobe_running();
493 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
494 
495 	if (!cur)
496 		return 0;
497 
498 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
499 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
500 		cur->post_handler(cur, regs, 0);
501 	}
502 
503 	resume_execution(cur, regs);
504 
505 	/*Restore back the original saved kprobes variables and continue. */
506 	if (kcb->kprobe_status == KPROBE_REENTER) {
507 		restore_previous_kprobe(kcb);
508 		goto out;
509 	}
510 	reset_current_kprobe();
511 out:
512 	preempt_enable_no_resched();
513 
514 	/*
515 	 * if somebody else is singlestepping across a probe point, psw mask
516 	 * will have PER set, in which case, continue the remaining processing
517 	 * of do_single_step, as if this is not a probe hit.
518 	 */
519 	if (regs->psw.mask & PSW_MASK_PER) {
520 		return 0;
521 	}
522 
523 	return 1;
524 }
525 
526 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
527 {
528 	struct kprobe *cur = kprobe_running();
529 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
530 	const struct exception_table_entry *entry;
531 
532 	switch(kcb->kprobe_status) {
533 	case KPROBE_SWAP_INST:
534 		/* We are here because the instruction replacement failed */
535 		return 0;
536 	case KPROBE_HIT_SS:
537 	case KPROBE_REENTER:
538 		/*
539 		 * We are here because the instruction being single
540 		 * stepped caused a page fault. We reset the current
541 		 * kprobe and the nip points back to the probe address
542 		 * and allow the page fault handler to continue as a
543 		 * normal page fault.
544 		 */
545 		regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
546 		regs->psw.mask &= ~PSW_MASK_PER;
547 		regs->psw.mask |= kcb->kprobe_saved_imask;
548 		if (kcb->kprobe_status == KPROBE_REENTER)
549 			restore_previous_kprobe(kcb);
550 		else
551 			reset_current_kprobe();
552 		preempt_enable_no_resched();
553 		break;
554 	case KPROBE_HIT_ACTIVE:
555 	case KPROBE_HIT_SSDONE:
556 		/*
557 		 * We increment the nmissed count for accounting,
558 		 * we can also use npre/npostfault count for accouting
559 		 * these specific fault cases.
560 		 */
561 		kprobes_inc_nmissed_count(cur);
562 
563 		/*
564 		 * We come here because instructions in the pre/post
565 		 * handler caused the page_fault, this could happen
566 		 * if handler tries to access user space by
567 		 * copy_from_user(), get_user() etc. Let the
568 		 * user-specified handler try to fix it first.
569 		 */
570 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
571 			return 1;
572 
573 		/*
574 		 * In case the user-specified fault handler returned
575 		 * zero, try to fix up.
576 		 */
577 		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
578 		if (entry) {
579 			regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
580 			return 1;
581 		}
582 
583 		/*
584 		 * fixup_exception() could not handle it,
585 		 * Let do_page_fault() fix it.
586 		 */
587 		break;
588 	default:
589 		break;
590 	}
591 	return 0;
592 }
593 
594 /*
595  * Wrapper routine to for handling exceptions.
596  */
597 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
598 				       unsigned long val, void *data)
599 {
600 	struct die_args *args = (struct die_args *)data;
601 	int ret = NOTIFY_DONE;
602 
603 	switch (val) {
604 	case DIE_BPT:
605 		if (kprobe_handler(args->regs))
606 			ret = NOTIFY_STOP;
607 		break;
608 	case DIE_SSTEP:
609 		if (post_kprobe_handler(args->regs))
610 			ret = NOTIFY_STOP;
611 		break;
612 	case DIE_TRAP:
613 	case DIE_PAGE_FAULT:
614 		/* kprobe_running() needs smp_processor_id() */
615 		preempt_disable();
616 		if (kprobe_running() &&
617 		    kprobe_fault_handler(args->regs, args->trapnr))
618 			ret = NOTIFY_STOP;
619 		preempt_enable();
620 		break;
621 	default:
622 		break;
623 	}
624 	return ret;
625 }
626 
627 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
628 {
629 	struct jprobe *jp = container_of(p, struct jprobe, kp);
630 	unsigned long addr;
631 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
632 
633 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
634 
635 	/* setup return addr to the jprobe handler routine */
636 	regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
637 
638 	/* r14 is the function return address */
639 	kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
640 	/* r15 is the stack pointer */
641 	kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
642 	addr = (unsigned long)kcb->jprobe_saved_r15;
643 
644 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
645 	       MIN_STACK_SIZE(addr));
646 	return 1;
647 }
648 
649 void __kprobes jprobe_return(void)
650 {
651 	asm volatile(".word 0x0002");
652 }
653 
654 void __kprobes jprobe_return_end(void)
655 {
656 	asm volatile("bcr 0,0");
657 }
658 
659 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
660 {
661 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
662 	unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
663 
664 	/* Put the regs back */
665 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
666 	/* put the stack back */
667 	memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
668 	       MIN_STACK_SIZE(stack_addr));
669 	preempt_enable_no_resched();
670 	return 1;
671 }
672 
673 static struct kprobe trampoline_p = {
674 	.addr = (kprobe_opcode_t *) & kretprobe_trampoline,
675 	.pre_handler = trampoline_probe_handler
676 };
677 
678 int __init arch_init_kprobes(void)
679 {
680 	return register_kprobe(&trampoline_p);
681 }
682